Mechanisms of Generation and Ecological Impacts of Nano- and Microplastics from Artificial Turf Systems in Sports Facilities
Abstract
:1. Introduction
1.1. History of Sports Venues and Their Playing Surfaces
1.2. The Development of Natural Grass and Artificial Surfaces in Modern Sports
1.3. Artificial Turf Systems: A Leading Cause of NMP Pollution
2. Generation Mechanisms of Nano- and Microplastics from Artificial Turf Systems
2.1. Physical Degradation Mechanisms and Particle Formation
2.2. Environmental Weathering and Chemical Degradation
2.3. Environmental Transport and Distribution
3. Environmental Impacts of Artificial Turf-Derived Plastics
3.1. Thermal Environmental Effects
3.2. Impacts on Soil and Water Ecosystems
3.3. Potential Implications for Human Health
4. Field Work and Analytical Methods for NMP Detection in Artificial Turf Systems
4.1. Field Sampling Approaches
4.2. Advanced Spectroscopic Techniques for Particle Characterization
5. Mitigation Strategies and Future Directions Toward Sustainable Artificial Turf Systems
5.1. Optimization of Existing Systems for Emission Reduction
5.2. Implementation of Alternative Organic and Biodegradable Materials
- Cost: the price of some plant-based infills is often higher than that of traditional rubber infills.
- Durability: some plant-based infills are prone to degradation when used over extended periods.
- Maintenance: exposure to rain and humidity can cause mold and further degradation, necessitating careful upkeep.
5.3. Regional Adaptation in Artificial Turf Systems
5.4. Future Outlook for Sustainable Artificial Turf Systems
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McComb, D.G. Sports in World History; Routledge: London, UK, 2004; pp. 1–121. [Google Scholar] [CrossRef]
- Kyle, D.G. Sport and Spectacle in the Ancient World, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Fried, G.; Kastel, M. Managing Sport Facilities; Human Kinetics: Champaign, IL, USA, 2020. [Google Scholar]
- Walvin, J. The People’s Game: The History of Football Revisited; Random House: New York, NY, USA, 2014. [Google Scholar]
- Jenkins, V. The Lawn: A History of an American Obsession; Smithsonian Institution: Washington, DC, USA, 1994. [Google Scholar]
- Fleming, P.R.; Young, C.; Roberts, J.R.; Jones, R.; Dixon, N. Human Perceptions of Artificial Surfaces for Field Hockey. Sports Eng. 2005, 8, 121–136. [Google Scholar] [CrossRef]
- Kuitunen, I.; Immonen, V.; Pakarinen, O.; Mattila, V.M.; Ponkilainen, V.T. Incidence of Football Injuries Sustained on Artificial Turf Compared to Grass and Other Playing Surfaces: A Systematic Review and Meta-Analysis. eClin. Med. 2023, 59, 101956. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Hu, Y.; Reinhard, M. Environmental and Health Impacts of Artificial Turf: A Review. Environ. Sci. Technol. 2014, 48, 2114–2129. [Google Scholar] [CrossRef] [PubMed]
- Verschoor, A.J.; van Gelderen, A.; Hofstra, U. Fate of Recycled Tyre Granulate Used on Artificial Turf. Environ. Sci. Eur. 2021, 33, 27. [Google Scholar] [CrossRef]
- de Haan, W.P.; Quintana, R.; Vilas, C.; Cózar, A.; Canals, M.; Uviedo, O.; Sanchez-Vidal, A. The Dark Side of Artificial Greening: Plastic Turfs as Widespread Pollutants of Aquatic Environments. Environ. Pollut. 2023, 334, 122094. [Google Scholar] [CrossRef]
- Duque-Villaverde, A.; Armada, D.; Dagnac, T.; Llompart, M. Recycled Tire Rubber Materials in the Spotlight. Determination of Hazardous and Lethal Substances. Sci. Total Environ. 2024, 929, 172674. [Google Scholar] [CrossRef]
- Williams, S.; Hume, P.A.; Kara, S. A Review of Football Injuries on Third and Fourth Generation Artificial Turfs Compared with Natural Turf. Sports Med. 2011, 41, 903–923. [Google Scholar] [CrossRef]
- Theobald, P.; Whitelegg, L.; Nokes, L.D.M.; Jones, M.D. The Predicted Risk of Head Injury from Fall-Related Impacts on to Third-Generation Artificial Turf and Grass Soccer Surfaces: A Comparative Biomechanical Analysis. Sports Biomech. 2010, 9, 29–37. [Google Scholar] [CrossRef]
- Burillo, P.; Gallardo, L.; Felipe, J.L.; Gallardo, A.M. Artificial Turf Surfaces: Perception of Safety, Sporting Feature, Satisfaction and Preference of Football Users. Eur. J. Sport Sci. 2014, 14, S437–S447. [Google Scholar] [CrossRef]
- Fleming, P.R.; Forrester, S.E.; McLaren, N.J. Understanding the Effects of Decompaction Maintenance on the Infill State and Play Performance of Third-Generation Artificial Grass Pitches. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2015, 229, 169–182. [Google Scholar] [CrossRef]
- Environmental Impact Study on Artificial Football Turf—Eunomia. Available online: https://eunomia.eco/reports/environmental-impact-study-on-artificial-football-turf/ (accessed on 17 March 2025).
