The Physico-Chemical and Radionuclide Characterisation of Soil near a Future Radioactive Waste Management Centre
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Measurements of H*(10)/t on Site
2.2. Laboratory Analysis
2.3. Statistical and Spatial Data Processing
3. Results and Discussion
3.1. Radionuclide Concentration
3.2. Spatial Distribution of Radionuclides
3.3. Ambient Equivalent Dose Rate
3.4. Physico-Chemical Parameters
3.5. The Correlation Matrix
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Unit | Method | Protocol/Standard |
---|---|---|---|
Drying/grinding/ seeding/homogenisation | - | Preparation of soil samples | ISO 11464:2006 [25] |
pH | - | Determination of the pH value in 0.01 M CaCl2, 1 M KCl, and H2O in a ratio of 1:2.5 (m/v) | ISO 10390:2005 [26] |
Hydrolytic acidity (HA) | cmol+/kg | Extraction with 1M NaAc | Škorić 1982 [27] |
Plant available phosphorus (AP) and potassium (AK) | mg/100 g | In AL extract in a ratio of 1:20 (m/v) AL method (spectrophotometer, Hach DR/2000, 1996; and flame photometer, Jenway, PFP7, 1999) | Škorić 1982 [27] |
Mechanical composition of the soil (sand, silt, clay) | % | Sieving and sedimentation Soil quality—determination of particle size distribution in mineral soil material—method by sieving and sedimentation | ISO 11277:2020 [28] |
Total elements (As, Cr, Pb, Al, Si, Fe, Ca, Ti, K, Mn, Rb, Zr, Nb, Ni, P, Y, Zn, Sr, Th, Cu., W, Co) | mg/kg | Soil quality—screening soils for selected elements by energy-dispersive X-ray fluorescence spectrometry using a handheld or portable instrument (pXRF Vanta, Olympus, 2019) | ISO 13196:2013 [29] |
Organic matter (OM), TOC and TC | % | Dry combustion method, Vario Macro CHNS (TC) | ISO 10694:2021 [30] |
TN | % | Soil quality—determination of total nitrogen content by dry combustion (“elemental analysis”) | ISO 13878:2020 [31] |
TS | % | Soil quality—determination of total sulphur content by dry combustion | ISO 15178:2021 [32] |
CaCO3 | % | Volumetric method (Scheibler) (TIC) | ISO 10693:2004 [33] |
Sample ID | 238U | 40K | 137Cs | Sample ID | 238U | 40K | 137Cs |
---|---|---|---|---|---|---|---|
A ± U * [Bq/kg] | A ± U * [Bq/kg] | ||||||
L1T-01 | 42.7 ± 0.7 | 283 ± 1 | 51.5 ± 0.2 | L3T-01 | 55.7 ± 0.9 | 661 ± 2 | 53.4 ± 0.2 |
L1T-02 | 62.3 ± 0.9 | 515 ± 2 | 48.4 ± 0.2 | L3T-02 | 47.1 ± 0.8 | 499 ± 2 | 26.2 ± 0.1 |
L1T-03 | 43.6 ± 0.7 | 328 ± 1 | 38.6 ± 0.1 | L3T-03 | 54.3 ± 0.9 | 501 ± 2 | 30.1 ± 0.1 |
