Future Water Yield Projections Under Climate Change Using Optimized and Downscaled Models via the MIDAS Approach
Abstract
1. Introduction
1.1. Hydrological Impacts of Climate Change in Forest Ecosystems
1.2. Climate Downscaling and Hydrological Modeling
1.3. Research Gaps and Study Contribution
- Comparing the MACA and SDSM to find suitable climate projections for the CNF.
- Using the MIDAS approach to choose an accurate set of precipitation data.
- Applying the WaSSI model with refined climate inputs to simulate future water yield.
2. Materials and Methods
2.1. Study Area
2.2. Water Yield Model (WaSSI)
2.3. Statistical Downscaling Methods in Climate Data Analysis: SDSM and MACA
2.3.1. Statistical DownScaling Model (SDSM)
Ensemble Selection Techniques
Best Single Member
Weighted Average
Multiple Linear Regression (MLR)
Extreme Gradient Boosting (XGBoost)
2.3.2. Multivariate Adaptive Constructed Analogs (MACA)
2.4. Time Scale of Data in the Modeling Process
2.5. Model Input Data
3. Results
3.1. Climate Downscaling Results
3.1.1. SDSM Projections of Temperature
SDSM vs. MACA for Temperature Inputs in WaSSI
3.1.2. SDSM Projections of Precipitation
Improved Precipitation Simulation with MIDAS
MIDAS-Integrated SDSM vs. MACA for Precipitation Inputs in WaSSI
3.2. Trends and Projections of Water Yield Using the WaSSI Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Davis, M.B.; Shaw, R.G.; Etterson, J.R. Evolutionary responses to changing climate. Ecology 2015, 86, 1706–1714. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Sun, G.; Caldwell, P.; Noormets, A.; McNulty, S.G.; Cohen, E.; Myers, J.M.; Domec, J.-C.; Treasure, E.; Mu, Q.; Xiao, J.; et al. Upscaling key ecosystem functions across the conterminous United States by a watercentric ecosystem model. J. Geophys. Res. Biogeosci. 2011, 116, G00J05. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, L.; Chiew, F.; Fu, B. Understanding the impacts of climate and land use change on water yield. Adv. Water Resour. 2018, 33, 167–174. [Google Scholar]
- Nuñez, J.A.; Aguiar, S.; Jobbágy, E.G.; Jiménez, Y.G.; Baldassini, P. Climate change and land cover effects on water yield in a subtropical watershed spanning the Yungas–Chaco transition of Argentina. J. Environ. Manag. 2024, 358, 120808. [Google Scholar] [CrossRef]
- de Andrade Costa, D.; Bayissa, Y.; Villas-Boas, M.D.; Maskey, S.; Junior, J.L.; da Silva Neto, A.J.; Srinivasan, R. Water availability and extreme events under climate change scenarios in an experimental watershed of the Brazilian Atlantic Forest. Sci. Total Environ. 2024, 905, 167644. [Google Scholar]
- Ury, E.A.; Yang, X.; Wright, J.P.; Bernhardt, E.S. Rapid deforestation of a coastal landscape driven by sea-level rise and extreme events. Ecol. Appl. 2021, 31, e02339. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, 27–39. [Google Scholar] [CrossRef]
- Garcia, X.; Estrada, L.; Saló, J.; Acuña, V. Blueing green water from forests as a strategy to cope with climate change in water-scarce regions: The case of the Catalan River basin district. J. Environ. Manag. 2024, 353, 120249. [Google Scholar] [CrossRef]
- Keller, A.A.; Garner, K.; Rao, N.; Knipping, E.; Thomas, J. Hydrological models for climate-based assessments at the watershed scale: A critical review of existing hydrologic and water quality models. Sci. Total Environ. 2023, 867, 161209. [Google Scholar] [CrossRef]
- Giorgi, F.; Mearns, L.O. Introduction to special section: Regional climate modeling revisited. J. Geophys. Res. Atmos. 1999, 104, 6335–6352. [Google Scholar] [CrossRef]
- Brekke, L.D.; Thrasher, B.L.; Maurer, E.P.; Pruitt, T. Downscaled CMIP3 and CMIP5 Climate Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs; U.S. Department of the Interior, Bureau of Reclamation, Technical Services Center: Lakewood, CO, USA, 2013.
