Negative Reagent Ions for Real Time Detection Using SIFT-MS
Abstract
:1. Introduction
2. Experimental Method
2.1. Nitrogen Carrier Gas
2.2. Negative Reagent Ions
2.3. Chemicals
3. Results and Discussion
3.1. Reactions with Fumigants
3.2. Other Fumigants
3.3. Acid Gases
3.4. Other Negatively Charged Reagent Ions
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Watson, J.J.; Sparkman, O.D. Introduction to Mass Spectrometry, 4th Ed. ed; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar]
- McEwan, M.J. Direct analysis mass spectrometry. In Ion/Molecule Attachment Reactions; Fujii, T., Ed.; Springer Science & Business Media: New York, NY, USA, 2015. [Google Scholar]
- Spanel, P.; Smith, D. Selected ion flow tube: A technique for quantitative trace gas analysis of air and breath. Med. Biol. Eng. Comput. 1996, 34, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Spanel, P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spec. Rev. 2005, 24, 661–700. [Google Scholar] [CrossRef] [PubMed]
- Spanel, P.; Smith, D. Progress in SIFT-MS: Breath analysis and other applications. Mass Spectrom. Rev. 2011, 30, 236–267. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Spanel, P.; Herbig, J.; Beauchamp, J. Mass Spectrometry for real time quantitative breath analysis. J. Breath Res. 2014, 8, 027101. [Google Scholar] [CrossRef] [PubMed]
- Storer, M.; Curry, K.; Squire, M.; Kingham, S.; Epton, M. Breath testing and personal exposure—SIFT-MS detection of breath acetonitrile for exposure monitoring. J. Breath Res. 2015, 9, 036006. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Spanel, P.; Smith, D. A longitudinal study of breath isoprene in healthy volunteers using selected ion flow tube mass spectrometry (SIFT-MS). Physiol. Meas. 2006, 27, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Pysanenko, A.; Spanel, P.; Smith, D. A study of sulfur-containing compounds in mouth-and nose-exhaled breath and in the oral cavity using selected ion flow tube mass spectrometry. J. Breath Res. 2008, 2, 046004. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Huang, J.; Hanna, G.B. SIFT-MS analysis of headspace vapour from gastric content for the diagnosis of gastro-oesophageal cancer. Br. J. Surg. 2013, 100, S4. [Google Scholar]
- Zeft, A.; Costanzo, D.; Alkhouri, N.; Patel, N.; Grove, D.; Spalding, S.J.; Dweik, R. Metabolomic analysis of breath volatile organic compounds reveals unique breathprints in children with juvenile idiopathic arthritis. Arthritis Rheumatol. 2014, 66, S159. [Google Scholar] [CrossRef]
- Alkhouri, N.; Eng, K.; Cikach, F.; Patel, N.; Yan, C.; Brindle, A.; Rome, E.; Hanouneh, I.; Grove, D.; Lopez, R.; et al. Breathprints of childhood obesity: Changes in volatile organic compounds in obese children compared with lean controls. Pediatri. Obes. 2015, 10, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Alkhouri, N.; Eng, K.; Cikach, F.; Mahajan, L.; Yan, C.; Grove, D.; Rome, E.S.; Lopez, R.; Dweik, R.A. Metabolomic analysis of breath volatile organic compounds reveal unique breathprints in children with inflammatory bowel disease: A pilot study. Aliment. Pharmacol. Ther. 2014, 40, 498–506. [Google Scholar] [PubMed]
