Aptamer-Functionalized Magnetic Nanoparticles for Rapid Isolation of Environmental Escherichia coli
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolation
2.2. Confirmation of Isolated Bacteria
2.3. Bacterial Culture
2.4. Cell-SELEX
2.5. Next-Generation Sequencing (NGS) and Analysis
2.6. Modular Aptamer Design
2.7. Aptamer Synthesis
2.8. Magnetic Nanoparticle (MNP) Synthesis and Functionalization
2.9. Pull-Down
3. Results
3.1. Bacterial Isolation
3.2. Confirmation of Isolated Bacteria
3.3. Cell-SELEX
3.4. Next-Generation Sequencing (NGS) and Analysis
3.5. Pull-Down
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
E. coli | Escherichia coli |
SDG | Sustainable Development Goals |
JMP | Joint Monitoring Programme for Water Supply, Sanitation, and Hygiene |
WHO | World Health Organization |
UNICEF | United Nations Children’s Fund |
LMICs | Low- and middle-income countries |
ADDs | Acute diarrheal diseases |
DNA | Deoxyribonucleic acid |
RNA | Ribonucleic acid |
PCR | Polymerase chain reaction |
Apt | Aptamer |
SELEX | Systematic evolution of ligands by exponential enrichment |
MNPs | Magnetic nanoparticles |
BM | Bound molecules |
NBM | Unbound molecules |
PS | Positive selection |
NS | Negative selection |
NGS | Next-generation sequencing |
MAA | Methacrylic acid |
SDS | Sodium dodecyl sulfate |
AuNP | Gold nanoparticle |
μL | Microliters |
mL | Millilitre |
cm | Centimetre |
μm | Micrometre |
mg | Milligrams |
ng | Nanogram |
rpm | Revolutions per minute |
IUCMA | Institución Universitaria Colegio Mayor de Antioquia |
References
- UNDP. Goal 6: Clean Water and Sanitation|Sustainable Development Goals|United Nations Development Programme. Available online: https://www.undp.org/sustainable-development-goals/clean-water-and-sanitation (accessed on 30 May 2025).
- WHO/UNICEF Joint Monitoring Program for Water Supply, Sanitation and Hygiene (JMP)—Progress on Household Drinking Water, Sanitation, and Hygiene 2000–2022: Special Focus on Gender. Available online: https://www.unwater.org/publications/who/unicef-joint-monitoring-program-update-report-2023 (accessed on 30 May 2025).
- Lin, L.; Yang, H.; Xu, X. Effects of water pollution on human health and disease heterogeneity: A review. Front. Environ. Sci. 2022, 10, 880246. Available online: https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2022.880246/full (accessed on 30 May 2025). [CrossRef]
- Qadri, R.; Faiq, M.A. Freshwater pollution: Effects on aquatic life and human health. In Freshwater Pollution: Dynamics and Remediation; Qadri, H., Bhat, R.A., Mehmood, M.A., Dar, G.H., Eds.; Springer: Singapore, 2020; pp. 15–26. [Google Scholar] [CrossRef]
- Magana-Arachchi, D.N.; Wanigatunge, R.P. Ubiquitous waterborne pathogens. In Waterborne Pathogens: Detection and Treatment; Vara Prasad, M.N., Grobelak, A., Eds.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 15–42. Available online: https://www.sciencedirect.com/science/article/pii/B9780128187838000025 (accessed on 15 June 2025).
