The Potential of CO2 Capture and Storage Technology in South Africa’s Coal-Fired Thermal Power Plants
Abstract
:1. Introduction
2. Technological Routes for CO2 Capture
2.1. Post-Combustion
2.2. Pre-Combustion
2.3. Oxy-Fuel
3. Separation Technologies during Post-Combustion CO2 Capture
3.1. Cryogenic Separation
3.2. Membrane Separation
3.3. Absorption
3.4. Adsorption
4. The South African Power Sector
4.1. Power Generation in South Africa
4.2. An Outlook for the South African Coal-Fired Power Plants
5. The Potential of CO2 Capture and Storage in South Africa
6. Geological Storage of CO2
7. An Overview of CO2 Capture Using Solid Adsorbents
8. Challenges Facing CO2 Capture and Storage in South Africa
8.1. Economic Challenges
8.2. Environmental Challenges
8.3. Social Challenges
9. Conclusions and Recommendations
- ❖
- The implementation of CCS has been stagnant in South African coal-fired power plants due to financial barriers, the lack of frameworks and the lack of technical expertise. Nonetheless, this challenge can be overcome by using solid inexpensive composite adsorbents, which have been shown in recent years to be economically viable, towards the improvement of CCS processes.
- ❖
- Chemical absorbents, such as monoethanolamine, are extensively used in CO2 capture. However, they have some limitations in terms of solvent capacity; it is therefore recommended that if the absorption technology must be used in post-combustion CO2 capture from these South African power plants, a chemical absorbent with higher loading capacity, such as amine 2-amino-2-methyl-1-propanol (AMP) should be employed. Alternatively, the monoethanolamine can be coupled with activators, such as piperazine (PZ), to improve its efficiency, but if the adsorbents will be used as suggested by this study, these adsorbents should be impregnated with amine-rich materials, such as chitosan and polysuccinimide, because they increase the adsorbent’s affinity for CO2. Possible solid sorbents that could be used for CO2 capture in the South African power plants include carbon nanotubes with chitosan impregnation, amine-grafted polyaspartamide, Sodalite-Zeolite Metal Organic Framework/chitosan composite materials, etc.
- ❖
- Given the fact that the post-combustion CO2 capture technology is highly embraced, its overall system performance with regards to South Africa’s coal-fired power plants should be assessed by using pilot-plant experimental results from these power plants, and these results should be validated for their accuracy.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lim, Y.; Kim, J.; Jung, J.; Lee, C.S.; Han, C. Modeling and simulation of CO2 capture process for coal-based power plant using amine solvent in South Korea. Energy Procedia 2013, 37, 1855–1862. [Google Scholar] [CrossRef]
- Sekoai, P.T.; Daramola, M.O. Biohydrogen as a potential energy fuel in South Africa. Biofuel Res. J. 2015. [Google Scholar] [CrossRef]
- Sekoai, P.T.; Yoro, K.O. Biofuel development initiatives in Sub-Saharan Africa: Opportunities and challenges. Climate 2016, 4, 33. [Google Scholar] [CrossRef]
- Pegels, A. Renewable energy in South Africa: Potentials, barriers and options for support. Energy Policy 2010, 38, 4945–4954. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. The Physical Science Basis. Available online: http://www.ipcc.ch/report/ar5/wg1/ (accessed on 5 June 2016).
- CCS Roadmap Storage Strategy. Department of Energy and Climate Change. Available online: https://www.gov.uk/government/uploads/system/uploads/attachmentdata/file/48320/4904-ccs-roadmap-storage-strategy.pdf (accessed on 5 June 2016).
- Khoo, H.H.; Bu, J.; Wong, R.L.; Kuan, S.Y.; Sharratt, P.N. Carbon capture and utilization: Preliminary life cycle CO2, energy, and cost results of potential mineral carbonation. Energy Proc. 2011, 4, 2494–2501. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Carbon Dioxide Capture and Storage. Cambridge University Press. Available online: https://www.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf (accessed on 5 June 2016).
- De Villiers, M.; Howells, M.; Kenny, A. Sustainable Energy for South Africa: Energy Scenarios from 1995 to 2025; Report for Eskom and National Research Foundation; University of Cape Town: Cape Town, South Africa, 2009. [Google Scholar]
- The Third South African Carbon Capture and Storage Conference 2013. Available online: http://www.sacccs.org.za/wp (accessed on 5 June 2016).
- Van der Merwe, M.R.; Scholes, R.J. South African Greenhouse Gas Emissions Inventory for the Years 2000 and 2004; National Committee on Climate Change: Pretoria, South Africa, 2008.
- Banks, D.; Schäffler, J.L. The Potential Contribution of Renewable Energy in South Africa: Prepared for the Sustainable Energy & Climate Change Partnership, Earth Life Africa; RAPS Consulting & Nano Energy: Pretoria, South Africa, 2010. [Google Scholar]
- Bolland, O.; Undrum, H. Removal of CO2 from gas turbine power plants: Evaluation of pre- and post-combustion methods. In Proceedings of the 4th Conference on Greenhouse Gas Technologies, Interlaken, Switzerland, 30 August–2 September 1998.
- Lilliestam, J.; Bielicki, J.M.; Anthony, G.P. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers. Energy Policy 2012, 47, 447–455. [Google Scholar] [CrossRef]
- Carbon Capture and Utilisation in the Green Economy. Available online: http://co2chem.co.uk/carbon-capture-and-utilisation-in-the-green-economy (accessed on 5 June 2016).
- International Energy Agency. Technology Roadmap Carbon Capture and Storage, Organization for Economic Development & International Energy Agency. Available online: http://www.iea.org/publications/freepublications/publication/TechnologyRoadmapCarbonCaptureandStorage.pdf (accessed on 5 June 2016).