- Boshier, P.R.; Mistry, V.; Cushnir, J.R.; Kon, O.M.; Elkin, S.L.; Curtis, S.; Marczin, N.; Hanna, G.B. Breath metabolite response to major upper gastrointestinal surgery. J. Surg. Res. 2015, 193, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, U.; Parsi, M.A.; Lourdusamy, V.; Bhatt, A.; Gutierrez, N.G.; Grove, D.; Sanaka, M.R.; Hammel, J.P.; Stevens, T.; Vargo, J.J. Volatile organic compounds in bile for early diagnosis of cholangiocarcinoma in patients with primary sclerosing cholangitis: A pilot study. Gastrointest. Endosc. 2015, 81, 943. [Google Scholar] [CrossRef] [PubMed]
- Michalcikova, R.; Dryahina, K.; Spanel, P. SIFT-MS quantification of several breath biomarkers of inflammatory bowel disease, IBD: A detailed study of the ion chemistry. Int. J. Mass Spectrom. 2016, 396, 35–41. [Google Scholar] [CrossRef]
- Langford, V.S.; Gray, J.D.C.; Maclagan, R.G.A.R.; McEwan, M.J. Detection of siloxanes in landfill gas and biogas using SIFT-MS. Curr. Anal. Chem. 2013, 9, 558–565. [Google Scholar] [CrossRef]
- Prince, B.J.; Milligan, D.B.; McEwan, M.J. Application of selected ion flow tube mass spectrometry to real-time atmospheric monitoring. Rapid Commun. Mass Spectrom. 2010, 24, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Hastie, D.R.; Gray, J.; Langford, V.S.; Maclagan, R.G.A.R.; Milligan, D.B.; McEwan, M.J. Real-time measurement of peroxyacetal nitrate using SIFT-MS. Rapid Commun. Mass Spectrom. 2010, 24, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Volckaert, D.; Ebude, D.E.L.; Van Langenhove, H. SIFT-MS analysis of the removal of dimethyl sulphide, n-hexanone and toluene from waste air by a two phase partitioning bioreactor. Chem. Eng. J. 2016, 290, 346–352. [Google Scholar] [CrossRef]
- Van Huffel, K.; Heynderickx, P.M.; Dewulf, J.; Van Langenhove, H. Measurement of odorants in livestock buildings: SIFT-MS and GC-MS. Chem. Eng. Trans. 2012, 30, 67–72. [Google Scholar]
- Sovova, K.; Shestivska, V.; Spanel, P. Real-time quantification of traces of biogenic volatiles selenium compounds is humid air by SIFT-MS. Anal. Chem. 2012, 84, 4979–4983. [Google Scholar] [CrossRef] [PubMed]
- Volckaert, D.; Heynderickx, P.M.; Fathi, E.; Van Langenhove, H. SIFT-MS: A novel tool for monitoring and evaluating a biofilter performance. Chem. Eng. J. 2016, 304, 98–105. [Google Scholar] [CrossRef]
- Romanias, M.N.; Ourrad, H.; Thevenet, F.; Riffault, V. Investigating the heterogeneous interaction of VOCs with natural atmospheric particles: Adsorption of limonene and toluene on Saharan mineral dust. J. Phys. Chem. A 2016, 120, 1197–1212. [Google Scholar] [CrossRef] [PubMed]
- Storer, M.; Salmond, J.; Dirks, K.N.; Kingham, S.; Epton, M. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study. J. Breath Res. 2014, 8, 037106. [Google Scholar] [CrossRef] [PubMed]
- Francis, G.J.; Langford, V.S.; Milligan, D.B.; McEwan, M.J. Real time monitoring of hazardous air pollutants. Anal. Chem. 2009, 81, 1595–1599. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Barringer, S. Effect of temperature on lipid-related volatile production in tomato puree. J. Agric. Food Chem. 2009, 57, 9108–9133. [Google Scholar] [CrossRef] [PubMed]