- Alegbeleye, O.O.; Sant’Ana, A.S. Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. Int. J. Hyg. Environ. Health 2020, 227, 113524. Available online: https://www.sciencedirect.com/science/article/pii/S1438463920300262 (accessed on 15 June 2025). [CrossRef] [PubMed]
- Li, E.; Saleem, F.; Edge, T.A.; Schellhorn, H.E. Biological indicators for fecal pollution detection and source tracking: A review. Processes 2021, 9, 2058. [Google Scholar] [CrossRef]
- Some, S.; Mondal, R.; Mitra, D.; Jain, D.; Verma, D.; Das, S. Microbial pollution of water with special reference to coliform bacteria and their nexus with environment. Energy Nexus 2021, 1, 100008. Available online: https://www.sciencedirect.com/science/article/pii/S2772427121000085 (accessed on 17 June 2025). [CrossRef]
- Khan, F.M.; Gupta, R. Escherichia coli (E. coli) as an indicator of fecal contamination in groundwater: A review. In Sustainable Development of Water and Environment: Proceedings of the ICSDWE2020, Incheon, Republic of Korea, 13–14 January 2020; Jeon, H.Y., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 225–235. [Google Scholar]
- Odonkor, S.T.; Mahami, T. Escherichia coli as a tool for disease risk assessment of drinking water sources. Int. J. Microbiol. 2020, 2020, 8472. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1155/2020/2534130 (accessed on 15 June 2025). [CrossRef]
- Hernández-Vásquez, A.; Visconti-Lopez, F.J.; Vargas-Fernández, R. Escherichia coli contamination of water for human consumption and its associated factors in Peru: A cross-sectional study. Am. J. Trop. Med. Hyg. 2022, 108, 187–194. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC9833058/ (accessed on 30 May 2025).
- Camacho-Botero, L.A. La paradoja de la disponibilidad de agua de mala calidad en el sector rural colombiano. Rev. Ing. 2020, 1, 38–51. Available online: https://revistas.uniandes.edu.co/index.php/rdi/article/view/7489 (accessed on 15 June 2025). [CrossRef]
- Instituto Nacional de Salud Colombia. Boletín Epidemiológico Semanal; Vigilancia Intensificada de Lesiones por Pólvora Pirotécnica; Semana Epidemiológica 52 (Dic 22-28, 2024). Available online: https://www.ins.gov.co/BibliotecaDigital/2024-boletin-epidemiologico-semana-52.pdf (accessed on 18 May 2025).
- Informe Nacional de Calidad del Agua para Consumo Humano. 2025. Available online: https://www.minvivienda.gov.co/taxonomy/term/1813 (accessed on 2 September 2025).
- Ministerio de la Protección Social Colombia. Resolución 1618 de 2010 Por la Cual se Reglamenta Parcialmente el Decreto 2171 de 2009. Available online: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=39524 (accessed on 15 May 2025).
- McConn, B.R.; Kraft, A.L.; Durso, L.M.; Ibekwe, A.M.; Frye, J.G.; Wells, J.E.; Tobey, E.M.; Ritchie, S.; Williams, C.F.; Cook, K.L.; et al. An analysis of culture-based methods used for the detection and isolation of Salmonella spp., Escherichia coli, and Enterococcus spp. from surface water: A systematic review. Sci. Total Environ. 2024, 927, 172–190. Available online: https://www.sciencedirect.com/science/article/pii/S0048969724023337 (accessed on 23 May 2025). [CrossRef]
- Saleem, F.; Edge, T.A.; Schellhorn, H.E. Validation of qPCR method for enterococci quantification at Toronto beaches: Application for rapid recreational water monitoring. J. Gt. Lakes Res. 2022, 48, 707–716. Available online: https://www.sciencedirect.com/science/article/pii/S0380133022000466 (accessed on 13 June 2025). [CrossRef]
- Ezenarro, J.J.; Mas, J.; Muñoz-Berbel, X.; Uria, N. Advances in bacterial concentration methods and their integration in portable detection platforms: A review. Anal. Chim. Acta 2022, 1209, 339079. Available online: https://www.sciencedirect.com/science/article/pii/S0003267021009053 (accessed on 15 June 2025). [CrossRef]
- Tambi, A.; Brighu, U.; Gupta, A.B. Methods for detection and enumeration of coliforms in drinking water: A review. Water Supply 2023, 23, 4047–4058. [Google Scholar] [CrossRef]
- Takci, H.A.M.; Karaca, C. A comparison study of quantitative PCR and conventional culture-based methods for microbial water quality. Res. Sq. 2022. Available online: https://www.researchsquare.com/article/rs-1497117/v1 (accessed on 10 June 2025).