- Hessami, M.; Gachon, P.; Ouarda, T.B.M.J.; St-Hilaire, A. Automated regression-based statistical downscaling tool. Environ. Model. Softw. 2008, 23, 813–834. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W. Using SDSM, Version 3.1. A decision support tool for the assessment of regional climate change impacts. Climate Change Unit, Environment Agency of England and Wales & Department of Computer Science, Loughborough University: Nottingham, UK, 2004.
- Abatzoglou, J.T.; Brown, T.J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 2012, 32, 772–780. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dessai, S. Robust adaptation to climate change. Weather 2010, 65, 180–185. [Google Scholar] [CrossRef]
- Valencia, J.B.; Guryanov, V.V.; Mesa Diez, J.; Diaz, N.; Escobar Carbonari, D.; Gusarov, A.V. Predictive assessment of climate change impact on water yield in the Meta River Basin, Colombia: An InVEST model application. Hydrology 2024, 11, 25. [Google Scholar] [CrossRef]
- Rocha, J.; Quintela, A.; Serpa, D.; Keizer, J.J.; Fabres, S. Water yield and biomass production on a eucalypt-dominated Mediterranean catchment under different climate scenarios. J. For. Res. 2023, 34, 1263–1278. [Google Scholar] [CrossRef]
- Lockaby, G.; Nagy, C.; Vose, J.M.; Ford, C.R.; Sun, G.; McNulty, S.; Caldwell, P.; Cohen, E.; Moore Myers, J. Forests and water. In The Southern Forest Futures Project: Technical Report; Wear, D.N., Greis, J.G., Eds.; Gen. Tech. Rep. SRS-GTR-178; USDA Forest Service, Southern Research Station: Asheville, NC, USA, 2013; pp. 309–339. [Google Scholar]
- Caldwell, P.V.; Sun, G.; McNulty, S.G.; Cohen, E.C.; Moore Myers, J. Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US. Hydrol. Earth Syst. Sci. 2012, 16, 2839–2857. [Google Scholar] [CrossRef]
- Sun, S.; Sun, G.; Caldwell, P.; McNulty, S.; Cohen, E.; Xiao, J.; Zhang, Y. Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part I, evaluation of a water and carbon balance model. For. Ecol. Manag. 2015, 353, 260–268. [Google Scholar] [CrossRef]
- Fallahi, M.; Nelson, S.A.C.; Beyene, S.; Caldwell, P.V.; Roise, J.P. A comparative assessment of Water Supply Stress Index (WaSSI) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) models for annual water yield estimation: A case study in the Croatan National Forest. Environments 2025, 12, 89. [Google Scholar] [CrossRef]
- Kim, J.B.; Jiang, Y.; Hawkins, L.R.; Still, C.J. A comparison of multiple statistically downscaled climate change datasets for the conterminous USA. Environ. Res. Commun. 2022, 4, 125005. [Google Scholar] [CrossRef]
- Wang, G.; Kirchhoff, C.J.; Seth, A.; Abatzoglou, J.T.; Livneh, B.; Pierce, D.W.; Ding, T. Projected changes of precipitation characteristics depend on downscaling method and training data: MACA versus LOCA using the U.S. Northeast as an example. J. Hydrometeorol. 2020, 21, 2739–2758. [Google Scholar] [CrossRef]
- Keller, A.A.; Garner, K.L.; Rao, N.; Knipping, E.; Thomas, J. Downscaling approaches of climate change projections for watershed modeling: Review of theoretical and practical considerations. PLoS Water 2023, 2, e0000046. [Google Scholar] [CrossRef]
- Dorji, S.; Herath, S.; Mishra, B.K. Future climate of Colombo downscaled with SDSM-neural network. Climate 2017, 5, 24. [Google Scholar] [CrossRef]