- Hansanugram, A.; Barringer, S.A. Effect of milk on the deodorization of malodorous breath after garlic ingestion. J. Food Sci. 2010, 75, C549–C558. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Barringer, S.A. Alkyl pyrazines and other volatiles in cocoa liquors at pH 5 to 8 by SIFT-MS. J. Food Sci. 2010, 75, C121–C127. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.M.; Senthilmohan, S.T.; McEwan, M.J. Direct determination of antioxidants in whole olive oil using the SIFT-MS-TOSC assay. J. Am. Oil Chem. Soc. 2011, 88, 785–792. [Google Scholar] [CrossRef]
- Huang, Y.; Barringer, S.A. Monitoring cocoa volatiles produced during roasting by SIFT-MS. J. Food Sci. 2011, 76, C279–C286. [Google Scholar] [CrossRef] [PubMed]
- Langford, V.S.; Reed, C.J.; Milligan, D.B.; McEwan, M.J.; Barringer, S.A.; Harper, J. Headspace analysis of Italian and New Zealand Parmesan Cheese. J. Food Sci. 2012, 77, C719–C726. [Google Scholar] [CrossRef] [PubMed]
- Noseda, B.; Islam, M.T.; Eriksson, M.; Heyndrickx, M.; De Reu, K.; Van Langenhove, H.; Devlieghere, F. Microbiological spoilage of vacuum and modified packaged Vietnamese Pangasius hypophthalmus fillets. Food Microbiol. 2012, 30, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Langford, V.S.; Gray, J.; Foulkes, B.; Bray, P.; McEwan, M.J. Application of SIFT-MS to the characterization of monofloral New Zealand honeys. J. Agric. Food Chem. 2012, 60, 6806–6815. [Google Scholar] [CrossRef] [PubMed]
- Munch, R.; Barringer, S.A. Deodorization of garlic breath volatiles by food and food components. J. Food Sci. 2014, 79, C526–C533. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Barringer, S.A. Kinetics of furan formation during pasteurization of soy source. LWT Food Sci. Technol. 2016, 67, 200–205. [Google Scholar]
- Castada, H.Z.; Wick, C.; Harper, J.W.; Barringer, S. Headspace quantification of pure and aqueous solutions of binary mixtures of key volatile organic compounds in Swiss cheese using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Langford, V.S.; Graves, I.; McEwan, M.J. Rapid monitoring of volatile organic compounds: A comparison between GC/MS and SIFT-MS. Rapid Commun. Mass Spectrom. 2014, 28, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Milligan, D.B.; Fairley, D.A.; Freeman, C.G.; McEwan, M.J. A flowing afterglow selected ion flow tube (FA/SIFT) comparison of SIFT injector flanges and H3+ + N revisited. Int. J. Mass Spectrom. 2000, 202, 351–361. [Google Scholar] [CrossRef]
- Milligan, D.B.; Francis, G.J.; Prince, B.J.; McEwan, M.J. Demonstration of SIFT-MS in the parts per trillion range. Anal. Chem. 2007, 79, 2537–2540. [Google Scholar] [CrossRef] [PubMed]
- Spanel, P.; Dryahina, K.; Smith, D. Microwave plasma ion sources for selected ion flow tube mass spectrometry: Optimizing their performance and detection limits for trace detection. Int. J. Mass Spectrom. 2007, 267, 117–124. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Meywer, L.A. (Eds.) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In IPCC 2014 Climate Change: Synthesis Report; IPCC: Geneva, Switzerland, 2014.
- Fehsenfeld, F.C.; Ferguson, E.E. Laboratory studies of negative ion reactions with atmospheric trace constituents. J. Chem. Phys. 1974, 61, 3181–3193. [Google Scholar] [CrossRef]