- Heijnen, L.; de Vries, H.J.; van Pelt, G.; Stroobach, E.; Atsma, A.; Vranken, J.; De Maeyer, K.; Vissers, L.; Medema, G. Qualitative detection of E. coli in distributed drinking water using real-time reverse transcription PCR targeting 16S rRNA: Validation and practical experiences. Water Res. 2024, 259, 121843. Available online: https://www.sciencedirect.com/science/article/pii/S0043135424007449 (accessed on 13 June 2025). [CrossRef]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. Available online: https://www.nature.com/articles/346818a0 (accessed on 15 February 2025). [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. Available online: https://www.science.org/doi/abs/10.1126/science.2200121 (accessed on 15 February 2025). [CrossRef]
- Robertson, D.L.; Joyce, G.F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990, 344, 467–468. Available online: https://www.nature.com/articles/344467a0 (accessed on 15 February 2025). [CrossRef]
- Hao, L.; Gu, H. Introduction of aptamer, SELEX, and different SELEX variants. In Aptamers for Medical Applications: From Diagnosis to Therapeutics; Dong, Y., Ed.; Springer: Singapore, 2021; pp. 1–30. [Google Scholar] [CrossRef]
- Kohlberger, M.; Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 2021, 69, 1771–1792. [Google Scholar] [CrossRef]
- Ștefan, G.; Hosu, O.; De Wael, K.; Lobo-Castañón, M.J.; Cristea, C. Aptamers in biomedicine: Selection strategies and recent advances. Electrochim. Acta 2021, 376, 137994. Available online: https://www.sciencedirect.com/science/article/pii/S001346862100284X (accessed on 15 February 2025). [CrossRef]
- Domsicova, M.; Korcekova, J.; Poturnayova, A.; Breier, A. New insights into aptamers: An alternative to antibodies in the detection of molecular biomarkers. Int. J. Mol. Sci. 2024, 25, 6833. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Santana, J.C.; Toscano-Garibay, J.D.; López-López, M.; Coria-Jiménez, V.R. Aptamers coupled to nanoparticles in the diagnosis and treatment of microbial infections. Enfermedades Infecc. Microbiol. Clin. Engl. Ed. 2020, 38, 331–337. Available online: https://www.sciencedirect.com/science/article/pii/S2529993X20301222 (accessed on 13 June 2025). [CrossRef]
- Uğurlu, Ö.; Man, E.; Gök, O.; Ülker, G.; Soytürk, H.; Özyurt, C.; Evran, S. A review of aptamer-conjugated nanomaterials for analytical sample preparation: Classification according to the utilized nanomaterials. Anal. Chim. Acta 2024, 1287, 342001. Available online: https://www.sciencedirect.com/science/article/pii/S0003267023012229 (accessed on 15 June 2025). [CrossRef]
- Xu, R.; Ouyang, L.; Chen, H.; Zhang, G.; Zhe, J. Recent advances in biomolecular detection based on aptamers and nanoparticles. Biosensors 2023, 13, 474. [Google Scholar] [CrossRef]
- Clack, K.; Sallam, M.; Muyldermans, S.; Sambasivam, P.; Nguyen, C.M.; Nguyen, N.T. Instant Candida albicans detection using ultra-stable aptamer-conjugated gold nanoparticles. Micromachines 2024, 15, 216. [Google Scholar] [CrossRef]
- Sargazi, S.; Simge, E.R.; Mobashar, A.; Gelen, S.S.; Rahdar, A.; Ebrahimi, N.; Hosseinikhah, S.M.; Bilal, M.; Kyzas, G.Z. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem. Biol. Interact. 2022, 361, 109964. Available online: https://www.sciencedirect.com/science/article/pii/S0009279722001697 (accessed on 20 May 2025). [CrossRef]