- Figueroa, J.D.; Fout, T.; Plasynski, S.; Mcilvried, H.; Srivastava, R.D. Advances in CO2 capture technology—The US department of energy and carbon sequestration programme. Int. J. Greenh. Gas Control 2008, 2, 9–20. [Google Scholar] [CrossRef]
- Carbon Monitoring for Action. The Ten Largest CO2 Emitting Power Sectors in the World by Country. Available online: http://www.carma.org (accessed on 5 June 2016).
- Eskom Power Stations. Available online: http://www.eskom.co.za/OurCompany/PhotoGallery/Pages/Eskom_Power_Stations.aspx (accessed on 5 June 2016).
- Zheng, B.; Xu, J. Carbon capture and storage development trends from a techno-paradigm perspective. Energies 2014, 7, 5221–5250. [Google Scholar] [CrossRef]
- Department of Minerals & Energy. Sustainable Development Criteria for Approval of Clean Development Mechanism Projects by the Designated National Authority of the CDM. Available online: http://www.energy.gov.za/files/esources/kyoto/Web%20info/Annex%203%20SA%20Sustainable%20Development%20Criteria.pdf (accessed on 5 June 2016).
- Ian, B. Upgrading the Efficiency of the World’s Coal Fleet to Reduce CO2 Emissions. Available online: http://www.cornerstonemag.net/upgrading-the-efficiency-of-the-worlds-coal-fleet-to-reduce-co2-emissions (accessed on 5 June 2016).
- Schneider, J.; Madsen, T. America’s Dirtiest Power Plants: Their Oversized Contribution to Global Warming and What We Can Do About It. Available online: http://www.environmentamericacenter.org/sites/environment/files/reports/Dirty%20Power%20Plants.pdf (accessed on 5 June 2016).
- Chaudhary, J. Indian Coal Power Plants World’s Most Polluting. Available online: http://www.indiaclimatedialogue.net/2015/02/24/indian-coal-power-plants-worlds-most-polluting/ (accessed on 5 June 2016).
- Cappiello, D. These 6 Countries Are Responsible for 60% Of CO2 Emissions. Available online: http://www.businessinsider.com/these-6-countries-are-responsible-for-60-of-co2-emissions-2014-12 (accessed on 5 June 2016).
- Homewood, P. Germany Opens Another New Coal Plant. Available online: https://www.notalotofpeopleknowthat.wordpress.com/2015/11/20/germany-opens-another-new-coal-plant/ (accessed on 5 June 2016).
- Obayashi, Y. Japan to Get More Coal-Fired Power Plants Thanks to Environment Ministry Policy Reversal’. Available online: http://www.reuters.com/article/us-japan-emissions-iduskcn0vw0ev (accessed on 5 June 2016).
- Cebrucean, D.; Cebrucean, V.; Ionel, I. CO2 capture and storage from fossil fuel power plants. Energy Procedia 2014, 63, 18–26. [Google Scholar] [CrossRef]
- Bui, M.; Gunawan, I.; Verheyen, T.V.; Meuleman, E.; Feron, P. Dynamic operation of post-combustion CO2 capture in Australian coal-fired power plants. Energy Procedia 2014, 63, 1368–1375. [Google Scholar] [CrossRef]
- Mabuza, M.; Premlall, K. Assessing impure CO2 adsorption capacity on selected South African coals: Comparative study using low and high concentrated simulated flue gases. Energy Procedia 2014, 51, 308–315. [Google Scholar] [CrossRef]
- Carbon Monitoring for Action. Centre for Global Development. Available online: http://www.cgdev.org/files/14846fileCARMAPR.pdf (accessed on 5 June 2016).
- Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. [Google Scholar] [CrossRef]
- Fine, B.; Rustomjee, Z. The Political Economy of South Africa: From Minerals Energy Complex to Industrialization: 1996; Westview Publishing Press: Boulder, CO, USA; Volume 1, pp. 60–288.
- Department of Minerals and Energy. South Africa National Energy Balance. Available online: http://www.erc.uct.ac.za/sites/default/files/imagetool/images/119/Papers2004/04ERCEnergysustainable_developmentphase1.pdf (accessed on 5 June 2016).
- Engelbrecht, A.; Golding, A.; Hietkamp, S.; Scholes, R.J. The Potential for Sequestration of Carbon Dioxide in South Africa; Report for the Department of Minerals & Energy: Pretoria, South Africa, 2004. [Google Scholar]
- Lloyd, P.J.D. Carbon Capture and Storage in South Africa: Development and Climate Change; University of Cape Town: Cape Town, South Africa, 2014. [Google Scholar]
- Carbon Sequestration Leadership Forum. Available online: https://hub.globalccsinstitute.com/category/organisation/carbon-sequestration-leadership-forum-cslf?page=7 (accessed on 27 August 2004).
- Wall, T. Combustion processes for carbon capture. Proc. Combust. Inst. 2007, 31, 31–47. [Google Scholar] [CrossRef]
- International Energy Agency. Greenhouse Gas R & D Programme, 2004. Impact of Impurities on CO2 Capture, Transport and Storage, Report No. PH4/32. 2004. Available online: http://www.ieaghg.org/docs/General_Docs/Reports/Ph4-32%20Impurities.pdf (accessed on 5 June 2016).
- International Energy Agency. Greenhouse Gas R & D Programme, 2005. Near Zero Emission Coal-Fired Power Plants. Clean Coal centre, Report No. CCC/101. Available online: http://www.ieaghg.org/docs/General_Docs/Reports/2006-13%20Near%20zero%20emissions.pdf (accessed on 5 June 2016).
- Technology Benchmarking Studies in Oxy-Fuel Combustion. Presentation to IEA Oxy-Fuel Combustion Research Network, Cottbus, Germany. Available online: http://www.ieaghg.org/docs/oxyfuel/w1/1stOxyCombustionWorkshopReport.pdf (accessed on 5 June 2016).