L1T-04 | 65.1 ± 1.0 | 553 ± 2 | 50.4 ± 0.2 | L3T-04 | 38.7 ± 0.7 | 517 ± 2 | 40.3 ± 0.1 |
L1T-05 | 44.5 ± 0.8 | 470 ± 2 | 56.1 ± 0.2 | L3T-05 | 50.6 ± 0.9 | 512 ± 2 | 38.3 ± 0.1 |
L1T-06 | 54.3 ± 0.9 | 548 ± 2 | 29.9 ± 0.1 | L3T-06 | 42.8 ± 0.7 | 524 ± 2 | 7.07 ± 0.06 |
L1T-07 | 61 ± 1 | 596 ± 2 | 33.5 ± 0.1 | L3T-07 | 51.7 ± 0.6 | 351 ± 1 | 79.7 ± 0.2 |
L1T-08 | 50.5 ± 0.8 | 415 ± 2 | 36.2 ± 0.1 | L3T-08 | 57.6 ± 0.9 | 412 ± 2 | 27.9 ± 0.1 |
L1T-09 | 66.8 ± 0.9 | 664 ± 2 | 42.5 ± 0.1 | L3T-09 | 61.3 ± 0.9 | 503 ± 2 | 44.4 ± 0.1 |
L1T-10 | 61.6 ± 0.9 | 617 ± 2 | 34.67 ± 0.01 | L3T-10 | 51.1 ± 0.9 | 496 ± 3 | 67.4 ± 0.1 |
L1T-11 | 57.7 ± 0.9 | 487 ± 2 | 58.4 ± 0.2 | L3T-11 | 55.1 ± 0.9 | 556 ± 2 | 28.6 ± 0.1 |
L1T-12 | 66.6 ± 0.9 | 530 ± 2 | 49.9 ± 0.1 | L3T-12 | 42 ± 2 | 493 ± 2 | 29.8 ± 0.1 |
L1T-13 | 60.7 ± 0.7 | 575 ± 2 | 30.5 ± 0.1 | L3T-13 | 49.1 ± 0.9 | 573 ± 2 | 49.4 ± 0.2 |
L1T-14 | 66.7 ± 0.7 | 571 ± 19 | 32.9 ± 0.1 | L3T-14 | 54.5 ± 0.9 | 485 ± 2 | 43.4 ± 0.1 |
L1T-15 | 59.4 ± 0.8 | 606 ± 2 | 17.2 ± 0.1 | L3T-15 | 50.1 ± 0.1 | 523 ± 2 | 77.6 ± 0.2 |
L2T-01 | 34.7 ± 0.7 | 372 ± 2 | 36.1 ± 0.1 | L4T-01 | 65.2 ± 0.9 | 592 ± 2 | 14.8 ± 0.1 |
L2T-02 | 41.6 ± 0.7 | 398 ± 1 | 59.5 ± 0.2 | L4T-02 | 48.3 ± 0.8 | 529 ± 2 | 28.1 ± 0.1 |
L2T-03 | 48.1 ± 0.8 | 503 ± 2 | 51.1 ± 0.2 | L4T-03 | 43.5 ± 0.8 | 502 ± 2 | 19.9 ± 0.1 |
L2T-04 | 40.5 ± 0.8 | 515 ± 2 | 43.9 ± 0.1 | L4T-04 | 69.8 ± 0.9 | 592 ± 2 | 15.4 ± 0.1 |
L2T-05 | 55.2 ± 0.9 | 650 ± 2 | 38.1 ± 0.1 | L4T-05 | 68 ± 1 | 823 ± 2 | 39.7 ± 0.1 |
L2T-06 | 51.2 ± 0.9 | 654 ± 2 | 41.4 ± 0.1 | L4T-06 | 66 ± 1 | 706 ± 2 | 50.5 ± 0.2 |
L2T-07 | 60 ± 1 | 626 ± 2 | 31.7 ± 0.1 | L4T-07 | 49.6 ± 0.9 | 498 ± 2 | 23.6 ± 0.1 |
L2T-08 | 33.2 ± 0.7 | 311 ± 1 | 26.6 ± 0.1 | L4T-08 | 54.9 ± 0.9 | 556 ± 2 | 31.3 ± 0.1 |
L2T-09 | 58.5 ± 0.9 | 537 ± 2 | 25.3 ± 0.1 | L4T-09 | 64 ± 1 | 617 ± 2 | 26.0 ± 0.1 |
L2T-10 | 9.0 ± 0.6 | 65 ± 1 | 4.16 ± 0.05 | L4T-10 | 59.4 ± 0.9 | 586 ± 2 | 54.7 ± 0.2 |
L2T-11 | 54.7 ± 0.8 | 512 ± 2 | 23.8 ± 0.1 | L4T-11 | 43.7 ± 0.8 | 487 ± 2 | 40.9 ± 0.1 |
L2T-12 | 60.7 ± 0.9 | 549 ± 2 | 33.3 ± 0.1 | L4T-12 | 69 ± 1 | 599 ± 2 | 61.2 ± 0.2 |
L2T-13 | 52.8 ± 0.8 | 589 ± 2 | 35.3 ± 0.1 | L4T-13 | 72 ± 1 | 640 ± 2 | 44.9 ± 0.1 |
L2T-14 | 53.8 ± 0.9 | 569 ± 2 | 49.8 ± 0.2 | L4T-14 | 47.7 ± 0.9 | 604 ± 2 | 68.2 ± 0.2 |
L2T-15 | 51.7 ± 0.8 | 633 ± 2 | 45.9 ± 0.1 | L4T-15 | 60.3 ± 0.9 | 635 ± 2 | 33.0 ± 0.1 |
L4T-16 | 57.4 ± 0.9 | 574 ± 2 | 7.68 ± 0.07 |