- Dabhade, A.H.; Verma, R.P.; Paramasivan, B.; Kumawat, A.; Saha, B. Development of silver nanoparticles and aptamer-conjugated biosensor for rapid detection of E. coli in a water sample. 3 Biotech 2023, 13, 244. [Google Scholar] [CrossRef]
- Pandit, C.; Alajangi, H.K.; Singh, J.; Khajuria, A.; Sharma, A.; Hassan, M.S.; Parida, M.; Semwal, A.D.; Gopalan, N.; Sharma, R.K.; et al. Development of magnetic nanoparticle-assisted aptamer-quantum dot based biosensor for the detection of Escherichia coli in water samples. Sci. Total Environ. 2022, 831, 154857. Available online: https://www.sciencedirect.com/science/article/pii/S0048969722019507 (accessed on 13 June 2025). [CrossRef] [PubMed]
- Sadsri, V.; Trakulsujaritchok, T.; Tangwattanachuleeporn, M.; Hoven, V.P.; Na Nongkhai, P. Simple colorimetric assay for Vibrio parahaemolyticus detection using aptamer-functionalized nanoparticles. ACS Omega 2020, 5, 21437–21442. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Kumar, A.; Kumar, S.; Pinnaka, A.K.; Singhal, N.K. Naked eye colorimetric detection of Escherichia coli using aptamer conjugated graphene oxide enclosed Gold nanoparticles. Sens. Actuators B Chem. 2021, 329, 129100. Available online: https://www.sciencedirect.com/science/article/pii/S0925400520314404 (accessed on 13 June 2025). [CrossRef]
- Lim, S.H.; Ryu, Y.C.; Hwang, B.H. Aptamer-immobilized gold nanoparticles enable facile and on-site detection of Staphylococcus aureus. Biotechnol. Bioprocess Eng. 2021, 26, 107–113. [Google Scholar] [CrossRef]
- Park, J.; Shin, E.; Yeom, J.H.; Choi, Y.; Joo, M.; Lee, M.; Kim, J.H.; Bae, J.; Lee, K. Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice. J. Microbiol. 2022, 60, 128–136. [Google Scholar] [CrossRef]
- Ospina-Villa, J.D.; Restrepo-Cano, V.; Sánchez-Jiménez, M.M. Bio-SELEX: A strategy for biomarkers isolation directly from biological samples. Methods Protoc. 2023, 6, 109. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics: Cambridge, UK, 2010; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 13 June 2025).
- Hoinka, J.; Backofen, R.; Przytycka, T.M. AptaSUITE: A full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments. Mol. Ther.-Nucleic Acids. 2018, 11, 515–517. Available online: https://www.sciencedirect.com/science/article/pii/S2162253118300507 (accessed on 12 July 2025). [CrossRef]
- Hoinka, J.; Przytycka, T. AptaPLEX—A dedicated, multithreaded demultiplexer for HT-SELEX data. Methods 2016, 106, 82–85. Available online: https://www.sciencedirect.com/science/article/pii/S1046202316300834 (accessed on 15 July 2025). [CrossRef] [PubMed]
- Hoinka, J.; Berezhnoy, A.; Dao, P.; Sauna, Z.E.; Gilboa, E.; Przytycka, T.M. Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery. Nucleic Acids Res. 2015, 43, 5699–5707. [Google Scholar] [CrossRef] [PubMed]
- Hoinka, J.; Berezhnoy, A.; Sauna, Z.E.; Gilboa, E.; Przytycka, T.M. AptaCluster—A method to cluster HT-SELEX aptamer pools and lessons from its application. Res. Comput. Mol. Biol. 2014, 8394, 115. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4281958/ (accessed on 13 July 2025).
- Dao, P.; Hoinka, J.; Takahashi, M.; Zhou, J.; Ho, M.; Wang, Y.; Costa, F.; Rossi, J.J.; Backofen, R.; Burnett, J.; et al. AptaTRACE elucidates RNA Sequence-Structure motifs from selection trends in HT-SELEX experiments. Cell Syst. 2016, 3, 62–70. Available online: https://www.sciencedirect.com/science/article/pii/S2405471216302204 (accessed on 30 May 2025). [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC308517/ (accessed on 15 May 2025).