- Zuccaro, P.; Thompson, D.C.; De Boer, J.; Llompart, M.; Watterson, A.; Bilott, R.; Birnbaum, L.S.; Vasiliou, V. The European Union Ban on Microplastics Includes Artificial Turf Crumb Rubber Infill: Other Nations Should Follow Suit. Environ. Sci. Technol. 2024, 58, 2591–2594. [Google Scholar] [CrossRef] [PubMed]
- Microplastics—ECHA. Available online: https://echa.europa.eu/hot-topics/microplastics (accessed on 17 March 2025).
- Bø, S.M.; Bohne, R.A.; Aas, B.; Hansen, L.M. Material Flow Analysis for Norway’s Artificial Turfs. IOP Conf. Ser. Earth Environ. Sci. 2020, 588, 042068. [Google Scholar] [CrossRef]
- Kawakami, T.; Sakai, S.; Obama, T.; Kubota, R.; Inoue, K.; Ikarashi, Y. Characterization of Synthetic Turf Rubber Granule Infill in Japan: Rubber Additives and Related Compounds. Sci. Total Environ. 2022, 840, 156716. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Wang, X.; Wang, H.; Zhang, Y.; Dai, Z.; Yang, J. Tire Wear Particle Leachate Exhibits Trophic and Multi-Generational Amplification: Potential Threat to Population Viability. J. Hazard. Mater. 2024, 480, 136497. [Google Scholar] [CrossRef]
- Lv, M.; Chen, H.; Liang, Z.; Sun, A.; Lu, S.; Ren, S.; Zhu, D.; Wei, S.; Chen, L.; Ding, J. Stress of Soil Moisture and Temperature Exacerbates the Toxicity of Tire Wear Particles to Soil Fauna: Tracking the Role of Additives through Host Microbiota. J. Hazard. Mater. 2024, 480, 135995. [Google Scholar] [CrossRef]
- Ding, J.; Liang, Z.; Lv, M.; Li, X.; Lu, S.; Ren, S.; Yang, X.; Li, X.; Tu, C.; Zhu, D.; et al. Aging in Soil Increases the Disturbance of Microplastics to the Gut Microbiota of Soil Fauna. J. Hazard. Mater. 2024, 461, 132611. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Q.; Lao, J.Y.; Cao, Y.; Hong, P.; Chen, C.; Lam, E.Y.; Fang, J.K.H.; Lee, S.; Leung, K.M.Y. Typical Tire Additives in River Water: Leaching, Transformation, and Environmental Risk Assessment. Environ. Sci. Technol. 2024, 58, 18940–18949. [Google Scholar] [CrossRef]
- FIFA Football Turf. Available online: https://inside.fifa.com/technical/football-technology/standards/football-turf (accessed on 19 January 2025).
- FIH FIH Certified Fields | FIH Certifications | FIH Quality Programme. Available online: https://www.fih.hockey/about-fih/fih-quality-programme/fih-certifications/fih-certified-fields (accessed on 19 January 2025).