- Cuellar-Franca, R.S.; Azapagic, A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 2015, 9, 82–102. [Google Scholar] [CrossRef]
- Singh, B.; Strømman, A.H.; Hertwich, E.G. Life cycle assessment of natural gas combined cycle power plant with post-combustion carbon capture, transport and storage. Int. J. Greenh. Gas Control 2011, 5, 911–921. [Google Scholar] [CrossRef]
- Otto, A.; Grube, T.; Schiebahna, S.; Stoltena, D. Closing the loop: Captured CO2 as a feedstock in the chemical industry. Energy Environ. Sci. 2015, 8, 3283–3297. [Google Scholar] [CrossRef]
- Schakel, W.; Meerman, H.; Talaei, A.; Ramírez, A.; Faaij, A. Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage. Appl. Energy 2014, 131, 441–467. [Google Scholar] [CrossRef]
- Technology Roadmap. Carbon Capture and Storage in Industrial Applications. Available online: https://www.iea.org/publications/freepublications/publication/ccs_industry.pdf (accessed on 5 June 2016).
- Roman, M. Carbon capture and storage in developing countries: A comparison of Brazil, South Africa and India. Glob. Environ. Chang. 2011, 21, 391–401. [Google Scholar] [CrossRef]
- Arranz, A.M. Carbon capture and storage: Frames and blind spots. Appl. Policy 2015, 82, 249–259. [Google Scholar]
- Liu, L.; Qiu, W.; Sanders, E.S.; Ma, C.; Koros, W.J. Post-combustion carbon dioxide capture via 6FDA/BPDA-DAM hollow fiber membranes at sub-ambient temperatures. J. Membr. Sci. 2016, 510, 447–454. [Google Scholar] [CrossRef]
- Liu, L.; Sanders, E.S.; Kulkarni, S.S.; Hasse, D.J.; Koros, W.J. Sub-ambient temperature flue gas carbon dioxide capture via Matrimids hollow fiber membranes. J. Membr. Sci. 2014, 465, 49–55. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharjee, G.; Barmecha, V.; Diwan, S.; Kushwaha, O.S. Influence of kinetic and thermodynamic promoters on post-combustion carbon dioxide capture through gas hydrate crystallization. Environ. Chem. Eng. 2016, 4, 1955–1961. [Google Scholar] [CrossRef]
- Goetheer, E.; Abu-Zahra, M. Overview of Post Combustion Capture Technology. Available online: http://www.fossiltransition.org/pages/post_combustion_capture_/128.php (accessed on 5 June 2016).
- Davison, J. Performance and costs of power plants with capture and storage of CO2. Energy 2007, 32, 1163–1176. [Google Scholar] [CrossRef]
- Singto, S.; Supap, T.; Raphael, I.; Tontiwachwuthikul, P.; Tantayanon, S.; Al-Marri, M.J.; Benamor, A. Synthesis of new amines for enhanced carbon dioxide (CO2) capture performance: The effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration. Sep. Purif. Technol. 2016, 167, 97–107. [Google Scholar] [CrossRef]
- The European Union Technology Platform for Zero Emission Fossil Fuel Power Plant (ZEP), Strategic Research Agenda, 2006. Available online: http://www.zeroemissionsplatform.eu/ (accessed on 5 June 2016).
- Tontiwachwuthikul, P.; Idem, R.; Gelowitz, D. Recent progress and new development in post-combustion carbon-capture technology with reactive solvents. Carbon Manag. 2013, 2, 261–263. [Google Scholar] [CrossRef]
- Rao, A.B.; Rubin, E.S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 2012, 36, 4467–4475. [Google Scholar]
- Liu, H.; Sema, T.; Liang, Z.; Fu, K.; Idem, R.; Na, Y. CO2 absorption kinetics of 4-diethylamine-2-butanol solvent using stopped-flow technique. Sep. Purif. Technol. 2014, 136, 81–87. [Google Scholar] [CrossRef]
- Xu, G.; Liang, F.; Yang, Y.; Hu, Y.; Zhang, K.; Liu, W. An improved CO2 separation and purification system based on cryogenic separation and distillation theory. Energies 2014, 7, 3484–3502. [Google Scholar] [CrossRef]
- Li, X.; Jiageng, L.; Bolun, Y. Design and control of the cryogenic distillation process for purification of synthetic natural gas from methanation of coke oven gas. Ind. Eng. Chem. Res. 2012, 51, 1438–1463. [Google Scholar] [CrossRef]
- Scholes, C.A.; Ho, M.T.; Wiley, D.E. Membrane-cryogenic post-combustion carbon capture of flue gases from NGCC. Technologies 2016, 4, 14. [Google Scholar] [CrossRef]
- Song, G.; Zhu, X.; Chen, R.; Liao, Q.; Ding, Y.-D.; Chen, L. An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chem. Eng. J. 2016, 283, 175–183. [Google Scholar] [CrossRef]
- Fu, Q.; Kansha, Y.; Song, C.; Liu, Y.; Ishizuka, M.; Tsutsumi, A. A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants. Appl. Energy 2016, 162, 1114–1121. [Google Scholar] [CrossRef]
- Shi, H.; Naami, A.; Idem, R.; Tontiwachwuthikul, P. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents. Int. J. Greenh. Gas Control 2016, 26, 39–50. [Google Scholar] [CrossRef]
- Corti, A.; Lombardi, L. Reduction of carbon dioxide emissions from a SCGT/CC by ammonia solution absorption—Preliminary results. Int. J. Thermodyn. 2004, 4, 173–181. [Google Scholar]
- Madden, D.; Curtin, T. Carbon dioxide capture with amino-functionalised zeolite-b: A temperature programmed desorption study under dry and humid conditions. Microporous Mesporous Mater. 2014, 228, 310–317. [Google Scholar] [CrossRef]
- Center for Global Development. Carbon Dioxide Emissions From Power Plants Rated Worldwide. Available online: https://www.sciencedaily.com/releases/2007/11/071114163448.htm (accessed on 5 June 2016).