- Sun, S.; Xiang, W.; Shuai, O.; Hu, Y.; Peng, C. Balancing water yield and water use efficiency between planted and natural forests: A global analysis. Glob. Change Biol. 2024, 30, e17561. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, T.J.A.; Irfan, M.; Zhou, X.; Pan, S.; Atta, A.; Li, J. Advancing knowledge in forest water use efficiency under global climate change through scientometric analysis. Forests 2024, 15, 1893. [Google Scholar] [CrossRef]
- Gagnon, S.; Singh, B.; Rousselle, J.; Roy, L. An application of the Statistical DownScaling Model (SDSM) to simulate climatic data for streamflow modelling in Québec. Can. Water Resour. J. 2005, 30, 297–314. [Google Scholar] [CrossRef]
- Clark, S.; Mills, G.; Brown, T.; Harris, S.; Abatzoglou, J.T. Downscaled GCM climate projections of fire weather over Victoria, Australia. Part 1: Evaluation of the MACA technique. Int. J. Wildland Fire 2021, 30, 585–595. [Google Scholar] [CrossRef]
- Karamouz, M.; Nazif, S.; Falahi, M. Hydrology and Hydroclimatology: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2013; Chapter 9; pp. 24–31. [Google Scholar]
- Zhina, D.; Avilés, A.; González, L.; Astudillo, A.; Astudillo, J.; Matovelle, C. Effects of Climate Change and Changes in Land Use and Cover on Water Yield in an Equatorial Andean Basin. Hydrology 2024, 11, 157. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, H.; Zhou, Q.; Cui, A. A XGBoost-Based Downscaling-Calibration Scheme for Extreme Precipitation Events. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4103512. [Google Scholar] [CrossRef]
- Heidari, A.; Watkins, D.; Mayer, A.; Propato, T.; Verón, S.; Abelleyra, D. Spatially variable hydrologic impact and biomass production tradeoffs associated with Eucalyptus (E. grandis) cultivation for biofuel production in Entre Rios, Argentina. GCB Bioenergy 2021, 13, 823–837. [Google Scholar] [CrossRef]
- Villamizar, S.R.; Pineda, S.M.; Carrillo, G.A. The effects of land use and climate change on the water yield of a watershed in Colombia. Water 2019, 11, 285. [Google Scholar] [CrossRef]
- Tebaldi, C.; Sansó, B. Joint projections of temperature and precipitation change from multiple climate models: A hierarchical Bayesian approach. J. R. Stat. Soc. Ser. A Stat. Soc. 2009, 172, 83–106. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themeßl, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, RG3003. [Google Scholar] [CrossRef]
- González-Rojí, S.; Wilby, R.; Sáenz, J.; Ibarra-Berastegi, G. Harmonized evaluation of daily precipitation downscaled using SDSM and WRF+WRFDA models over the Iberian Peninsula. Clim. Dyn. 2019, 53, 1413–1433. [Google Scholar] [CrossRef]
- Eum, H.I.; Cannon, A.J.; Murdock, T.Q. Intercomparison of multiple statistical downscaling methods: Multi-criteria model selection for South Korea. Stoch. Environ. Res. Risk Assess. 2017, 31, 683–703. [Google Scholar] [CrossRef]
- Sun, G.; McNulty, S.G.; Moore Myers, J.A.; Cohen, E.C. Impacts of multiple stresses on water demand and supply across the southeastern United States. J. Am. Water Resour. Assoc. 2008, 44, 1441–1457. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Cohen, E.; Ancona, Z.H.; McNulty, S.G.; Sun, G. The sensitivity of ecosystem service models to choices of input data and spatial resolution. Appl. Geogr. 2018, 93, 25–36. [Google Scholar] [CrossRef]
- U.S. Forest Service. Schedule of Proposed Actions (SOPA)—North Carolina [Map]. U.S. Department of Agriculture, Forest Service. Available online: https://www.fs.usda.gov/sopa/state-level.php?nc (accessed on 10 August 2025).