- Zuccaro, P.; Thompson, D.C.; de Boer, J.; Watterson, A.; Wang, Q.; Tang, S.; Shi, X.; Llompart, M.; Ratola, N.; Vasiliou, V. Artificial Turf and Crumb Rubber Infill: An International Policy Review Concerning the Current State of Regulations. Environ. Chall. 2022, 9, 100620. [Google Scholar] [CrossRef]
- Ali, M.; Xu, D.; Yang, X.; Hu, J. Microplastics and PAHs Mixed Contamination: An in-Depth Review on the Sources, Co-Occurrence, and Fate in Marine Ecosystems. Water Res. 2024, 257, 121622. [Google Scholar] [CrossRef]
- Harusato, A.; Seo, W.; Abo, H.; Nakanishi, Y.; Nishikawa, H.; Itoh, Y. Impact of Particulate Microplastics Generated from Polyethylene Terephthalate on Gut Pathology and Immune Microenvironments. IScience 2023, 26, 106474. [Google Scholar] [CrossRef]
- Xie, L.; Zhu, K.; Jiang, W.; Lu, H.; Yang, H.; Deng, Y.; Jiang, Y.; Jia, H. Toxic Effects and Primary Source of the Aged Micro-Sized Artificial Turf Fragments and Rubber Particles: Comparative Studies on Laboratory Photoaging and Actual Field Sampling. Environ. Int. 2022, 170, 107663. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, Y.; Yamaguchi, H.; Hirata, Y.; Nakashima, Y.; Fujiwara, Y. Micro-Abrasive Glass Surface for Producing Microplastics for Biological Tests. Wear 2021, 477, 203816. [Google Scholar] [CrossRef]
- Mehmood, T.; Peng, L. Polyethylene Scaffold Net and Synthetic Grass Fragmentation: A Source of Microplastics in the Atmosphere? J. Hazard. Mater. 2022, 429, 128391. [Google Scholar] [CrossRef]
- Frost, H.; Bond, T.; Sizmur, T.; Felipe-Sotelo, M. A Review of Microplastic Fibres: Generation, Transport, and Vectors for Metal(Loid)s in Terrestrial Environments. Environ. Sci. Process Impacts 2022, 24, 504–524. [Google Scholar] [CrossRef]
- Hua, J.; Lundqvist, M.; Naidu, S.; Ekvall, M.T.; Cedervall, T. Environmental Risks of Breakdown Nanoplastics from Synthetic Football Fields. Environ. Pollut. 2024, 347, 123652. [Google Scholar] [CrossRef]
- Liu, P.; Shi, Y.; Wu, X.; Wang, H.; Huang, H.; Guo, X.; Gao, S. Review of the Artificially-Accelerated Aging Technology and Ecological Risk of Microplastics. Sci. Total Environ. 2021, 768, 144969. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, J.; Wang, J.; Yu, D.; Zhan, Y.; Liu, Z. Emerging Health Risks of Crumb Rubber: Inhalation of Environmentally Persistent Free Radicals via Saliva During Artificial Turf Activities. Environ. Sci. Technol. 2023, 57, 21005–21015. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, Y.; Liu, Y.; Yang, J.; Guo, M.; Bai, S.; Hou, N.; Zhao, X. A Study on Microbial Mechanism in Response to Different Nano-Plastics Concentrations in Constructed Wetland and Its Carbon Footprints Analysis. Chem. Eng. J. 2024, 480, 148023. [Google Scholar] [CrossRef]
- Gong, X.; Ge, Z.; Ma, Z.; Li, Y.; Huang, D.; Zhang, J. Effect of Different Size Microplastic Particles on the Construction of Algal-Bacterial Biofilms and Microbial Communities. J. Environ. Manag. 2023, 343, 118246. [Google Scholar] [CrossRef]
- Fournier, E.; Etienne-Mesmin, L.; Grootaert, C.; Jelsbak, L.; Syberg, K.; Blanquet-Diot, S.; Mercier-Bonin, M. Microplastics in the Human Digestive Environment: A Focus on the Potential and Challenges Facing in Vitro Gut Model Development. J. Hazard. Mater. 2021, 415, 125632. [Google Scholar] [CrossRef]
- Vital-Vilchis, I.; Karunakaran, E. Using Insect Larvae and Their Microbiota for Plastic Degradation. Insects 2025, 16, 165. [Google Scholar] [CrossRef] [PubMed]
- Golmohammadi, M.; Fatemeh Musavi, S.; Habibi, M.; Maleki, R.; Golgoli, M.; Zargar, M.; Dumée, L.F.; Baroutian, S.; Razmjou, A. Molecular Mechanisms of Microplastics Degradation: A Review. Sep. Purif. Technol. 2023, 309, 122906. [Google Scholar] [CrossRef]
- Bai, R.; Li, Z.; Liu, Q.; Liu, Q.; Cui, J.; He, W. The Reciprocity Principle in Mulch Film Deterioration and Microplastic Generation. Environ. Sci. Process Impacts 2024, 26, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Jia, H.; Shen, N.; Gang, D.; Yuan, W.; Yang, Y.; Hu, C.; Qu, J. Can “Risk-Sharing” Mechanisms Help Clonal Aquatic Plants Mitigate the Stress of Nanoplastics? Environ. Sci. Technol. 2024, 58, 2984–2997. [Google Scholar] [CrossRef]
- Peng, L.; Fu, D.; Qi, H.; Lan, C.Q.; Yu, H.; Ge, C. Micro- and Nano-Plastics in Marine Environment: Source, Distribution and Threats—A Review. Sci. Total Environ. 2020, 698, 134254. [Google Scholar] [CrossRef]
- Xu, J.; Zuo, R.; Shang, J.; Wu, G.; Dong, Y.; Zheng, S.; Xu, Z.; Liu, J.; Xu, Y.; Wu, Z.; et al. Nano- and Micro-Plastic Transport in Soil and Groundwater Environments: Sources, Behaviors, Theories, and Models. Sci. Total Environ. 2023, 904, 166641. [Google Scholar] [CrossRef]
- “Possible Impact of Additives in Artificial Turf on Aquatic Life in the” by Elena Galkina. Available online: https://repository.usfca.edu/capstone/1509/ (accessed on 23 January 2025).