- Abbas, Z.; Mezher, T.; Abu-Zahra, M.R.M. Evaluation of CO2 purification requirements and the selection of processes for impurities deep removal from the CO2 product stream. Energy Proc. 2013, 37, 2389–2396. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, H.; Tang, J.; Ca, J. Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry. Energy 2016, 105, 45–56. [Google Scholar] [CrossRef]
- Almahdi, M.; Dincer, I.; Rosen, M.A. Analysis and assessment of methanol production by integration of carbon capture and photocatalytic hydrogen production. Int. J. Greenh. Gas. Control 2016, 5, 56–70. [Google Scholar] [CrossRef]
- Diego, M.E.; Arias, B.; Grasa, G.; Abanades, J. Design of a novel fluidized bed reactor to enhance sorbent performance in CO2 capture systems using CO2. Ind. Eng. Chem. Res. 2014, 53, 10059–10071. [Google Scholar] [CrossRef]
- Briz-López, E.M.; Ramírez-Moreno, M.J.; Romero-Ibarrac, I.C.; Gómez-Yáñez, C.; Pfeiffer, H.; Ortiz-Landeros, J. First assessment of Li2O-Bi2O3 ceramic oxides for high temperature carbon dioxide capture. J. Energy Chem. 2016. [Google Scholar] [CrossRef]
- Ortiz, A.L.; Escobedo Bretado, M.A.; Velderrain, V.G.; Zaragoza, M.M.; Gutiérrez, J.S.; Gutiérrez, D.L.; Collins-Martínez, V. Experimental and modeling kinetic study of the CO2 absorption by Li4SiO4. Int. J. Hydrog. Energy 2014, 39, 16656–16666. [Google Scholar] [CrossRef]
- Mejia-Trejo, V.L.; Fregoso-Israel, E.; Pfeiffer, H. Textural, structural, and CO2 chemisorption effects produced on the lithium orthosilicate by its doping with sodium (Li4−xNaxSiO4). Chem. Mater. 2008, 20, 7171–7176. [Google Scholar] [CrossRef]
- Vieille, L.; Govin, A.; Grosseau, P. Improvements of calcium oxide based sorbents for multiple CO2 capture cycles. Powder Technol. 2012, 228, 319–323. [Google Scholar] [CrossRef]
- Shan, S.Y.; Jia, Q.M.; Jiang, L.H.; Li, Q.C.; Wang, Y.M.; Peng, J.H. Preparation and kinetic analysis of Li4SiO4 sorbents with different silicon sources for high temperature CO2 capture. Chin. Sci. Bull. 2012, 57, 2475–2479. [Google Scholar] [CrossRef]
- Shan, S.Y.; Jia, Q.M.; Jiang, L.H.; Li, Q.C.; Wang, Y.M.; Peng, J.H. Impregnation precipitation preparation and kinetic analysis of Li4SiO4-based sorbents with fast CO2 adsorption rate. Ind. Eng. Chem. Res. 2013, 52, 6941–6945. [Google Scholar] [CrossRef]
- Blackforda, J.; Bull, J.M.; Cevatoglu, M.; Connelly, D.; Hauton, C.; James, R.H.; Lichtschlag, A.; Stahl, H.; Widdicombe, S.; Wright, I.C. Marine baseline and monitoring strategies for carbon dioxide capture and storage (CCS). Int. J. Greenh. Gas Control 2015, 38, 221–229. [Google Scholar] [CrossRef]
- Yu, C.H.; Huang, C.H.; Tan, C.S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef]
- Webley, P.A. Adsorption technology for CO2 separation and capture: A perspective. Adsorption 2014, 20, 225–231. [Google Scholar] [CrossRef]
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Siriwardane, R.V.; Shen, M.S.; Fisher, E.P.; Poston, J.A. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 2001, 15, 279–284. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review. Appl. Energy 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Arachchige, U.S.P.R.; Melaaen, M.C. Aspen plus simulation of CO2 removal from coal and gas fired power plants. Energy Procedia 2012, 23, 391–399. [Google Scholar] [CrossRef]
- Gatti, L.V.; Miller, J.B.; D’amelio, M.T.S.; Martinewski, A.; Basso, L.S.; Gloor, M.E.; Wofsy, S.; Tans, P. Vertical profiles of CO2 above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009. Tellus B 2010, 62, 581–594. [Google Scholar] [CrossRef]
- Ngoy, J.M.; Wagner, N.; Riboldi, L.; Bolland, O. A CO2 capture technology using multi-walled carbon nanotubes with polyaspartamide surfactant. Energy Proc. 2014, 63, 2230–2248. [Google Scholar] [CrossRef]
- Zanganeh, K.; Shafeen, A. A novel process integration, optimization, and design approach for large-scale implementation of oxy-fired coal power plant with CO2 capture. Int. J. Greenh. Gas Control 2007, 1, 47–54. [Google Scholar] [CrossRef]
- Zahid, U.; Lim, Y.; Jung, J.; Han, C. CO2 geological storage: A review on present and future prospects. Korean J. Chem. Eng. 2011, 28, 674–685. [Google Scholar] [CrossRef]
- Celia, M.A.; Nordbottena, J.M. Practical modeling approaches for geological storage of carbon dioxide. Ground Water 2009, 47, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Van der Zwaan, B.; Smekens, K. CO2 capture and storage with leakage in an energy-climate model. Environ. Model. Assess. 2009, 14, 135–148. [Google Scholar] [CrossRef]
- Yang, F.; Bai, B.J.; Tang, D.Z.; Dunn-Norman, S.; Wronkiewicz, D. Characteristics of CO2 sequestration in saline aquifers. Pet. Sci. 2010, 7, 83–92. [Google Scholar] [CrossRef]
- Myer, L. Global Status of Geologic CO2 Storage Technology Development United States Carbon Sequestration Council Report. Available online: http://www.iea-coal.org.uk/documents/82579/7892/Global-status-of-geologic-CO2-storage-technology-development (accessed on 5 June 2016).