- Zhao, Z.Y.; Fu, B.J.; Lu, Y.H.; Li, T.; Deng, L.; Wang, Y.L.; Lu, D.; Wang, Y.; Wu, X. Variable climatic conditions dominate decreased wetland vulnerability on the Qinghai-Tibet Plateau: Insights from the ecosystem pattern-process-function framework. J. Clean. Prod. 2024, 458, 142496. [Google Scholar] [CrossRef]
- Sun, G.; McNulty, S.G.; Lu, J.; Amatya, D.M.; Liang, Y.; Kolka, R.K. Regional annual water yield from forest lands and its response to potential deforestation across the southeastern United States. J. Hydrol. 2005, 308, 258–268. [Google Scholar] [CrossRef]
- Caldwell, P.V.; Miniat, C.F.; Elliott, K.J.; Swank, W.T.; Brantley, S.T.; Laseter, S.H. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication. Glob. Change Biol. 2016, 22, 2997–3012. [Google Scholar] [CrossRef]
- Werner, C.; Meredith, L.K.; Ladd, S.N.; Ingrisch, J.; Kübert, A.; van Haren, J.; Bahn, M.; Bailey, K.; Bamberger, I.; Beyer, M.; et al. Ecosystem fluxes during drought and recovery in an experimental forest. Science 2021, 374, 1514–1518. [Google Scholar] [CrossRef]
- Liu, N.; Shaikh, M.A.; Kala, J.; Harper, R.J.; Dell, B.; Liu, S.; Sun, G. Parallelization of a distributed ecohydrological model. Environ. Model. Softw. 2018, 101, 51–63. [Google Scholar] [CrossRef]
- Sun, S.; Sun, G.; Cohen, E.; McNulty, S.G.; Caldwell, P.V.; Duan, K.; Zhang, Y. Projecting water yield and ecosystem productivity across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data. Hydrol. Earth Syst. Sci. 2016, 20, 935–952. [Google Scholar] [CrossRef]
- Liu, N.; Dobbs, G.R.; Caldwell, P.V.; Miniat, C.F.; Sun, G.; Duan, K.; Nelson, S.A.C.; Bolstad, P.V.; Carlson, C.P. Inter-Basin Transfers Extend the Benefits of Water from Forests to Population Centers Across the Conterminous U.S. Water Resour. Res. 2022, 58, e2022WR032051. [Google Scholar] [CrossRef]
- Duarte, H.F.; Kim, J.B.; Sun, G.; McNulty, S.G.; Xiao, J. Climate and vegetation change impacts on future conterminous United States water yield. J. Hydrol. 2024, 639, 131472. [Google Scholar] [CrossRef]
- Tang, J.; Niu, X.; Wang, S.; Gao, H.; Wang, X.; Wu, J. Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. Adv. Atmos. Sci. 2016, 33, 632–646. [Google Scholar] [CrossRef]
- Dafouf, S.; Lahrach, A.; Tabyaoui, H.; Benaabidate, L. Future Evolutions of Precipitation and Temperature Using the Statistical DownScaling Model (SDSM), Case of the Guir and the Ziz Watershed, Morocco. Earth 2025, 6, 4. [Google Scholar] [CrossRef]
- Wilby, R.L.; Hay, L.E.; Leavesley, G.H. A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the San Juan River basin, Colorado. J. Hydrol. 1999, 225, 67–91. [Google Scholar] [CrossRef]
- Karamouz, M.; Fallahi, M.; Nazif, S.; Rahimi Farahani, M. Long lead rainfall prediction using statistical downscaling and artificial neural network modeling. Sci. Iran. Trans. A Civ. Eng. 2009, 16, 165–172. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Shukla, R.; Khare, D.; Dwivedi, A.K.; Rudra, R.P.; Palmate, S.S.; Ojha, C.S.P.; Singh, V.P. Evaluation of statistical downscaling model’s performance in projecting future climate change scenarios. J. Water Clim. Change 2023, 14, 3559–3595. [Google Scholar] [CrossRef]
- PRISM Climate Group. PRISM Climate Data. Oregon State University. Available online: https://prism.oregonstate.edu/ (accessed on 31 May 2024).
- NOAA Physical Sciences Laboratory. NCEP/DOE Reanalysis 2 Data. Available online: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html (accessed on 31 May 2024).
- Government of Canada. Climate Model Projections: CanESM2. Canadian Climate Data and Scenarios. Available online: https://climate-scenarios.canada.ca/?page=pred-canesm2 (accessed on 31 May 2024).
- University of Idaho, MACA Team. Multivariate Adaptive Constructed Analogs (MACA) Downscaled Climate Data [Data set]. Available online: https://climate.northwestknowledge.net/MACA/ (accessed on 31 May 2024).
- NASA. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) Product (MOD15A2H), Version 6.1 [Data Set]. NASA LP DAAC. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mod15a2h-061 (accessed on 25 June 2023). [CrossRef]
- United States Department of Agriculture (USDA). Available online: https://www.usda.gov (accessed on 26 June 2023).