Location | H*(10)/t ± U * (nSv/h) | Effective Dose (mSv/year) | Location | H*(10)/t ± U * (nSv/h) | Effective Dose (mSv/year) |
---|---|---|---|---|---|
L1T-01 | 86 ± 30 | 0.171 | L3T-01 | 86 ± 30 | 0.171 |
L1T-02 | 76 ± 27 | 0.153 | L3T-02 | 76 ± 27 | 0.153 |
L1T-03 | 130 ± 46 | 0.260 | L3T-03 | 130 ± 46 | 0.260 |
L1T-04 | 72 ± 25 | 0.145 | L3T-04 | 72 ± 25 | 0.145 |
L1T-05 | 76 ± 27 | 0.152 | L3T-05 | 76 ± 27 | 0.152 |
L1T-06 | 99 ± 35 | 0.198 | L3T-06 | 99 ± 35 | 0.198 |
L1T-07 | 82 ± 29 | 0.164 | L3T-07 | 82 ± 29 | 0.164 |
L1T-08 | 74 ± 26 | 0.148 | L3T-08 | 74 ± 26 | 0.148 |
L1T-09 | 118 ± 41 | 0.236 | L3T-09 | 118 ± 41 | 0.236 |
L1T-10 | 87 ± 30 | 0.174 | L3T-10 | 87 ± 30 | 0.174 |
L1T-11 | 112 ± 39 | 0.223 | L3T-11 | 112 ± 39 | 0.223 |
L1T-12 | 94 ± 33 | 0.188 | L3T-12 | 94 ± 33 | 0.188 |
L1T-13 | 95 ± 33 | 0.189 | L3T-13 | 95 ± 33 | 0.189 |
L1T-14 | 80 ± 28 | 0.159 | L3T-14 | 80 ± 28 | 0.159 |
L1T-15 | 117 ± 41 | 0.234 | L3T-15 | 117 ± 41 | 0.234 |
L2T-01 | 58 ± 20 | 0.116 | L4T-01 | 94 ± 33 | 0.188 |
L2T-02 | 103 ± 36 | 0.206 | L4T-02 | 60 ± 21 | 0.120 |
L2T-03 | 90 ± 32 | 0.181 | L4T-03 | 59 ± 21 | 0.118 |
L2T-04 | 82 ± 29 | 0.164 | L4T-04 | 90 ± 32 | 0.180 |
L2T-05 | 80 ± 28 | 0.160 | L4T-05 | 106 ± 37 | 0.212 |
L2T-06 | 82 ± 29 | 0.165 | L4T-06 | 115 ± 40 | 0.230 |
L2T-07 | 74 ± 26 | 0.147 | L4T-07 | 91 ± 32 | 0.182 |
L2T-08 | 95 ± 33 | 0.190 | L4T-08 | 95 ± 33 | 0.190 |
L2T-09 | 87 ± 31 | 0.175 | L4T-09 | 110 ± 39 | 0.220 |
L2T-10 | 52 ± 18 | 0.104 | L4T-10 | 97 ± 34 | 0.193 |
L2T-11 | 91 ± 32 | 0.182 | L4T-11 | 86 ± 30 | 0.172 |
L2T-12 | 91 ± 32 | 0.182 | L4T-12 | 113 ± 40 | 0.226 |
L2T-13 | 73 ± 26 | 0.146 | L4T-13 | 124 ± 43 | 0.248 |
L2T-14 | 75 ± 26 | 0.149 | L4T-14 | 70 ± 25 | 0.140 |
L2T-15 | 86 ± 30 | 0.172 | L4T-15 | 81 ± 28 | 0.162 |
L4T-16 | 92 ± 32 | 0.185 |
pH | AP | AK | Sand | Silt | Clay | As | Cr | Pb | U238 | |
U238 | −0.63 | −0.33 | −0.02 | −0.55 | 0.32 | 0.19 | 0.21 | −0.22 | 0.08 | 1.00 |
K40 | −0.35 | −0.03 | 0.14 | −0.43 | 0.17 | 0.24 | 0.18 | 0.04 | 0.09 | 0.76 |
Cs137 | 0.17 | 0.12 | 0.12 | −0.16 | 0.27 | −0.14 | 0.17 | 0.20 | −0.06 | 0.08 |
K40 | Cs137 | CaCO3 | HA | Al | Si | Fe | Ca | Ti | K | |
U238 | 0.76 | 0.08 | −0.67 | 0.57 | 0.61 | 0.70 | 0.31 | −0.69 | 0.45 | 0.61 |
K40 | 1.00 | 0.01 | −0.62 | 0.30 | 0.50 | 0.46 | 0.42 | −0.63 | 0.30 | 0.64 |
Cs137 | 0.01 | 1.00 | −0.20 | −0.15 | −0.11 | 0.26 | −0.10 | −0.20 | 0.04 | 0.00 |
Mn | Rb | Zr | Nb | Ni | P | Y | Zn | Sr | Th | |