- Oh, T.H. Carbon capture and storage potential in coal-fired plant in Malaysia – A Review. Renew. Sustain. Energy Rev. 2010, 14, 2697–2709. [Google Scholar] [CrossRef]
- Svensson, R.; Odenberger, M.; Johnsson, F.; Stromberg, L. Transportation systems for CO2—Application to carbon capture and storage. Energy Convers. Manag. 2004, 45, 2343–2353. [Google Scholar] [CrossRef]
- Norisor, M.; Badea, A.; Dinca, C. Economical and technical analysis of CO2 transport ways. UPB Sci. Bull. Ser. C 2012, 74, 127–138. [Google Scholar]
- Gao, L.; Fang, M.; Li, H.; Hetland, J. Cost analysis of CO2 transportation: Case study in China. Energy Procedia 2011, 4, 5974–5981. [Google Scholar] [CrossRef]
- Johnsen, K.; Helle, K.; Roneid, S.; Holt, H. DNV recommended practice: Design and operation of CO2 pipelines. Energy Proc. 2011, 4, 3032–3039. [Google Scholar] [CrossRef]
- Kikkinides, E.S.; Yang, R.T.; Cho, S.H. Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 1993, 32, 2714–2720. [Google Scholar] [CrossRef]
- Songolzadeh, M.; Soleimani, M.; Ravanchi, M.T.; Songolzadeh, R. Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. 2014, 2014, 828131. [Google Scholar] [CrossRef] [PubMed]
- Voleno, A.; Romano, M.C.; Turi, D.M.; Chiesa, P.; Ho, M.T.; Wiley, D.E. Post-combustion CO2 capture from natural gas combined cycles by solvent supported membranes. Energy Procedia 2014, 63, 7389–7397. [Google Scholar] [CrossRef]
- Barkakaty, B.; Browning, K.L.; Sumpter, B.; Uhrig, D.; Karpisova, I.; Harman, K.W.; Ivanov, I.; Hensley, D.K.; Messman, J.M.; Kilbey, S.M.; et al. Amidine-Functionalized Poly (2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO2 Fixing. Macromolecules 2016, 49, 1523–1531. [Google Scholar] [CrossRef]
- Heldebrant, D.J.; Koech, P.K.; Rainbolt, J.E.; Zheng, F.; Smurthwaite, T.; Freeman, C.J.; Oss, M.; Leito, I. Performance of single-component CO2-binding organic liquids (CO2BOLs) for post combustion CO2 capture. Chem. Eng. J. 2011, 171, 794–800. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.H.; Kang, S.G.; Park, Y.-G. Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective. Environ. Impact Assess. Rev. 2016, 57, 139–150. [Google Scholar] [CrossRef]
- Smit, B.; Park, A.H.A.; Gadikota, G. The grand challenges in carbon capture, utilization, and storage. Front. Energy Res. 2014. [Google Scholar] [CrossRef]
- Pehnat, M.; Henkel, J. Life cycle assessment of carbon dioxide capture and storage from lignite power plants. Int. J. Greenh. Gas Control 2009, 3, 49–66. [Google Scholar] [CrossRef]
- Tan, Y.; Nookuea, W.; Li, H.; Thorin, E.; Yan, J. Property impacts on carbon capture and storage (CCS) processes: A review. Energy Convers. Manag. 2016, 118, 204–222. [Google Scholar] [CrossRef]
- Raza, A.; Rezaee, R.; Bing, C.H.; Gholami, R.; Hamid, M.A.; Nagarajan, R. Carbon dioxide storage in subsurface geologic medium: A review on capillary trapping mechanism. Egypt. J. Pet. 2015. [Google Scholar] [CrossRef]
- Lake, A.J.; Johnson, I.; Cameron, D.D. Carbon capture and storage (CCS) pipeline operating temperature effects on UK soils: The first empirical Data. Int. J. Greenh. Gas Control 2016, 53, 11–17. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Chu, F.; Jon, C.; Yang, L.; Du, X.; Yang, Y. CO2 absorption characteristics in ammonia solution inside the structured packed column. Ind. Eng. Chem. Res. 2016, 55, 3696–3709. [Google Scholar] [CrossRef]
- Hu, G.; Nicholas, N.J.; Smith, K.H.; Mumford, K.A.; Kentish, S.E.; Stevens, G.W. Carbon dioxide absorption into promoted potassium carbonate solutions: A review. Int. J. Greenh. Gas Control 2016, 53, 28–40. [Google Scholar] [CrossRef]
- Kwak, K.O.; Jung, S.J.; Chung, S.Y.; Kang, C.M.; Huh, Y.I.; Bae, S.O. Optimization of culture conditions for CO2 fixation by a chemoautotrophic microorganism, strain YN-1 using factorial design. Biochem. Eng. J. 2006, 31, 1–26. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine scrubbing for CO2 capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, C.B. Bio-inspired synthesis of minerals for energy, environment, and medicinal applications. Adv. Funct. Mater. 2013, 23, 10–25. [Google Scholar] [CrossRef]
- Wang, S.; Liu, K.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293. [Google Scholar] [CrossRef] [PubMed]
- Quan, S.; Li, S.; Wang, Z.; Yan, X.; Guo, Z.; Shao, L. A bio-inspired CO2-philic network membrane for enhanced sustainable gas separation. J. Mater. Chem. 2015, 3, 13758–13766. [Google Scholar] [CrossRef]
- Wegst, U.G.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2014, 14, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.H.; Li, P.; Li, F.Y.; Chung, T.S.; Paul, D.R. Reverse-selective polymeric membranes for gas separations. Prog. Polym. Sci. 2013, 38, 740–766. [Google Scholar] [CrossRef]
- Su, J.C.; Ong, R.C.; Wang, P.; Chung, T.S.; Helmer, B.J.; de Wit, J.S. Advanced FO membranes from newly synthesized CAP polymer for wastewater reclamation through an integrated FO-MD hybrid system. AIChE J. 2013, 59, 1245–1254. [Google Scholar] [CrossRef]