- Beetstra-Hill, S. A Review of Recent Research and Findings on the Environmental Aspects of Artificial Turf Surfaces. Available online: www.multisportpitch.com.au (accessed on 22 February 2025).
- Lauria, M.Z.; Naim, A.; Plassmann, M.; Fäldt, J.; Sühring, R.; Benskin, J.P. Widespread Occurrence of Non-Extractable Fluorine in Artificial Turfs from Stockholm, Sweden. Environ. Sci. Technol. Lett. 2022, 9, 666–672. [Google Scholar] [CrossRef]
- Shamskhany, A.; Li, Z.; Patel, P.; Karimpour, S. Evidence of Microplastic Size Impact on Mobility and Transport in the Marine Environment: A Review and Synthesis of Recent Research. Front. Mar. Sci. 2021, 8, 760649. [Google Scholar] [CrossRef]
- Mousazadehgavan, M.; Khademi, S.; Naeini, A.M.; Yoosefdoost, I.; Vashisht, V.; Hashemi, M.; Manouchehri, M.; Hashim, K. Fate of Micro- and Nanoplastics in Water Bodies: A Critical Review of Current Challenges, the next Generation of Advanced Treatment Techniques and Removal Mechanisms with a Special Focus on Stormwater. J. Water Process Eng. 2024, 67, 106159. [Google Scholar] [CrossRef]
- Shi, J.; Sun, C.; An, T.; Jiang, C.; Mei, S.; Lv, B. Unraveling the Effect of Micro/Nanoplastics on the Occurrence and Horizontal Transfer of Environmental Antibiotic Resistance Genes: Advances, Mechanisms and Future Prospects. Sci. Total Environ. 2024, 947, 174466. [Google Scholar] [CrossRef]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and Wonderful? Microplastics Prevail in Snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric Microplastic Deposition in an Urban Environment and an Evaluation of Transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef] [PubMed]
- Eo, S.; Hong, S.H.; Song, Y.K.; Lee, J.; Lee, J.; Shim, W.J. Abundance, Composition, and Distribution of Microplastics Larger than 20 μm in Sand Beaches of South Korea. Environ. Pollut. 2018, 238, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.; Clark, M.; Thompson, R.; Hughes, K.A. Microplastics in Marine Sediments near Rothera Research Station, Antarctica. Mar. Pollut. Bull. 2018, 133, 460–463. [Google Scholar] [CrossRef]
- Wan, Y.; Chen, X.; Liu, Q.; Hu, H.; Wu, C.; Xue, Q. Informal Landfill Contributes to the Pollution of Microplastics in the Surrounding Environment. Environ. Pollut. 2022, 293, 118586. [Google Scholar] [CrossRef]
- Shi, J.; Dong, Y.; Shi, Y.; Yin, T.; He, W.; An, T.; Tang, Y.; Hou, X.; Chong, S.; Chen, D.; et al. Groundwater Antibiotics and Microplastics in a Drinking-Water Source Area, Northern China: Occurrence, Spatial Distribution, Risk Assessment, and Correlation. Environ. Res. 2022, 210, 112855. [Google Scholar] [CrossRef]
- Nel, H.A.; Froneman, P.W. A Quantitative Analysis of Microplastic Pollution along the South-Eastern Coastline of South Africa. Mar. Pollut. Bull. 2015, 101, 274–279. [Google Scholar] [CrossRef]
- Wessel, C.C.; Lockridge, G.R.; Battiste, D.; Cebrian, J. Abundance and Characteristics of Microplastics in Beach Sediments: Insights into Microplastic Accumulation in Northern Gulf of Mexico Estuaries. Mar. Pollut. Bull. 2016, 109, 178–183. [Google Scholar] [CrossRef]