U238 | 0.18 | 0.70 | 0.70 | 0.66 | −0.15 | −0.05 | 0.64 | 0.13 | −0.34 | 0.48 |
K40 | 0.12 | 0.66 | 0.35 | 0.39 | 0.17 | 0.26 | 0.51 | 0.43 | −0.12 | 0.26 |
Cs137 | 0.02 | 0.03 | 0.22 | 0.00 | 0.10 | 0.03 | 0.04 | 0.02 | 0.02 | 0.02 |
Cu | W | Co | TC | TH | TN | TS | OM | TIC | TOC | |
U238 | −0.09 | 0.40 | 0.20 | −0.64 | 0.09 | −0.04 | −0.02 | −0.28 | −0.67 | −0.28 |
K40 | 0.25 | 0.20 | 0.22 | −0.46 | 0.30 | 0.29 | 0.24 | −0.03 | −0.62 | −0.03 |
Cs137 | 0.04 | −0.05 | 0.05 | −0.04 | 0.14 | 0.28 | 0.22 | 0.20 | −0.20 | 0.20 |
References
- International Atomic Energy Agency (IAEA). Site Evaluation for Nuclear Installations. 2019. Available online: https://www.iaea.org/publications/13413/site-evaluation-for-nuclear-installations (accessed on 25 March 2025).
- Dermol, U.; Kontić, B. Use of strategic environmental assessment in the site selection process for a radioactive waste disposal facility in Slovenia. J. Environ. Manag. 2011, 92, 43–52. [Google Scholar] [CrossRef]
- Bilgilioğlu, S.S. Site selection for radioactive waste disposal facility by GIS based multi criteria decision making. Ann. Nucl. Energy 2022, 165, 108795. [Google Scholar] [CrossRef]
- Van der Stricht, E.; Kirchmann, R. Radioecology. Radioactivity and Ecosystems; Fortemps: Liege, Belgium, 2001. [Google Scholar]
- Beer, J.; McCracken, K.G.; Abreu, J.; Heikkilä, U.; Steinhilber, F. Cosmogenic radionuclides as an extension of the neutron monitor era into the past: Potential and limitations. Space Sci. Rev. 2013, 176, 89–100. [Google Scholar] [CrossRef]
- Eisenbud, M.; Gesell, T.F. Environmental Radioactivity. From Natural, Industrial and Military Sources, 4th ed.; Academic Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Širić, I. Agro-Ecologycal Study of Dvor Municipality (Agroekološka Studija Općine Dvor). Not Published, Property of Fund for Financing the Decommissioning of the Krško NPP. Available on Request. 2023. (In Croatian) [Google Scholar]
- International Atomic Energy Agency (IAEA). Soil Sampling for Environmental Contaminants. 2004. Available online: https://www-pub.iaea.org/books/IAEABooks/7113/Soil-Sampling-for-Environmental-Contaminants (accessed on 15 January 2025).
- Šikić, K. Basic Geological Map of Yugoslavia 1:100,000, Bosanski Novi L33-105.–Documentation Fund of Croatian Geological Survey, 1988, Zagreb, Croatia. Available online: https://www.hgi-cgs.hr/en/osnovna-geoloska-karta-republike-hrvatske-1100-000/ (accessed on 15 January 2025).