- Mangindaan, D.W.; Woon, N.M.; Shi, G.M.; Chung, T.S. P84 polyimide membranes modified by a tripodal amine for enhanced pervaporation dehydration of acetone. Chem. Eng. Sci. 2015, 122, 14–23. [Google Scholar] [CrossRef]
- Xu, A.W.; Ma, Y.; Cölfen, H. Biomimetic mineralization. J. Mater. Chem. 2007, 17, 415–449. [Google Scholar] [CrossRef]
- Cai, Y.; Yao, J. Effect of proteins on the synthesis and assembly of calcium phosphate nanomaterials. Nanoscale 2010, 20, 1842–1848. [Google Scholar] [CrossRef] [PubMed]
- Mondal, B.; Song, J.; Neese, F.; Ye, S. Bio-inspired mechanistic insights into CO2 reduction. Curr. Opin. Chem. Biol. 2015, 25, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Seoane, B.; Coronas, J.; Gascon, I.; Benavides, M.E.; Karvan, O.; Caro, J. Metal-organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture? Chem. Soc. Rev. 2015, 44, 2421–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, H.; Wu, S.; Huang, S.; Wu, Y.; Gao, J. Regenerable magnesium-based sorbent for high-pressure and moderate-temperature CO2 capture: Physicochemical structures and capture performances. Fuel 2015, 159, 559–569. [Google Scholar] [CrossRef]
- Alaswad, A.; Dassisti, M.; Prescott, T.; Olabi, A. Technologies and developments of third generation biofuel production. Renew. Sustain. Energy Rev. 2015, 51, 1446–1460. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Belloumi, M. Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia. Renew. Sustain. Energy Rev. 2015, 41, 237–247. [Google Scholar] [CrossRef]
- Ampelli, C.; Perathoner, S.; Centi, G. CO2 utilization: An enabling element to move to a resource- and energy-efficient chemical and fuel production. Philos. Trans. R. Soc. A 2015, 373, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Ang, R.R.; Sin, L.T.; Bee, S.T.; Tee, T.T.; Kadhum, A.; Rahmat, A.; Wasmi, B.A. A review of copolymerization of greenhouse gas carbon dioxide and oxiranes to produce polycarbonate. J. Clean. Prod. 2015, 102, 1–17. [Google Scholar] [CrossRef]
- Anjos, M.; Fernandes, B.D.; Vicente, A.A.; Teixeira, J.A.; Dragone, G. Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour. Technol. 2013, 139, 149–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, P.; Linga, P.; Kumar, R.; Englezos, P. A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 2015, 85, 261–279. [Google Scholar] [CrossRef]
- Bacik, D.B.; Yuan, W.; Roberts, C.B.; Eden, M.R. Systems analysis of benign hydrogen peroxide synthesis in supercritical CO2. Comput. Aided Chem. Eng. 2011, 29, 392–396. [Google Scholar]
- Berg, I.A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 2011, 77, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Centi, G.; Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 2009, 148, 191–205. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Show, P.L.; Chang, J.S.; Ling, T.C.; Juan, J.C. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 2015, 184, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Zhao, X.Q.; Yen, H.W.; Ho, S.H.; Cheng, C.L.; Lee, D.J.; Bai, F.W.; Chang, J.S. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 2013, 78, 1–10. [Google Scholar] [CrossRef]
- Cheng, J.; Huang, Y.; Feng, J.; Sun, J.; Zhou, J.; Cen, K. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresour. Technol. 2013, 144, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Huang, Y.; Feng, J.; Sun, J.; Zhou, J.; Cen, K. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2. Bioresour. Technol. 2013, 136, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.H.; Whang, L.M.; Chan, K.C.; Chung, M.C.; Wu, S.H.; Liu, C.P.; Tien, S.Y.; Chen, S.Y.; Chang, J.S.; Lee, W.J. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour. Technol. 2015, 184, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.L.; Lee, C.M.; Chen, P.C. Utilization of the cyanobacteria Anabaena sp. CH1 in biological carbon dioxide mitigation processes. Bioresour. Technol. 2011, 102, 5400–5405. [Google Scholar] [CrossRef] [PubMed]
- Fulke, A.B.; Krishnamurthi, K.; Giripunje, M.D.; Devi, S.S.; Chakrabarti, T. Biosequestration of carbon dioxide, biomass, calorific value and biodiesel precursors production using a novel flask culture photobioreactor. Biomass Bioenergy 2015, 72, 136–142. [Google Scholar] [CrossRef]
- Corsten, M.; Ramírez, A.; Shen, L.; Koornneef, J.; Faaij, A. Environmental impact assessment of CCS chains —Lessons learned and limitations from LCA literature. Int. J. Greenh. Gas Control 2013, 13, 59–71. [Google Scholar] [CrossRef]
- Nykvist, B. Ten times more difficult: Quantifying the carbon capture and storage challenge. Energy Policy 2013, 55, 683–689. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Brossmann, B. Symbolic convergence and the hydrogen economy. Energy Policy 2010, 38, 1999–2012. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Ramana, M.V. Back to the future: Small modular reactors, nuclear fantasies, and symbolic convergence. Sci. Technol. Hum. Valus 2015, 40, 96–125. [Google Scholar] [CrossRef]