- Kanhai, L.D.K.; Johansson, C.; Frias, J.P.G.L.; Gardfeldt, K.; Thompson, R.C.; O’Connor, I. Deep Sea Sediments of the Arctic Central Basin: A Potential Sink for Microplastics. Deep-Sea Res. I Oceanogr. Res. Pap. 2019, 145, 137–142. [Google Scholar] [CrossRef]
- Cha, J.; Lee, J.Y.; Chia, R.W. Microplastics Contamination and Characteristics of Agricultural Groundwater in Haean Basin of Korea. Sci. Total Environ. 2023, 864, 161027. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, L.; Wang, T.; Li, D. Suspended Microplastics in the Surface Water of the Yangtze Estuary System, China: First Observations on Occurrence, Distribution. Mar. Pollut. Bull. 2014, 86, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Kusui, T.; Noda, M. International Survey on the Distribution of Stranded and Buried Litter on Beaches along the Sea of Japan. Mar. Pollut. Bull. 2003, 47, 175–179. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Li, W.; Lan, J.; Adnan, M. Preliminary Study on the Distribution, Source, and Ecological Risk of Typical Microplastics in Karst Groundwater in Guizhou Province, China. Int. J. Environ. Res. Public Health. 2022, 19, 14751. [Google Scholar] [CrossRef]
- Zhu, L.; Bai, H.; Chen, B.; Sun, X.; Qu, K.; Xia, B. Microplastic Pollution in North Yellow Sea, China: Observations on Occurrence, Distribution and Identification. Sci. Total Environ. 2018, 636, 20–29. [Google Scholar] [CrossRef]
- Ambrosini, R.; Azzoni, R.S.; Pittino, F.; Diolaiuti, G.; Franzetti, A.; Parolini, M. First Evidence of Microplastic Contamination in the Supraglacial Debris of an Alpine Glacier. Environ. Pollut. 2019, 253, 297–301. [Google Scholar] [CrossRef]
- Yaghoobian, N.; Kleissl, J.; Krayenhoff, E.S. Modeling the Thermal Effects of Artificial Turf on the Urban Environment. J. Appl. Meteorol. Climatol. 2010, 49, 332–345. [Google Scholar] [CrossRef]
- Jim, C.Y. Intense Summer Heat Fluxes in Artificial Turf Harm People and Environment. Landsc. Urban Plan. 2017, 157, 561–576. [Google Scholar] [CrossRef]
- Bernard, P.; Chevance, G.; Kingsbury, C.; Baillot, A.; Romain, A.J.; Molinier, V.; Gadais, T.; Dancause, K.N. Climate Change, Physical Activity and Sport: A Systematic Review. Sports Med. 2021, 51, 1041–1059. [Google Scholar] [CrossRef]
- Pochron, S.T.; Fiorenza, A.; Sperl, C.; Ledda, B.; Patterson, C.L.; Tucker, C.C.; Tucker, W.; Ho, Y.L.; Panico, N. The Response of Earthworms (Eisenia Fetida) and Soil Microbes to the Crumb Rubber Material Used in Artificial Turf Fields. Chemosphere 2017, 173, 557–562. [Google Scholar]
- Watterson, A. Artificial Turf: Contested Terrains for Precautionary Public Health with Particular Reference to Europe? Int. J. Environ. Res. Public Health 2017, 14, 1050. [Google Scholar] [CrossRef]
- Magnusson, S.; Mácsik, J. Analysis of Energy Use and Emissions of Greenhouse Gases, Metals and Organic Substances from Construction Materials Used for Artificial Turf. Resour. Conserv. Recycl. 2017, 122, 362–372. [Google Scholar] [CrossRef]
- National Toxicology NTP Research Report on Synthetic Turf/Recycled Tire Crumb Rubber: 14 Day Exposure Characterization Studies of Crumb Rubber in Female Mice Housed on Mixed Bedding or Dosed via Feed or Oral Gavage. 2019. Available online: https://ntp.niehs.nih.gov/publications/reports/rr/rr14 (accessed on 23 January 2025).