- Franić, Z.; Bituh, T.; Godec, R.; Čačković, M.; Meštrović, T.; Šiško, J. Experiences with the accreditation of the Institute for Medical Research and Occupational Health, Zagreb, Croatia. Arh. Hig. Rada Toksikol. 2020, 71, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Petrinec, B.; Franić, Z.; Bituh, T.; Babić, D. Quality assurance in gamma-ray spectrometry of seabed sediments. Arh. Hig. Rada Toksikol. 2011, 62, 17–23. [Google Scholar] [CrossRef] [PubMed]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
- Šoštarić, M.; Petrinec, B.; Avdić, M.; Petroci, L.; Kovačić, M.; Zgorelec, Ž.; Skoko, B.; Bituh, T.; Senčar, J.; Branica, G.; et al. Radioactivity of soil in Croatia I: Naturally occurring decay chains. Arh. Hig. Rada Toksikol. 2021, 72, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Adewoyin, O.O.; Omeje, M.; Joel, E.S.; Akinwumi, S.A.; Ehi-Eromoseled, C.O.; Embong, Z. Radionuclides proportion and radiological risk assessment of soil samples collected in Covenant University, Ota, Ogun State Nigeria. Methods X 2018, 5, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Baba, A.; Ereeş, F.S.; Başsari, A.; Hiçsönmez, Ü.; Çam, S. Natural Radioactivity and Metal Concentrations in Soil Samples Taken Along the İzmir-Ankara E-023 Highway, Turkey. 2004. InisIaeaOrg. Published Online 2004. pp. 1–10. Available online: https://inis.iaea.org/records/3ttxv-ma432 (accessed on 15 January 2025).
- Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hidiroglu, S.; Karahan, G. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 2009, 100, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Šoštarić, M.; Petrinec, B.; Avdić, M.; Petroci, L.; Kovačić, M.; Zgorelec, Ž.; Skoko, B.; Bituh, T.; Senčar, J.; Branica, G.; et al. Radioactivity of soil in Croatia II: 137Cs, 40K, and absorbed dose rate. Arh. Hig. Rada Toksikol. 2021, 72, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.R.; Azim, R.; Rezaur Rahman, A.K.M.; Sarker, R. Radioactivity concentrations in soil and transfer factors of radionuclides from soil to grass and plants in the chittagong city of Bangladesh. J. Phys. Sci. 2013, 24, 95–113. [Google Scholar]
- Al Hamarneh, I.; Wreikat, A.; Toukan, K. Radioactivity concentrations of 40K, 134Cs, 137Cs, 90Sr, 241Am, 238Pu and 239+240Pu radionuclides in Jordanian soil samples. J. Environ. Radioact. 2003, 67, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Akkurt, İ.; Gunoglu, K.; Gunay, O.; Sarıhan, M. Natural radioactivity and radiological damage parameters for soil samples from Cekmekoy-İstanbul. Arab J. Geosci. 2022, 15, 53. [Google Scholar] [CrossRef]
- Özden, S. 137Cs Concentration In Soils Collected From Bulgaria-Turkey Border Region. Eur. J. Sci. Technol. 2022, 33, 244–250. [Google Scholar] [CrossRef]
- UNSCEAR 2008 Report. Sources and Effects of Ionizing Radiation. Annex B—Exposures of the Public and Workers from Various Sources of Radiation. New York: United Nations. 2010. Available online: https://www.unscear.org/unscear/en/publications/2008_1.html (accessed on 15 January 2025).
- Echevarria, G.; Sheppard, M.I.; Morel, J.L. Effect of pH on the sorption of uranium in soils. J. Environ. Radioact. 2001, 53, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Dragović, S.; Gajić, B.; Dragović, R.; Janković-Mandić, L.; Slavković-Beškoski, L.; Mihailović, N.; Momčilović, M.; Ćujić, M. Edaphic factors affecting the vertical distribution of radionuclides in the different soil types of Belgrade, Serbia. J. Environ. Monit. 2012, 14, 127–137. [Google Scholar] [CrossRef] [PubMed]
- ISO 11464; Soil Quality—Pretreatment of Samples for Physico-Chemical Analysis. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 10390; Soil Quality—Determination of PH. International Organization for Standardization: Geneva, Switzerland, 2005.