- Shen, X.; Luo, X.; Sang, X. A geographically weighted Durbin model for spatial downscaling of land surface temperatures. In Proceedings of the International Conference on Remote Sensing, Surveying, and Mapping (RSSM 2023), Changsha, China, 6–8 January 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12710, p. 127100R. [Google Scholar]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Luo, F.; Huang, Z. The global warming hiatus has faded away: An analysis of 2014–2016 global surface air temperatures. Int. J. Climatol. 2019, 39, 2116–2130. [Google Scholar] [CrossRef]
- Clark, C.; Nnaji, G.A.; Huang, W. Effects of El-Niño and La-Niña Sea surface temperature anomalies on annual precipitations and streamflow discharges in southeastern United States. J. Coast. Res. Spec. Issue 2014, 68, 113–120. [Google Scholar] [CrossRef]
- Li, S.; Agathokleous, E.; Li, S.; Xu, Y.; Xia, J.; Feng, Z. Climate gradient and leaf carbon investment influence the effects of climate change on water use efficiency of forests: A meta-analysis. Plant Cell Environ. 2023, 47, 1070–1083. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Zhang, M.; Wang, Z.; Xiang, X.; Gong, H.; Wang, K.; Liu, H. The strengthened impact of water availability at interannual and decadal time scales on vegetation GPP. Glob. Change Biol. 2024, 30, e17138. [Google Scholar] [CrossRef]
- Chang, H.; Knight, C.; Staneva, M.P.; Kostov, D. Water resource impacts of climate change in southwestern Bulgaria. GeoJournal 2002, 57, 159–168. [Google Scholar] [CrossRef]
- Belihu, M.; Abate, B.; Tekleab, S.; Bewket, W. Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia. Phys. Chem. Earth Parts A/B/C 2018, 104, 84–101. [Google Scholar] [CrossRef]
- Lemann, T.; Roth, V.; Zeleke, G. Impact of precipitation and temperature changes on hydrological responses of small-scale catchments in the Ethiopian Highlands. Hydrol. Sci. J. 2017, 62, 270–282. [Google Scholar] [CrossRef]
- Wakjira, M.T.; Peleg, N.; Six, J.; Molnar, P. Green water availability and water-limited crop yields under a changing climate in Ethiopia. Hydrol. Earth Syst. Sci. 2025, 29, 863–886. [Google Scholar] [CrossRef]
- Udall, B.; Overpeck, J. The twenty-first century Colorado River hot drought and implications for the future. Water Resour. Res. 2017, 53, 2404–2418. [Google Scholar] [CrossRef]
- Lu, J.; Sun, G.; McNulty, S.G.; Amatya, D.M. Modeling actual evapotranspiration from forested watersheds across the southeastern United States. J. Am. Water Resour. Assoc. 2003, 39, 887–896. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, G.; Li, W.; Zhang, Y.; Miao, G.; Noormets, A.; McNulty, S.G.; King, J.S.; Kumar, M.; Wang, X. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States. Hydrol. Earth Syst. Sci. 2017, 21, 6289–6305. [Google Scholar] [CrossRef]
- McLaughlin, D.L.; Kaplan, D.A.; Cohen, M.J. Managing forests for increased regional water yield in the southeastern U.S. Coastal Plain. J. Am. Water Resour. Assoc. 2013, 49, 953–965. [Google Scholar] [CrossRef]
- Ahmed, M.A.A.; Abd-Elrahman, A.; Escobedo, F.J.; Cropper, W.P., Jr.; Martin, T.A.; Timilsina, N. Spatially explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. J. Environ. Manag. 2017, 199, 158–171. [Google Scholar] [CrossRef]
- Younger, S.E.; Jackson, C.R.; Rasmussen, T.C. Relationships among forest type, watershed characteristics, and watershed ET in rural basins of the Southeastern US. J. Hydrol. 2020, 591, 125316. [Google Scholar] [CrossRef]
- Shiogama, H.; Fujimori, S.; Hasegawa, T.; Hayashi, M.; Hirabayashi, Y.; Ogura, T.; Iizumi, T.; Takahashi, K.; Takemura, T. Important distinctiveness of SSP3–7.0 for use in impact assessments. Nat. Clim. Change 2023, 13, 1276–1278. [Google Scholar] [CrossRef]
- Inglis, N.C.; Brown, T.R.; Cale, A.B.; Hartsook, T.; Matos, A.; Onyegbula, J.; Greenberg, J. Quantifying spatially explicit uncertainty in empirically downscaled climate data. Int. J. Climatol. 2024, 44, 4548–4570. [Google Scholar] [CrossRef]
Criterion | SDSM | MACA |