- Xu, E.G.; Lin, N.; Cheong, R.S.; Ridsdale, C.; Tahara, R.; Du, T.Y.; Das, D.; Zhu, J.; Silva, L.P.; Azimzada, A.; et al. Artificial Turf Infill Associated with Systematic Toxicity in an Amniote Vertebrate. Proc. Natl. Acad. Sci. USA 2019, 116, 25156–25161. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, A. Synthetic Turf Fields, Crumb Rubber, and Alleged Cancer Risk. Sports Med. 2017, 47, 2437–2441. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, A.; Keegan, T. Incidence of Malignant Lymphoma in Adolescents and Young Adults in the 58 Counties of California with Varying Synthetic Turf Field Density. Cancer Epidemiol. 2018, 53, 129. [Google Scholar] [CrossRef]
- Tarafdar, A.; Oh, M.J.; Nguyen-Phuong, Q.; Kwon, J.H. Profiling and Potential Cancer Risk Assessment on Children Exposed to PAHs in Playground Dust/Soil: A Comparative Study on Poured Rubber Surfaced and Classical Soil playgrounds in Seoul. Environ. Geochem. Health 2020, 42, 1691–1704. [Google Scholar] [CrossRef]
- Bhat, M.A.; Gedik, K.; Gaga, E.O. Atmospheric Micro (Nano) Plastics: Future Growing Concerns for Human Health. Air Qual. Atmos. Health 2022, 16, 233–262. [Google Scholar] [CrossRef]
- Kurniasari, F.; Htike, M.T.; Tazaki, A.; Kagawa, T.; Al Hossain, M.M.A.; Akhand, A.A.; Ahsan, N.; Ohnuma, S.; Iwasaki, N.; Kato, M. Beneficial and Adverse Effects of Dam Construction in Canal Tannery Wastewater Effluent with a High Content of Chromium in Hazaribagh, Bangladesh. Chemosphere 2024, 350, 141047. [Google Scholar] [CrossRef]
- Murphy, M.; Warner, G.R. Health Impacts of Artificial Turf: Toxicity Studies, Challenges, and Future Directions. Environ. Pollut. 2022, 310, 119841. [Google Scholar] [CrossRef]
- Simpson, T.J.; Francis, R.A. Artificial Lawns Exhibit Increased Runoff and Decreased Water Retention Compared to Living Lawns Following Controlled Rainfall Experiments. Urban For. Urban Green. 2021, 63, 127232. [Google Scholar] [CrossRef]
- Nigamatzyanova, L.; Fakhrullin, R. Dark-Field Hyperspectral Microscopy for Label-Free Microplastics and Nanoplastics Detection and Identification in Vivo: A Caenorhabditis Elegans Study. Environ. Pollut. 2021, 271, 116337. [Google Scholar] [CrossRef]
- Andoh, C.N.; Attiogbe, F.; Bonsu Ackerson, N.O.; Antwi, M.; Adu-Boahen, K. Fourier Transform Infrared Spectroscopy: An Analytical Technique for Microplastic Identification and Quantification. Infrared Phys. Technol. 2024, 136, 105070. [Google Scholar] [CrossRef]
- Qian, N.; Gao, X.; Lang, X.; Deng, H.; Bratu, T.M.; Chen, Q.; Stapleton, P.; Yan, B.; Min, W. Rapid Single-Particle Chemical Imaging of Nanoplastics by SRS Microscopy. Proc. Natl. Acad. Sci. USA 2024, 121, e2300582121. [Google Scholar] [CrossRef] [PubMed]
- Enfrin, M.; Hachemi, C.; Hodgson, P.D.; Jegatheesan, V.; Vrouwenvelder, J.; Callahan, D.L.; Lee, J.; Dumée, L.F. Nano/Micro Plastics—Challenges on Quantification and Remediation: A Review. J. Water Process Eng. 2021, 42, 102128. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Mielańczuk, M.; Syczewski, M. The Raman Spectroscopy and SEM/EDS Investigation of the Primary Sources of Microplastics from Cosmetics Available in Poland. Chemosphere 2022, 308, 136407. [Google Scholar] [CrossRef]
- Gniadek, M.; Dąbrowska, A. The Marine Nano- and Microplastics Characterisation by SEM-EDX: The Potential of the Method in Comparison with Various Physical and Chemical Approaches. Mar. Pollut. Bull. 2019, 148, 210–216. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, D.; Feng, H.; Li, Y.; Zhang, S.; Peng, C.; Wang, Y.; Sun, H.; Wang, L. Mass Spectrometry Detection of Environmental Microplastics: Advances and Challenges. TrAC Trends Anal. Chem. 2024, 170, 117472. [Google Scholar] [CrossRef]
- Mansa, R.; Zou, S. Thermogravimetric Analysis of Microplastics: A Mini Review. Environ. Adv. 2021, 5, 100117. [Google Scholar] [CrossRef]
- Bø, S.M.; Bohne, R.A.; Lohne, J. Environmental Impacts of Artificial Turf: A Scoping Review. Int. J. Environ. Sci. Technol. 2024, 21, 10205–10216. [Google Scholar] [CrossRef]