- Verdon, J.P. Significance for secure CO2 storage of earthquakes induced by fluid injection. Environ. Res. Lett. 2014, 9, 1–10. [Google Scholar] [CrossRef]
- Vesnic-Alujevic, L.; Breitegger, M.; Guimarães Pereira, A. What smart grids tell about innovation narratives in the European Union: Hopes, imaginaries and policy. Energy Res. Soc. Sci. 2016, 12, 16–26. [Google Scholar] [CrossRef]
- Lisjak, M.; Lee, A.Y.; Gardner, W.L. When a threat to the brand is a threat to the self: The importance of brand identification and implicit self-esteem in predicting defensiveness. Personal. Soc. Psychol. Bull. 2012, 38, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Little, M.G.; Jackson, R.B. Potential impacts of leakage from deep CO2 gas sequestration on overlying freshwater aquifers. Environ. Sci. Technol. 2010, 44, 9225–9232. [Google Scholar] [CrossRef] [PubMed]
- Hoggett, P. Government and the perverse social defence. Br. J. Psychiatry 2010, 26, 202–212. [Google Scholar] [CrossRef]
- Mondal, M.K.; Balsora, H.K.; Varshney, P. Progress and trends in CO2 capture/ separation technologies: A review. Energy 2012, 46, 431–441. [Google Scholar] [CrossRef]
- Rubin, E.S.; Chen, C.; Rao, A.B. Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 2007, 35, 4444–4454. [Google Scholar] [CrossRef]
- Cau, G.; Tola, V.; Deiana, P. Comparative performance assessment of USC and IGCC power plants integrated with CO2 capture systems. Fuel 2014, 116, 820–833. [Google Scholar] [CrossRef]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef] [Green Version]
- Scheffknecht, G.; Al-Makhadmeh, L.; Schnell, U.; Maier, J. Oxy-fuel coal combustion—A review of the current state-of-the-art. Int. J. Greenh. Gas Control 2011, 5, 16–35. [Google Scholar] [CrossRef]
- Kundu, P.K.; Chakma, A.; Feng, X. Effectiveness of membranes and hybrid membrane processes in comparison with absorption using amines for post combustion CO2 capture. Int. J. Greenh. Gas Control 2014, 28, 248–256. [Google Scholar] [CrossRef]
- Rehfeldt, S.; Kuhr, C.; Schiffer, F.P.; Weckes, P.; Bergins, C. First test results of oxyfuel combustion with Hitachi’s DST-burner at Vattenfall’s 30 MWth pilot plant at schwarze pumpe. Energy Procedia 2011, 4, 1002–1009. [Google Scholar] [CrossRef]
- Cormos, C.C.; Vatopoulos, K.; Tzimas, E. Assessment of the consumption of water and construction materials in state-of-the-art fossil fuel power generation technologies involving CO2 capture. Energy 2013, 51, 37–49. [Google Scholar] [CrossRef]
- De Visser, E.; Hendriks, C.; Barrio, M.; Mølnvik, M.J.; de Koeijer, G.; Liljemark, S. Dynamics CO2 quality recommendations. Int. J. Greenh. Gas Control 2008, 2, 478–484. [Google Scholar] [CrossRef]
- Skorek-Osikowska, A.; Bartela, L.; Kotowicz, J. A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units. Energy Convers. Manag. 2015, 92, 421–430. [Google Scholar] [CrossRef]
- Cormos, C.C. Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS). Energy 2012, 42, 434–445. [Google Scholar] [CrossRef]
- Roy, B.; Bhattacharya, S. Oxy-fuel fluidized bed combustion using Victorian brown coal: An experimental investigation. Fuel Process Technol. 2014, 117, 23–29. [Google Scholar] [CrossRef]
- Riaza, J.; Gil, M.V.; Álvarez, L.; Pevida, C.; Pis, J.J.; Rubiera, F. Oxy-fuel combustion of coal and biomass blends. Energy 2012, 41, 429–435. [Google Scholar] [CrossRef]
- Al-Abbas, A.H.; Naser, J.; Hussein, E.K. Numerical simulation of brown coal combustion in a 550 MW tangentially-fired furnace under different operating conditions. Fuel 2013, 107, 688–698. [Google Scholar] [CrossRef]
- Chaffee, A.L.; Knowles, G.P.; Liang, Z.; Zhang, J.; Xiao, P.; Webley, P.A. CO2 capture by adsorption: Materials and process development. Int. J. Greenh. Gas Control 2007, 1, 11–18. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14–27. [Google Scholar] [CrossRef]
- Othman, M.R.; Zakaria, M.R.; Fernando, W.J.N. Strategic planning on carbon capture from coal fired plants in Malaysia and Indonesia: A review. Energy Policy 2009, 37, 1718–1735. [Google Scholar] [CrossRef]
- Rivas, O.R.; Prausnitz, J.M. Sweetening of sour natural gases by mixed-solvent absorption: Solubilities of ethane, carbon dioxide, and hydrogen sulfide in mixtures of physical and chemical solvents. AIChE J. 1979, 25, 975–984. [Google Scholar] [CrossRef]
- Álvarez, L.; Yin, C.; Riaza, J.; Pevida, C.; Pis, J.J.; Rubiera, F. Biomass co-firing under oxyfuel conditions: A computational fluid dynamics modelling study and experimental validation. Fuel Process Technol. 2014, 120, 22–33. [Google Scholar] [CrossRef]
- Cormos, C.C. Evaluation of energy integration aspects for IGCC-based hydrogen and electricity co-production with carbon capture and storage. Int. J. Hydrog. Energy 2010, 35, 7485–7497. [Google Scholar] [CrossRef]
- Bade, M.H.; Bandyopadhyay, S. Analysis of gas turbine integrated cogeneration plant: Process integration approach. Appl. Therm. Eng. 2015, 78, 118–128. [Google Scholar] [CrossRef]
- Dinca, C.; Badea, A. The parameters optimization for a CFBC pilot plant experimental study of post-combustion CO2 capture by reactive absorption with MEA. Int. J. Greenh. Gas Control 2013, 12, 269–279. [Google Scholar] [CrossRef]