- Dotan, I.; Davidson, J.A.; Streit, G.E.; Albritton, D.L.; Fehsenfeld, F.C. A study of the reaction of O3− + CO2 and its implications on the thermochemistry of CO3 and O3 and their negative ions. J. Chem. Phys. 1977, 67, 2874–2879. [Google Scholar] [CrossRef]
- Fahey, D.W.; Bohringer, H.; Fehsenfeld, F.C.; Ferguson, E.E. Reaction rate constants for O2−(H2O)n ions n = 0–4 with O3, NO, SO2 and CO2. J. Chem. Phys. 1982, 76, 1799–1805. [Google Scholar] [CrossRef]
- Bohme, D.K. The kinetics and energetics of proton transfer reactions. In Interactions between Ions and Molecules; Plenum Press: New York, NY, USA, 1975; p. 489. [Google Scholar]
- Tanaka, K.; Mackay, G.I.; Payzant, J.D.; Bohme, D.K. Gas phase reactions of anions with halogenated methanes 297 ± 2K. Can. J. Chem. 1976, 54, 1643–1659. [Google Scholar] [CrossRef]
- Mayhew, C.A.; Peverall, R.; Watts, P. Gas phase ionic reactions of freons and related compounds: Reactions of some halogenated methanes with O− and O2−. Int. J. Mass Spectrom. Ion Proc. 1993, 125, 81–93. [Google Scholar] [CrossRef]
- Thomas, R.; Liu, Y.; Mayhew, C.A.; Peverall, R. Selected ion flow tube studies of the gas pahse reactions of O−, O2− and OH− with a variety of brominated compounds. Int. J. Mass Spectrom. Ion Proc. 1996, 155, 163–183. [Google Scholar] [CrossRef]
- Raksit, A.B.; Bohme, D.K. An experimental study of the influence of hydration on the reactivity of the hydroxide anion in the gas phase at room temperature. Can. J. Chem. 1983, 61, 1683–1689. [Google Scholar] [CrossRef]
- McDonald, R.N.; Chowdhury, A.K. Gas phase ion-molecule reactions of dioxygen anion radical (O2−). J. Am. Chem. Soc. 1985, 107, 4123–4128. [Google Scholar] [CrossRef]
- Hamilton, C.E.; Duncan, M.A.; Zwier, T.S.; Weisshaar, J.V.; Ellison, G.B.; Bierbaum, V.M.; Leone, S.R. Product vibrational analysis of ion molecule reactions by laser induced fluorescence in a flowing afterglow. O− + HF → OH− (v = 0.1) + F−. Chem. Phys. Lett. 1983, 94, 4–9. [Google Scholar] [CrossRef]
- Streit, G.E. Gas phase reactions of O− and O2− with a variety of halogenated compounds. J. Phys. Chem. 1982, 86, 2321–2324. [Google Scholar] [CrossRef]
- Lindinger, W.; Albritton, D.L.; Fehsenfeld, F.C.; Ferguson, E.E. Reactions of O− with N2, N2O, SO2, NH3, CH4 and C2H4 and C2H2− with O2 from 300K to relative kinetic energies of ~2 eV. J. Chem. Phys. 1975, 63, 3238–3242. [Google Scholar] [CrossRef]
- Arnold, S.T.; Morris, R.A.; Viggiano, A.A.; Jayne, J.T. Ion chemistry relevant for chemical detection of SO3. J. Geophys. Res. 1995, 100, 14141–14146. [Google Scholar] [CrossRef]
- Ikezoe, Y.; Viggiano, A. Gas Phase Ion-Molecule Reaction Rate Constants through 1986; Ion Reaction Research Group of the Mass Spectrometry Society of Japan: Tokyo, Japan, 1987. [Google Scholar]
- Hierl, P.M.; Ahrens, A.F.; Henchman, M.; Viggiano, A.A.; Paulson, J.F. Proton transfer as a function of hydration number and temperature: Rate constants and product distributions for OH−(H2O)0–3 + HF at 200K–500K. J. Am. Chem. Soc. 1986, 108, 3140–3142. [Google Scholar] [CrossRef]
- Tanner, S.D.; Mackay, G.I.; Bohme, D.K. An experimental study of the reactivity of the hydroxide anion in the gas phase at room temperature and its perturbation by hydration. Can. J. Chem. 1981, 59, 1615–1621. [Google Scholar] [CrossRef]