- Fleming, P.; Ferrandino, M.; Forrester, S. Artificial Turf Field—A New Build Case Study. Procedia Eng. 2016, 147, 836–841. [Google Scholar] [CrossRef]
- Dickson, K.; Sorochan, J.; Strunk, W. Impact of Alternative Synthetic Turf Infills on Athlete Performance and Safety. Proceedings 2020, 49, 35. [Google Scholar] [CrossRef]
- Holmberg, K.; Matthews, A. Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering. Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- van Huijgevoort, M.H.J.; Cirkel, D.G.; Voeten, J.G.W.F. Climate Adaptive Solution for Artificial Turf in Cities: Integrated Rainwater Storage and Evaporative Cooling. Front. Sustain. Cities 2024, 6, 1399858. [Google Scholar] [CrossRef]
- Thanheiser, S.Y.; Grashey-Jansen, S.; Armbruster, G. Hardness Measurement of Natural and Hybrid Turf Soccer Fields. Sports Eng. 2018, 21, 367–377. [Google Scholar] [CrossRef]
- Thoms, A.W.; Bearss, R.; Rogers, J.N.; Sorochan, J.C. An Evaluation of Mat Hybrid Turfgrass Systems under Simulated Traffic. Int. Turfgrass Soc. Res. J. 2022, 14, 385–389. [Google Scholar] [CrossRef]
- Inside FIFA. Available online: https://inside.fifa.com/innovation/stadium-guidelines/general-process-guidelines/design/turf-and-pitch-design (accessed on 19 February 2025).
- Stiles, V.H.; James, I.T.; Dixon, S.J.; Guisasola, I.N. Natural Turf Surfaces: The Case for Continued Research. Sports Med. 2009, 39, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Aamlid, T.S.; Hanslin, H.M. Evaluation of Organic Fertilizers and Biostimulants on Sand-Based Golf Greens and Football Pitches under Scandinavian Climate Conditions. Intl. Turfgrass Soc. Res. J. 2009, 11, 919–931. [Google Scholar]
- Henrik Wahlman, P.M. Management of Semi-Natural Grassland Vegetation: Evaluation of a Long-Term Experiment in Southern Sweden on JSTOR. Available online: https://www.jstor.org/stable/23726791?seq=1 (accessed on 17 March 2025).
- Habib, S.; Al-Ghamdi, S.G. Estimation of Above-Ground Carbon-Stocks for Urban Greeneries in Arid Areas: Case Study for Doha and FIFA World Cup Qatar 2022. Front. Environ. Sci. 2021, 9, 635365. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, X.; López-Carr, D.; Wang, Z.; Wang, B.; Gao, F.; Wei, W. The World Cup Reshaped the Urban Green Space Pattern of Qatar. Ecol. Inform. 2024, 81, 102551. [Google Scholar] [CrossRef]
Sample Location | Type (Shape) | Size | Abundance (Concentration) | References |
---|---|---|---|---|
South Korean coast | PS, PE, PP | 0.02–5 mm | 0-62,800/m2 | Eo et al. (2018) [54] |
Adelaide Island, Antarctica | fiber | 2–5 in length, <0.1 mm in diameter | 0–5/10 mL | Reed et al. (2018) [55] |
Borehole, China | PU, PAT, PA, PEC, PP, PE, PS, PET | 20–150 mm | 11–17/L | Wan et al. (2022) [56] |
Well, China | PA, PE, PP, PVC, PS | <2500 mm | 4–72/L | Shi et al. (2022) [57] |
South-eastern coastline of South Africa | fiber | 0.08–5 mm | 257.9 ± 53.36–3308 ± 1449/m3 | Nel and Froneman (2015) [58] |
Gulf of Mexico estuary | PE, PP, PS, Polyester, Nylon | 2.5 ± 0.48 mm | 5–117/m2 | Wessel et al. (2016) [59] |
Arctic Central Basin | fiber, fragment | 1–2 mm | 0.7/m3 | Kanhai et al. (2018) [60] |
Well, Korea | PP, PE, PVC, PS | 20–5000 mm | 0.02–3.48/L | Cha et al. (2023) [61] |
Yangtze Estuary | fibers, granules, films | 0.5–5 mm | 4137.3 ± 2461.5/m3 | Zhao et al. (2014) [62] |
Beaches along the Sea of Japan | styrofoam, fragment (UDP) | - | 1902.69/m2 | Kusui and Noda (2003) [63] |
Open underground water, China | PE, PS, PET, PP, PA, PVC | 1–5000 mm | 2.33–9.50/L | An et al. (2022) [64] |
North Yellow Sea, China | film, fiber, granule, pellet | <0.5 mm | 545 ± 282/m3 | Zhu et al. (2018) [65] |
Central London, Atmosphere | fibrous, non-fibrous, film; PS, PAN, PVC, PE, PU, PES, PET, PA, PP | fibrous: 20–25; non-fibrous: 75–100, film (PE): 1080 mm | fibrous: 712 ± 162; non–fibrous 59 ± 32/m2/d | Wright et al. (2020) [53] |