- Škorić, A. Priručnik Za Pedološka Istraživanja; Sveučilište u Zagrebu, Fakultet Poljoprivrednih Znanosti;: Zagreb, Croatia, 1982. (In Croatian) [Google Scholar]
- ISO 11277; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 13196; Soil Quality—Screening Soils for Selected Elements by Energy-Dispersive X-Ray Fluorescence Spectrometry Using a Handheld or Portable Instrument. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 10694; Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis). International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 13878; Soil Quality—Determination of Total Nitrogen Content by Dry Combustion (“Elemental Analysis”). International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 15178; Soil Quality—Determination of Total Sulfur by Dry Combustion. International Organization for Standardization: Geneva, Switzerland, 2005.
- ISO 10693; Soil Quality—Determination of Carbonate Content—Volumetric Method. International Organization for Standardization: Geneva, Switzerland, 2004.
Area (Sample ID) | Geological Description | Number of Sampling Points |
---|---|---|
L1 (L1T-01–L1T-15) | Surroundings of the waste management centre- Palaeozoic (Pz), Triassic, and associated alluvial or Quaternary (Q) deposits | n = 15 |
L2 (L2T-01–L2T-15) | Alluvial deposits of the Una and Žirovnica rivers | n = 15 |
L3 (L2T-01–L2T-15) | Cenozoic area and associated Quaternary deposits along watercourses | n = 15 |
L4 (L2T-01–L2T-16) | Palaeozoic or Mesozoic (Mz) area and associated Quaternary deposits along watercourses | n = 16 |
238U [Bq/kg] | 40K [Bq/kg] | 137Cs [Bq/kg] | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
L1 (n = 15) | 58 | 9 | 517 | 106 | 40 | 12 |
L2 (n = 15) | 47 | 14 | 499 | 158 | 36 | 14 |
L3 (n = 15) | 51 | 6 | 507 | 68 | 43 | 20 |
L4 (n = 16) | 59 | 10 | 596 | 83 | 35 | 18 |
Mean (n = 61) | 54 | 531 | 39 | |||
Range (n = 61) | 9–72 | 65–823 | 4–80 |
H*(10)/t Mean ± SD [nSv/h] | Effective Dose (mSv/year) | |
---|---|---|
L1 (n = 15) | 93 ± 18 | 0.186 ± 0.04 |
L2 (n = 15) | 81 ± 13 | 0.162 ± 0.03 |
L3 (n = 15) | 93 ± 18 | 0.186 ± 0.04 |
L4 (n = 16) | 93 ± 19 | 0.185 ± 0.04 |
Mean (n = 61) | 90 | 0.180 |
Range (n = 61) | 52–130 | 0.104–0.260 |
pH | Mechanical Composition of the Soil | AP * (mg P2O5 /100 g of Soil) | AK * (mg K2O/100 g of Soil) | CaCO3 * (%) | HA * (cmol+/kg) | |||
Sand (%) | Silt (%) | Clay (%) | ||||||
L1 (n = 15) | 5.46 | 22 | 49 | 28 | 1.7 | 6.8 | 0.51 | 12.9 |
L2 (n = 15) | 6.97 | 21 | 57 | 23 | 8.1 | 9.6 | 9.71 | 3.3 |
L3 (n = 15) | 6.18 | 18 | 53 | 29 | 7.0 | 16.9 | 1.41 | 7.2 |
L4 (n = 16) | 5.55 | 21 | 49 | 30 | 4.0 | 14.2 | 0.38 | 14.1 |
Mean (n = 61) | 6.03 | 20 | 52 | 28 | 5.2 | 11.9 | 2.96 | 9.5 |
Min (n = 61) | 4.15 | 2 | 10 | 2 | 0.3 | 1.3 | 0.01 | 0.1 |
Max (n = 61) | 8.52 | 88 | 78 | 61 | 34.3 | 92.1 | 76.2 | 26.6 |
TC * (%) | TH * (%) | TN * (%) | TS * (%) | TIC * (%) | TOC * (%) | OM * (%) | ||
L1 (n = 15) | 2.5 | 1.085 | 0.207 | 0.047 | 0.06 | 2.4 | 4.1 | |