- Ferguson, E.E.; Dunkin, D.B.; Fehsenfeld, F.C. Reactions of NO2− and NO3− with HCl and HBr. J. Chem. Phys. 1972, 57, 1459–1463. [Google Scholar] [CrossRef]
Fumigant | Ion Product | Branching Ratio | Rate Coefficient/cm3·s−1 |
---|---|---|---|
Chloropicrin | CCl2NO2− | 1.0 | ~1.6 × 10−9 |
Hydrogen cyanide | CN− | ~0.9 | 3.7 × 10−9 a |
CNO− | ~0.1 | ||
Methyl chloride | OH− | 0.45 | 1.7 × 10−9 b,c |
Cl− | 0.40 | ||
CClH− | 0.15 | ||
Phosphine | PH2− | 0.6 | ~5.0 × 10−10 |
PH2O− | 0.4 | ||
Dibromoethane | Br− | 1.0 | 2.2 × 10−9 d |
Fumigant | Ion Product | Branching Ratio | Rate Coefficient/cm3·s−1 |
---|---|---|---|
Chloropicrin | CCl2NO2− | 1.0 | ~1.5 × 10−9 |
Hydrogen cyanide | CN− | 1.0 | 3.5 × 10−9 a |
Methyl chloride | Cl− | 1.0 | 1.5 × 10−9 b |
Phosphine | PH2− | 1.0 | ~1.0 × 10−9 |
Dibromoethane | Br− | 1.0 | 2.2 × 10−9 c |
Fumigant | Ion Product | Branching Ratio | Rate Coefficient/cm3·s−1 |
---|---|---|---|
Chloropicrin | no reaction | ||
Hydrogen cyanide | CN− | 1.0 | ~3.5 × 10−9 |
Methyl chloride | Cl− | 1.0 | 7.4 × 10−10 a,b |
Phosphine | no reaction | ||
Dibromoethane | Br− | 1.0 | 1.9 × 10−9 b |
Acid Gas | Ion Product | Branching Ratio | Rate Coefficient/cm3·s−1 |
---|---|---|---|
Hydrogen fluoride | F− | 1.0 | 5.0 × 10−10 a |
Hydrogen chloride | Cl− | ~0.95 | 1.3 × 10−9 b |
Sufur dioxide | mainly electron detachment | 2.1 × 10−9 c | |
Sulfur trioxide | SO3− | 0.87 | 1.8 × 10−9 d |
SO2− | 0.13 | ||
Hydrogen sulfide | SH− | 1.0 | ~2.5 × 10−10 |
Nitrogen dioxide | NO2− | 1.0 | 1.0 × 10−9 e |
Acid Gas | Ion Product | Branching Ratio | Rate Coefficient/cm3·s−1 |
---|---|---|---|
Hydrogen fluoride | F− | ~1.0 | 2.75 × 10−9 a |
Hydrogen chloride | Cl− | 1.0 | ~1.3 × 10−9 |
Sufur dioxide | OH− SO2 | 1.0 | 1.0 × 10−26 b |
Sulfur trioxide | SO3− | 1.0 | 1.6 × 10−9 c |
Hydrogen sulfide | SH− | 1.0 | ~7 × 10−10 |
Nitrogen dioxide | NO2− | 1.0 | 1.1 × 10−9 d |
Acid Gas | Ion Product | Branching Ratio | Rate Coefficient/cm3·s−1 |
---|---|---|---|
Hydrogen fluoride | F− | ~1.0 | Not measured |
Hydrogen chloride | Cl− | ~1.0 | 1.2 × 10−9 a |
Sufur dioxide | SO2− | 1.0 | 1.9 × 10−9 b |
Sulfur trioxide | SO3− | 1.0 | 1.5 × 10−9 c |
Hydrogen sulfide | SH− | 1.0 | ~1.3 × 10−9 |
Nitrogen dioxide | NO2− | 1.0 | 7.0 × 10−10 d |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hera, D.; Langford, V.S.; McEwan, M.J.; McKellar, T.I.; Milligan, D.B. Negative Reagent Ions for Real Time Detection Using SIFT-MS. Environments 2017, 4, 16. https://doi.org/10.3390/environments4010016
Hera D, Langford VS, McEwan MJ, McKellar TI, Milligan DB. Negative Reagent Ions for Real Time Detection Using SIFT-MS. Environments. 2017; 4(1):16. https://doi.org/10.3390/environments4010016
Chicago/Turabian StyleHera, David, Vaughan S. Langford, Murray J. McEwan, Thomas I. McKellar, and Daniel B. Milligan. 2017. "Negative Reagent Ions for Real Time Detection Using SIFT-MS" Environments 4, no. 1: 16. https://doi.org/10.3390/environments4010016
APA StyleHera, D., Langford, V. S., McEwan, M. J., McKellar, T. I., & Milligan, D. B. (2017). Negative Reagent Ions for Real Time Detection Using SIFT-MS. Environments, 4(1), 16. https://doi.org/10.3390/environments4010016