- Lorenz, R.; Bernhart, S.H.; Höner zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol. 2011, 6, 26. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies, and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef]
- Choi, J.; Kim, J.C.; Lee, Y.B.; Kim, I.S.; Park, Y.K.; Hur, N.H. Fabrication of silica-coated magnetic nanoparticles with highly photoluminescent lanthanide probes. Chem. Commun. 2007, 1644–1646. [Google Scholar] [CrossRef]
- Oberacker, P.; Stepper, P.; Bond, D.M.; Höhn, S.; Focken, J.; Meyer, V.; Schelle, L.; Sugrue, V.J.; Jeunen, G.J.; Moser, T.; et al. Bio-On-Magnetic-Beads (BOMB): Open platform for high-throughput nucleic acid manipulation. PLoS Biol. 2019, 17, e3000107. [Google Scholar] [CrossRef]
- Yu, S.; Chow, G.M. Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J. Mater. Chem. 2004, 14, 2781–2786. Available online: https://pubs.rsc.org/en/content/articlelanding/2004/jm/b404964k (accessed on 15 June 2025). [CrossRef]
- Marton, S.; Cleto, F.; Krieger, M.A.; Cardoso, J. Isolation of an aptamer that binds specifically to E. coli. PLoS ONE 2016, 11, e0153637. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153637 (accessed on 15 June 2025). [CrossRef]
- Yu, X.; Chen, F.; Wang, R.; Li, Y. Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. J. Biotechnol. 2018, 266, 39–49. Available online: https://www.sciencedirect.com/science/article/pii/S0168165617317686 (accessed on 19 June 2025). [CrossRef]
- Dwivedi, H.P.; Smiley, R.D.; Jaykus, L.A. Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl. Microbiol. Biotechnol. 2013, 97, 3677–3686. [Google Scholar] [CrossRef]
- Suh, S.H.; Dwivedi, H.P.; Choi, S.J.; Jaykus, L.A. Selection and characterization of DNA aptamers specific for Listeria species. Anal. Biochem. 2014, 459, 39–45. Available online: https://www.sciencedirect.com/science/article/pii/S0003269714002097 (accessed on 15 June 2025). [CrossRef] [PubMed]
- Kim, Y.S.; Song, M.Y.; Jurng, J.; Kim, B.C. Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell–systematic evolution of ligands by exponential enrichment approach. Anal. Biochem. 2013, 436, 22–28. Available online: https://www.sciencedirect.com/science/article/pii/S0003269713000341 (accessed on 15 June 2025). [CrossRef] [PubMed]
- Pleiko, K.; Saulite, L.; Parfejevs, V.; Miculis, K.; Vjaters, E.; Riekstina, U. Differential binding cell-SELEX method to identify cell-specific aptamers using high-throughput sequencing. Sci. Rep. 2019, 9, 8142. Available online: https://www.nature.com/articles/s41598-019-44654-w (accessed on 30 May 2025).