Italian Alps, Altitude of 2580 m | fragment: 65.2%, fibers: 34.8%; polyester, PA, PE, PP | 39% <100 mm | 74.4 ± 28.3/kg | Ambrosini et al. (2019) [66] |
Analytical Technique | Detection Limit (μm/nm) | Size Range (μm/nm) | Quantification | Primary Analysis Target | Advantages | Limitations | References |
---|---|---|---|---|---|---|---|
FTIR (Fourier transform infrared spectroscopy) | ~10 μm | 10 μm–mm | Not typically quantitative | Organic polymers | Non-destructive, cost-effective | Cannot detect below ~10 μm | Andoh et al. (2024) [83] |
Raman spectroscopy | ~100 nm | 100 nm–mm | Not typically quantitative | Organic polymers | High spatial resolution, detects small particles | Fluorescence interference, slow analysis | Dąbrowska et al. (2022) [86] |
SEM-EDX (scanning electron microscopy with energy dispersive X-ray) | A few nm | 10 nm–mm | Semi-quantitative | Organic and inorganic composition | Shape and elemental analysis possible | Sample preparation required, polymer ID limited | Gniadek and Dąbrowska. (2019) [87] |
Mass spectrometry (MS) | A few nm | 1 nm–μm | Highly quantitative | Molecular structure | High sensitivity, molecular analysis possible | Complex sample preparation | Zhang et al. (2024) [88] |
TGA (thermogravimetric analysis) | Not applicable | Not applicable | Quantitative (mass-based) | Thermal stability and composition | Identifies thermal degradation patterns | No size/shape information | Mansa and Zou. (2021) [89] |
Hydrodynamic Chromatography (HDC) | A few nm | 5 nm–10 μm | Quantitative (size-based) | Particle size distribution | High-resolution particle size separation | Requires chromatography setup | Enfrin et al. (2021) [85] |
Method | Description | Advantages | Challenges | References |
---|---|---|---|---|
Drainage purification | Filters or adsorbents used to remove NMPs from drainage | Easy implementation | Effectiveness evaluation, maintenance costs | Verschoor et al. (2021) [9] |
Binder material improvement | Adhesives or stabilizers added to infill materials to prevent disintegration | Reduces material dispersion, increases durability | Difficulty applying to existing products | Fleming et al. (2016) [91] |
Use of organic materials | Biodegradable materials | Environmentally friendly | High cost Durability concerns | Dickson et al. (2020) [92] |
Maintenance optimization | Regular cleaning and infill management based on usage frequency | Cost-saving | Limited effect | Inside FIFA, FIFA. |
Surface processing | Curling and coatings to prevent particle abrasion | Reduces NMP generation | Durability of the curling and coating | Holmberg et al. (2009) [93] Fleming et al. (2016) [91] |
Rainwater storage tanks | Captures runoff in tanks for subsequent filtration | Reduces discharge Useful for other purposes | Space requirements Maintenance issue | Huijgevoort et al. (2009) [94] |
Hybrid turf | Combination of natural and artificial grass | Reduces discharge Low maintenance cost | High installation cost | Thanheiser et al. (2018) [95] Thoms et al. (2022) [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harusato, A.; Kato, M. Mechanisms of Generation and Ecological Impacts of Nano- and Microplastics from Artificial Turf Systems in Sports Facilities. Environments 2025, 12, 109. https://doi.org/10.3390/environments12040109
Harusato A, Kato M. Mechanisms of Generation and Ecological Impacts of Nano- and Microplastics from Artificial Turf Systems in Sports Facilities. Environments. 2025; 12(4):109. https://doi.org/10.3390/environments12040109
Chicago/Turabian StyleHarusato, Akihito, and Masashi Kato. 2025. "Mechanisms of Generation and Ecological Impacts of Nano- and Microplastics from Artificial Turf Systems in Sports Facilities" Environments 12, no. 4: 109. https://doi.org/10.3390/environments12040109
APA StyleHarusato, A., & Kato, M. (2025). Mechanisms of Generation and Ecological Impacts of Nano- and Microplastics from Artificial Turf Systems in Sports Facilities. Environments, 12(4), 109. https://doi.org/10.3390/environments12040109