---|---|---|
Modeling Approach | Conditional multiple linear regression, stochastic weather generator | Historical multivariate analog search with adaptive weighting |
Spatial Resolution | Station-based, point-level | Gridded, approximately 4 km resolution |
Data Requirement | Low—usable with limited station data | High—requires extensive, continuous historical datasets |
Computational Complexity | Low—fast calibration and ensemble generation | High—analog search and weighting is computationally intensive |
Multivariate Capability | Single variable modeling | Simultaneous multivariable simulation; maintains spatial and temporal coherence |
Statistical Assumptions | Based on linear or semi-linear assumptions | Non-parametric; no linear assumptions |
Robustness to Climate Change | Relatively robust assuming statistical relationships | Sensitive to climate conditions are not present in the historical record |
Bias Correction | Built in via regression calibration | Requires separate post-processing (e.g., quantile mapping |
Main Advantages | Simple, interpretable, fast, needs minimal data, can be enhanced via ML methods | preserves multivariate structure |
Main Limitations | Single variable structure, linear assumptions | High data/computation demand, weak in novel/unseen climate conditions |
Dataset | Time Period | Variables | Use | Source | Resolution |
---|---|---|---|---|---|
PRISM | 1981–2014 | Daily Precipitation, Daily Temperature | Observed data for SDSM * calibration | [57] | ~4 km |
National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) | 1981–2014 | Predictors (e.g., temp, geopotential, humidity) | Large-scale predictors for SDSM | [58] | ~2.5° |
CanESM2 (CMIP5) | 2006–2060 | Daily Predictors | Future projections in SDSM | [59] | ~2.5° |
CanESM2 (CMIP5) | 2006–2060 | Daily Precipitation, Daily Temperature | Statistically downscaled and ready-to-use dataset ** | [60] | ~4 km |
Data Requirements | Data Sources and Processes |
---|---|
Monthly precipitation | Historical climate data from 1961 to 2022 from PRISM [57] |
Monthly mean temperature | Historical climate data from 1961 to 2022 from PRISM [57] |
Monthly means Leaf Area Index (LAI) by land cover | MODIS-MOD15A2 FPAR/LAI 8-day product [61] |
Land cover composition within each watershed | 2006 National Land Cover Database (NLCD) aggregated into 10 land cover classes. |
SAC-SMA soil parameters | 1 km × 1 km SAC-SMA soil dataset from the State Soil Geographic Database (STATSGO) aggregated to the 12-digit HUC watershed level [62] |
Model | MAE (°C) | MSE (°C2) | RMSE (°C) | R2 |
---|---|---|---|---|
MACA | 1.97 | 6.95 | 2.64 | 0.858 |
SDSM | 1.8 | 6.56 | 2.56 | 0.866 |
Model | MAE | RMSE | Correlation | NSE |
---|---|---|---|---|
MACA | 70.31 | 96.46 | 0.228 | −0.4 |
SDSM | 17.68 | 23.18 | 0.976 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fallahi, M.; Nelson, S.A.C.; Caldwell, P.; Roise, J.P.; Beyene, S.; Peterson, M.N. Future Water Yield Projections Under Climate Change Using Optimized and Downscaled Models via the MIDAS Approach. Environments 2025, 12, 303. https://doi.org/10.3390/environments12090303
Fallahi M, Nelson SAC, Caldwell P, Roise JP, Beyene S, Peterson MN. Future Water Yield Projections Under Climate Change Using Optimized and Downscaled Models via the MIDAS Approach. Environments. 2025; 12(9):303. https://doi.org/10.3390/environments12090303
Chicago/Turabian StyleFallahi, Mahdis, Stacy A. C. Nelson, Peter Caldwell, Joseph P. Roise, Solomon Beyene, and M. Nils Peterson. 2025. "Future Water Yield Projections Under Climate Change Using Optimized and Downscaled Models via the MIDAS Approach" Environments 12, no. 9: 303. https://doi.org/10.3390/environments12090303
APA StyleFallahi, M., Nelson, S. A. C., Caldwell, P., Roise, J. P., Beyene, S., & Peterson, M. N. (2025). Future Water Yield Projections Under Climate Change Using Optimized and Downscaled Models via the MIDAS Approach. Environments, 12(9), 303. https://doi.org/10.3390/environments12090303