- Siddiqui, S.; Yuan, J. Binding characteristics study of DNA based aptamers for E. coli O157:H7. Molecules 2021, 26, 204. [Google Scholar] [CrossRef]
- Amraee, M.; Oloomi, M.; Yavari, A.; Bouzari, S. DNA aptamer identification and characterization for E. coli O157 detection using cell based SELEX method. Anal. Biochem. 2017, 536, 36–44. Available online: https://www.sciencedirect.com/science/article/pii/S0003269717303378 (accessed on 13 June 2025). [CrossRef]
- Hermann, T.; Patel, D.J. Adaptive recognition by nucleic acid aptamers. Science 2000, 287, 820–825. Available online: https://www.science.org/doi/10.1126/science.287.5454.820 (accessed on 18 June 2025). [CrossRef]
- Marshall, K.A.; Robertson, M.P.; Ellington, A.D. A biopolymer by any other name would bind as well: A comparison of the ligand-binding pockets of nucleic acids and proteins. Structure 1997, 5, 729–734. Available online: https://www.sciencedirect.com/science/article/pii/S096921269700227X (accessed on 14 February 2025). [CrossRef][Green Version]
- Fischer, N.O.; Tok, J.B.H.; Tarasow, T.M. Massively parallel interrogation of aptamer sequence, structure and function. PLoS ONE 2008, 3, e2720. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002720 (accessed on 15 May 2025). [CrossRef]
- Bing, T.; Yang, X.; Mei, H.; Cao, Z.; Shangguan, D. Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories. Bioorg Med. Chem. 2010, 18, 1798–1805. Available online: https://www.sciencedirect.com/science/article/pii/S0968089610000854 (accessed on 30 May 2025). [CrossRef]
- Mencin, N.; Šmuc, T.; Vraničar, M.; Mavri, J.; Hren, M.; Galeša, K.; Krkoč, P.; Ulrich, H.; Šolar, B. Optimization of SELEX: Comparison of different methods for monitoring the progress of in vitro selection of aptamers. J. Pharm. Biomed. Anal. 2014, 91, 151–159. Available online: https://www.sciencedirect.com/science/article/pii/S073170851300616X (accessed on 30 May 2025). [CrossRef]
- Savory, N.; Nzakizwanayo, J.; Abe, K.; Yoshida, W.; Ferri, S.; Dedi, C.; Jones, B.V.; Ikebukuro, K. Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. J. Microbiol. Methods 2014, 104, 94–100. Available online: https://www.sciencedirect.com/science/article/pii/S0167701214001791 (accessed on 30 May 2025). [CrossRef]
- Amilia, N.; Budiarto, B.R.; Mustopa, A.Z.; Aprilian, T.; Manguntungi, B.; Saepudin, E. Isolation of DNA aptamers for Enteropathogenic Escherichia coli (EPEC) detection using bacterial-SELEX approach. HAYATI J. Biosci. 2022, 29, 789–798. Available online: https://journal.ipb.ac.id/index.php/hayati/article/view/39997 (accessed on 30 May 2025). [CrossRef]
- Tamaian, R. Aptamer-based biosensor design for simultaneous detection of cervical cancer-related microRNAs. Eng. Proc. 2023, 58, 88. [Google Scholar] [CrossRef]
- Zuber, J.; Schroeder, S.J.; Sun, H.; Turner, D.H.; Mathews, D.H. Nearest neighbor rules for RNA helix folding thermodynamics: Improved end effects. Nucleic Acids Res. 2022, 50, 5251–5262. [Google Scholar] [CrossRef]
- Yu, H.; Canoura, J.; Byrd, C.; Alkhamis, O.; Bacon, A.; Yan, A.; Sullenger, B.A.; Xiao, Y. Improving aptamer affinity and determining sequence–activity relationships via Motif-SELEX. J. Am. Chem. Soc. 2025, 147, 9472–9486. [Google Scholar] [CrossRef] [PubMed]
- Hoinka, J.; Zotenko, E.; Friedman, A.; Sauna, Z.E.; Przytycka, T.M. Identification of sequence–structure RNA binding motifs for SELEX-derived aptamers. Bioinformatics 2012, 28, i215–i223. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Hu, B.; Gao, S.X.; Liu, D.J.; Sun, M.J.; Jiao, B.H.; Wang, L.H. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation. Toxicon 2015, 101, 41–47. Available online: https://www.sciencedirect.com/science/article/pii/S0041010115001142 (accessed on 30 May 2025). [CrossRef]