L2 (n = 15) | 4.3 | 1.245 | 0.267 | 0.055 | 1.16 | 3.1 | 5.4 | |
L3 (n = 15) | 3.2 | 1.313 | 0.283 | 0.056 | 0.17 | 3.0 | 5.3 | |
L4 (n = 16) | 3.6 | 1.427 | 0.314 | 0.059 | 0.05 | 3.6 | 6.2 | |
Mean (n = 61) | 3.4 | 1.270 | 0.269 | 0.054 | 0.36 | 3.04 | 5.2 | |
Min (n = 61) | 0.7 | 0.373 | 0.066 | 0.016 | 0.001 | 0.71 | 1.2 | |
Max (n = 61) | 13.2 | 2.300 | 0.494 | 0.076 | 9.14 | 5.51 | 9.5 |
As | Cr | Pb | Al | Si | Fe | Ca | Ti | |
[mg/kg] | ||||||||
L1 | 15 | 108 | 37 | 122,367 | 447,159 | 36,328 | 4387 | 6134 |
L2 | 12 | 149 | 25 | 102,887 | 383,596 | 35,878 | 43,274 | 5593 |
L3 | 12 | 168 | 21 | 103,540 | 421,877 | 35,885 | 10,041 | 6019 |
L4 | 11 | 116 | 97 | 121,813 | 419,699 | 38,756 | 5357 | 6161 |
Mean | 12 | 135 | 46 | 112,802 | 418,109 | 36,745 | 15,594 | 5980 |
Min | 1 | 76 | 5 | 38,132 | 118,833 | 8087 | 1625 | 1406 |
Max | 27 | 291 | 696 | 149,778 | 513,622 | 57,113 | 277,890 | 9467 |
K | Mn | Rb | Zr | Nb | Ni | P | ||
[mg/kg] | ||||||||
L1 | 23,628 | 1009 | 117 | 309 | 20 | 29 | 157 | |
L2 | 19,040 | 786 | 99 | 240 | 17 | 61 | 206 | |
L3 | 19,363 | 818 | 99 | 305 | 19 | 56 | 168 | |
L4 | 24,856 | 959 | 123 | 291 | 22 | 39 | 186 | |
Mean | 21,773 | 894 | 110 | 286 | 20 | 46 | 179 | |
Min | 4507 | 344 | 14 | 35 | 5 | 7 | 57 | |
Max | 32,111 | 1602 | 162 | 414 | 29 | 135 | 519 | |
Y | Zn | Sr | Th | Cu | W | Co | ||
[mg/kg] | ||||||||
L1 | 32 | 97 | 96 | 11 | 20 | 3 | 13 | |
L2 | 30 | 99 | 121 | 8 | 25 | 2 | 11 | |
L3 | 30 | 90 | 125 | 9 | 25 | 2 | 11 | |
L4 | 33 | 108 | 95 | 10 | 29 | 3 | 14 | |
Mean | 31 | 98 | 109 | 9 | 25 | 3 | 12 | |
Min | 10 | 33 | 64 | 2 | 4 | 2 | 3 | |
Max | 40 | 204 | 459 | 20 | 46 | 4 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bituh, T.; Petrinec, B.; Novosel, M.; Babić, D.; Rašeta, D.; Hrelja, I.; Galić, M.; Perčin, A.; Širić, I.; Kisić, I.; et al. The Physico-Chemical and Radionuclide Characterisation of Soil near a Future Radioactive Waste Management Centre. Environments 2025, 12, 121. https://doi.org/10.3390/environments12040121
Bituh T, Petrinec B, Novosel M, Babić D, Rašeta D, Hrelja I, Galić M, Perčin A, Širić I, Kisić I, et al. The Physico-Chemical and Radionuclide Characterisation of Soil near a Future Radioactive Waste Management Centre. Environments. 2025; 12(4):121. https://doi.org/10.3390/environments12040121
Chicago/Turabian StyleBituh, Tomislav, Branko Petrinec, Martina Novosel, Dinko Babić, Davor Rašeta, Iva Hrelja, Marija Galić, Aleksandra Perčin, Ivan Širić, Ivica Kisić, and et al. 2025. "The Physico-Chemical and Radionuclide Characterisation of Soil near a Future Radioactive Waste Management Centre" Environments 12, no. 4: 121. https://doi.org/10.3390/environments12040121
APA StyleBituh, T., Petrinec, B., Novosel, M., Babić, D., Rašeta, D., Hrelja, I., Galić, M., Perčin, A., Širić, I., Kisić, I., Rapić, A., & Zgorelec, Ž. (2025). The Physico-Chemical and Radionuclide Characterisation of Soil near a Future Radioactive Waste Management Centre. Environments, 12(4), 121. https://doi.org/10.3390/environments12040121