- Domenichini, R.; Arienti, S.; Cotone, P.; Santos, S. Evaluation and analysis of water usage and loss of power in plants with CO2 capture. Energy Procedia 2011, 4, 1925–1932. [Google Scholar] [CrossRef]
- Tola, V.; Pettinau, A. Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies. Appl. Energy 2014, 113, 1461–1474. [Google Scholar] [CrossRef]
- Oehlert, A.M.; Lamb-Wozniak, K.A.; Devlin, Q.B.; Mackenzie, G.J.; Reijmer, J.J.G.; Swart, P.K. The stable carbon isotopic composition of organic material in platform derived sediments: Implications for reconstructing the global carbon cycle. Sedimentology 2012, 59, 319–335. [Google Scholar] [CrossRef]
- Diaf, A.; Beckman, E. Thermally reversible polymeric sorbents for acid gases. III. CO2-Sorption enhancement in polymer-anchored amines. React. Funct. Polym. 1995, 27, 45–51. [Google Scholar] [CrossRef]
- Seckin, T.; Alici, B.; Çetinkaya, E.; Özdemir, I. Synthesis and characterization of N-substituted 1,4,5,6-tetrahydropyrimidine containing functional polymers as SO2 and CO2 sorbents. J. Polym. Sci. A Polym. Chem. 1997, 35, 2411–2420. [Google Scholar] [CrossRef]
- Schacht, U.; Jenkins, C. Soil gas monitoring of the Otway project demonstration site in SE Victoria, Australia. Int. J. Greenh. Gas Control 2014, 24, 14–29. [Google Scholar] [CrossRef]
- Beaubien, S.E.; Jones, D.G.; Gal, F.; Barkwith, A.K.A.P.; Braibant, G.; Baubron, J.C.; Ciotoli, G.; Graziani, S.; Lister, T.R.; Lombardi, S.; et al. Monitoring of near-surface gas geochemistry at the Weyburn, Canada, CO2-EOR site, 2001–2011. Int. J. Greenh. Gas Control 2013, 16, 236–240. [Google Scholar] [CrossRef]
- Maver, M. Barriers to Carbon Capture and Storage. Available online: http:/ehsjournal.org/marko-maver/barriers-to-carbon-capture-and-storage-ccs/2012/ (accessed on 5 June 2016).
- Zhang, C.; Zhou, D.; Li, P.; Li, F.; Zhang, Y.; Sun, Z.; Zhao, Z. CO2 storage potential of the Qiongdongnan Basin, north western South China Sea. Greenh. Gases Sci. Technol. 2014, 4, 1–16. [Google Scholar]
- Lee, M.Y.; Hashim, H. Modelling and optimization of CO2 abatement strategies. J. Clean. Prod. 2014, 71, 40–47. [Google Scholar] [CrossRef]
- Leion, H.; Jerndal, E.; Steenari, B.M.; Hermansson, S.; Israelsson, M.; Jansson, E.; Johnsson, M.; Thunberg, R.; Vadenbo, A.; Mattisson, T.; et al. Solid fuels in chemical-looping combustion using oxide scale and unprocessed iron ore as oxygen carriers. Fuel 2009, 88, 1945–1954. [Google Scholar] [CrossRef]
- Man, Y.; Yang, S.; Xiang, D.; Li, X.; Quian, Y. Environmental impact and techno economic analysis of the coal gasification process with/without CO2 capture. J. Clean. Prod. 2014, 71, 59–66. [Google Scholar] [CrossRef]
- Mores, P.; Rodríguez, N.; Scenna, N.; Mussati, S. CO2 capture in power plants: Minimization of the investment and operating cost of the post-combustion process using MEA aqueous solution. Int. J. Greenh. Gas Control 2012, 10, 148–163. [Google Scholar] [CrossRef]
Rank | Country | CO2 Emitted (Megatons) | Energy Produced (GWh) | Fossil Fuel Power (%) | Reference |
---|---|---|---|---|---|
1 | China | 3120 | 3,620,000 | 82.5 | [22] |
2 | USA | 2820 | 4,190,000 | 68.8 | [23] |
3 | India | 638 | 719,000 | 76.3 | [24] |
4 | Russia | 478 | 896,000 | 63.4 | [25] |
5 | Germany | 429 | 636,000 | 62.1 | [26] |
6 | Japan | 414 | 1,030,000 | 33.2 | [27] |
7 | U.K. | 227 | 370,000 | 71.4 | [28] |
8 | Australia | 224 | 228,000 | 90.1 | [29] |
9 | South Africa | 218 | 215,000 | 93.4 | [30] |
10 | South Korea | 192 | 392,000 | 44.3 | [31] |
Source of Likely Capturable CO2 | Amount of CO2 (Mt/a) | Source of Unlikely to Be Capturable | Amount of CO2 (Mt/a) |
---|---|---|---|
Electricity generation | 137 | Municipal wastes | 9 |
Process industries | 24 | Agricultural wastes | 41 |
Other energy production companies | 26 | Other wastes | 36 |
Manufacturing companies | 26 | Thermal energy production | 32 |
Total capturable CO2 | 213 | Total uncapturable CO2 | 118 |
Total capturable and uncapturable CO2 | 331 | ||
Percentage capturable CO2 | 64.40% | ||
Percentage uncapturable CO2 | 35.60% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoro, K.O.; Sekoai, P.T. The Potential of CO2 Capture and Storage Technology in South Africa’s Coal-Fired Thermal Power Plants. Environments 2016, 3, 24. https://doi.org/10.3390/environments3030024
Yoro KO, Sekoai PT. The Potential of CO2 Capture and Storage Technology in South Africa’s Coal-Fired Thermal Power Plants. Environments. 2016; 3(3):24. https://doi.org/10.3390/environments3030024
Chicago/Turabian StyleYoro, Kelvin O., and Patrick T. Sekoai. 2016. "The Potential of CO2 Capture and Storage Technology in South Africa’s Coal-Fired Thermal Power Plants" Environments 3, no. 3: 24. https://doi.org/10.3390/environments3030024
APA StyleYoro, K. O., & Sekoai, P. T. (2016). The Potential of CO2 Capture and Storage Technology in South Africa’s Coal-Fired Thermal Power Plants. Environments, 3(3), 24. https://doi.org/10.3390/environments3030024