- Dua, P.; Ren, S.; Lee, S.W.; Kim, J.K.; Shin, H.S.; Jeong, O.C.; Kim, S.; Lee, D.K. Cell-SELEX Based identification of an RNA aptamer for Escherichia coli and its use in various detection formats. Mol. Cells 2016, 39, 807–813. Available online: https://www.sciencedirect.com/science/article/pii/S1016847823051051 (accessed on 30 May 2025). [CrossRef]
- Wu, W.; Zhang, J.; Zheng, M.; Zhong, Y.; Yang, J.; Zhao, Y.; Wu, W.; Ye, W.; Wen, J.; Wang, Q.; et al. An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7. PLoS ONE 2012, 7, e48999. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048999 (accessed on 30 May 2025). [CrossRef]
- Zaitseva, M.; Kaluzhny, D.; Shchyolkina, A.; Borisova, O.; Smirnov, I.; Pozmogova, G. Conformation and thermostability of oligonucleotide d(GGTTGGTGTGGTTGG) containing thiophosphoryl internucleotide bonds at different positions. Biophys. Chem. 2010, 146, 1–6. Available online: https://www.sciencedirect.com/science/article/pii/S0301462209001987 (accessed on 30 May 2025). [CrossRef]
- Dougan, H.; Lyster, D.M.; Vo, C.V.; Stafford, A.; Weitz, J.I.; Hobbs, J.B. Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood. Nucl. Med. Biol. 2000, 27, 289–297. Available online: https://www.sciencedirect.com/science/article/pii/S0969805199001031 (accessed on 30 May 2025). [CrossRef] [PubMed]
- Bonifacio, L.; Church, F.C.; Jarstfer, M.B. Effect of locked-nucleic acid on a biologically active G-Quadruplex. A structure-activity relationship of the thrombin aptamer. Int. J. Mol. Sci. 2008, 9, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Zha, H.; Luo, H.; Zhou, Y. Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Front. Bioeng. Biotechnol. 2023, 11, 1118546. Available online: https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2023.1118546/full (accessed on 30 May 2025). [CrossRef] [PubMed]
- Odeh, F.; Nsairat, H.; Alshaer, W.; Ismail, M.A.; Esawi, E.; Qaqish, B.; Bawab, A.A.; Ismail, S.I. Aptamers chemistry: Chemical modifications and conjugation strategies. Molecules 2020, 25, 3. [Google Scholar] [CrossRef]
- Tiwari, A.P.; Ghosh, S.J.; Pawar, S.H. Biomedical applications based on magnetic nanoparticles:DNA interactions. Anal. Methods 2015, 7, 10109–10120. Available online: https://pubs.rsc.org/en/content/articlelanding/2015/ay/c5ay02334c (accessed on 30 May 2025). [CrossRef]
- Kotsiri, Z.; Vantarakis, A.; Rizzotto, F.; Kavanaugh, D.; Ramarao, N.; Vidic, J. Sensitive detection of E. coli in artificial seawater by aptamer-coated magnetic beads and direct PCR. Appl. Sci. 2019, 9, 5392. [Google Scholar] [CrossRef]
- Filius, M.; Fasching, L.; van Wee, R.; Rwei, A.Y.; Joo, C. Decoding aptamer-protein binding kinetics for continuous biosensing using single-molecule techniques. Sci. Adv. 2025, 11, eads9687. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, Y.; Liu, J. Kinetic ITC of DNA Aptamers Binding for Small Molecules and Implications for Binding Assays and Biosensors. Chembiochem 2024, 25, e202400225. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.R.; Pan, Y.L.; Zhao, Y.P.; Liu, M.C.; Chen, J.H.; Li, C.Y. A colorimetric method for vascular endothelial growth factor detection based on aptamer and magnetic beads. Nan Fang Yi Ke Da Xue Xue Bao 2016, 37, 210–215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, S.; Yang, Y.; Li, M.; Yang, Y.; Li, C.; Yin, Y. A pH-responsive bioassay for sensitive colorimetric detection of adenosine triphosphate based on switchable DNA aptamer and metal ion–urease interactions. Anal. Bioanal. Chem. 2021, 413, 1533–1540. [Google Scholar] [CrossRef]
- ALS Environmental. Microbiology: Limit of Detection for Microbiological Analysis. 2017. Available online: https://www.alsenvironmental.co.uk/media-uk/pdf/datasheets/micro-lp/als_micro_limit-ofdetection---microbiology_uk_2017.pdf (accessed on 2 September 2025).
- Wang, J.; Li, H.; Zhang, X.; Liu, Y. A Portable Colorimetric LAMP Platform for Rapid On-Site Detection of Escherichia coli in Environmental Samples. Sci. Rep. 2023, 13, 14427. [Google Scholar] [CrossRef]
- Kaur, H.; Kumar, V.; Singh, A. Advances in Electrochemical and Lateral Flow Aptasensors for Bacterial Detection: Sensitivity, Specificity, and Integration with Portable Platforms. Nanomaterials 2024, 14, 855. [Google Scholar] [CrossRef]
- Zhao, X.; Abubakar, B.; O’Connor, C.; Curtin, J.; Singh, B.; Tian, F. Aptamer-Based Biosensors for Pathogen Detection: Recent Trends and Future Perspectives. Preprints 2024, 2024011268. [Google Scholar] [CrossRef]
- USDA Agricultural Research Service. Multiplex Real-Time PCR for Detection of E. coli O157:H7 and Related Pathogens in Water and Food Samples. 2020. Available online: https://www.ars.usda.gov/arsuserfiles/20361500/pdf_pubs/P1810.pdf (accessed on 2 September 2025).
- Li, J.; Xu, Z.; Chen, W.; Liu, G. A Centrifugal Microfluidic Chip for Rapid, Automated Detection of E. coli in Water Samples. Biosensors 2023, 14, 313. [Google Scholar] [CrossRef]
Identified Organism | Probability | Confidence Level |
---|---|---|
Escherichia coli | 96% | Excellent identification |
Acinetobacter baumannii complex | 99% | Excellent identification |
Round | Bacteria Specie | Bacteria Culture Volume (µL) | Incubation Time (min) | Type of Round |
---|---|---|---|---|
1 | A. baumannii | 100 | 30 | Negative |
2 | E. coli | 100 | 30 | Positive |
3 | E. coli | 10 | 20 | Positive |
4 | E. coli | 1 | 15 | Positive |
5 | E. coli | 1 | 10 | Positive |
6 | E. coli | 1 | 5 | Positive |
7 | E. coli | 1 | 5 | Positive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herazo-Romero, Z.; Royero-Bermeo, W.Y.; Pérez-Navarro, M.O.; Sánchez-Jiménez, M.M.; Ospina-Villa, J.D. Aptamer-Functionalized Magnetic Nanoparticles for Rapid Isolation of Environmental Escherichia coli. Environments 2025, 12, 329. https://doi.org/10.3390/environments12090329
Herazo-Romero Z, Royero-Bermeo WY, Pérez-Navarro MO, Sánchez-Jiménez MM, Ospina-Villa JD. Aptamer-Functionalized Magnetic Nanoparticles for Rapid Isolation of Environmental Escherichia coli. Environments. 2025; 12(9):329. https://doi.org/10.3390/environments12090329
Chicago/Turabian StyleHerazo-Romero, Zulema, Wendy Yulieth Royero-Bermeo, Miguel Octavio Pérez-Navarro, Miryan Margot Sánchez-Jiménez, and Juan David Ospina-Villa. 2025. "Aptamer-Functionalized Magnetic Nanoparticles for Rapid Isolation of Environmental Escherichia coli" Environments 12, no. 9: 329. https://doi.org/10.3390/environments12090329
APA StyleHerazo-Romero, Z., Royero-Bermeo, W. Y., Pérez-Navarro, M. O., Sánchez-Jiménez, M. M., & Ospina-Villa, J. D. (2025). Aptamer-Functionalized Magnetic Nanoparticles for Rapid Isolation of Environmental Escherichia coli. Environments, 12(9), 329. https://doi.org/10.3390/environments12090329