Which Ballast Water Management System Will You Put Aboard? Remnant Anxieties: A Mini-Review
Abstract
:1. Introduction
2. Regulations and Challenges
3. Remnant Anxieties Related to Two Main Technologies
3.1. Using UV Irradiation
3.2. Using Electrolytic Disinfection
4. Using Biocides as Active Substances
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bailey, S. An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments. Aquat. Ecosyst. Health 2015, 18, 261–268. [Google Scholar]
- Ruiz, G.M.; Fofonoff, P.W.; Steves, B.P.; Carlton, J.T. Invasion history and vector dynamics in coastal marine ecosystems: A North American perspective. Aquat. Ecosyst. Health 2015, 18, 299–311. [Google Scholar]
- Carney, K.J.; Minton, M.S.; Holzer, K.K.; Miller, A.W.; McCann, L.D.; Ruiz, G.M. Evaluating the combined effects of ballast water management and trade dynamics on transfers of marine organisms by ships. PLoS ONE 2017, 12, e0172468. [Google Scholar] [CrossRef] [PubMed]
- Davidson, I.C.; Minton, M.S.; Carney, K.J.; Miller, A.W.; Ruiz, G.M. Pioneering patterns of ballast treatment in the emerging era of marine vector management. Mar. Policy 2017, 78, 158–162. [Google Scholar] [CrossRef]
- International Maritime Organization (IMO). International Convention for the Control and Management of Ships’ Ballast Water and Sediments; International Maritime Organization (IMO): London, UK, 13 February 2004. [Google Scholar]
- International Maritime Organization (IMO). International Convention for the Control and Management of Ships’ Ballast Water and Sediments; International Maritime Organization (IMO): London, UK, 8 September 2016. [Google Scholar]
- Balaji, R.; Yaakob, O.; Koh, K.K. A review of developments in ballast water management. Environ. Rev. 2014, 22, 298–310. [Google Scholar] [CrossRef]
- David, M.; Gollasch, S. Vessels and ballast water. In Global Maritime Transport and Ballast Water Management (Invading Nature Springer Series in Invasion Ecology); Springer: Berlin, Germany, 2015; pp. 13–34. [Google Scholar]
- United States Coast Guard (USCG). Standards for Living Organisms in Ships’ Ballast Water Discharged in U.S. Waters. Available online: http://www.worldshipping.org/industry-issues/environment/vessel-discharges/USCG_BW_Final_Rule.pdf (accessed on 23 May 2016).
- United States Code of Federal Regulations (CFR). CFR Part 151, Subpart D—Ballast Water Management for Control of Nonindigenous Species in Waters of the United States. Available online: https://www.law.cornell.edu/cfr/text/33/part-151 (accessed on 31 July 2017).
- National Research Council (NRC). Assessing the Relationship between Propagule Pressure and Invasion Risk in Ballast Water; National Academy of Sciences: Washington, DC, USA, 2011; p. 156. ISBN 978-0-309-21562-6. [Google Scholar]
- International Maritime Organization (IMO). Guidelines for Approval of Ballast Water Management Systems (G8). Available online: http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Marine-Environment-Protection-Committee%28MEPC%29/Documents/MEPC.174%2858%29.pdf (accessed on 31 July 2017).
- United States Environmental Protection Agency (USEPA). Generic Protocol for the Verification of Ballast Water Treatment Technology; USEPA: Washington, DC, USA, 2010.
- Stubbs, J.T. Ballast water treatment: Urgent practical results needed. In Proceedings of the 6th GEF-UNDP-IMO GloBallast R&D Forum and Exhibition on Ballast Water Management Ballast Water Management Convention: Moving towards Implementation, Montreal, QC, Canada, 16–18 March 2016; pp. 35–37. [Google Scholar]
- United States Code of Federal Regulations (CFR). 46 CFR Part 162, Subpart 162.060—Ballast Water Management Systems. Available online: https://www.law.cornell.edu/cfr/text/46/part-162/subpart-162.060 (accessed on 31 July 2017).
- Linders, G. The GESAMP-BWWG methodology: A living document. In Proceedings of the 6th GEF-UNDP-IMO GloBallast R&D Forum and Exhibition on Ballast Water Management Ballast Water Management Convention: Moving towards Implementation, Montreal, QC, Canada, 16–18 March 2016; pp. 43–45. [Google Scholar]
- National Research Council (NRC). Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ship’s Ballast Water; National Academies Press: Washington, DC, USA, 1996; p. 160. ISBN 0-309-58932-0. [Google Scholar]
- Bakalar, G. Comparisons of interdisciplinary ballast water treatment systems and operational experiences from ships. SprigerPlus 2016, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- International Maritime Organization (IMO). Harmful Aquatic Organisms in Ballast Water. Available online: https://docs.imo.org/Search.aspx?keywords=%22MEPC%2069%2F4%2F4%22 (accessed on 31 July 2016).
- United States Coast Guard (USCG). Practicability Review: Standards For Living Organisms in Ship’s Ballast Water Discharged in the United States Waters. Available online: http://mariners.coastguard.dodlive.mil/2016/05/11/5112016-practicability-review-standards-for-living-organisms-in-ships-ballast-water-discharged-in-u-s-waters/ (accessed on 31 July 2016).
- United States Coast Guard (USCG). Marine Safety Information Bulletin Nr 14. Available online: https://www.uscg.mil/msib/docs/014_16_12-2-2016.PDF (accessed on 31 January 2017).
- California Legislative Information (CLI). Assembly Bill No. 1312. CHAPTER 644. 2015. Available online: http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160AB1312 (accessed on 22 July 2016).
- Cohen, A.N.; Dobbs, F.C.; Chapman, P.M. Revisiting the basis for US ballast water regulations. Mar. Pollut. Bull. 2017, 118, 348–353. [Google Scholar] [CrossRef] [PubMed]
- CLASSNK Nippon Kaiji Kyukai (Japan). Latest Information of Approval of BWMS. Available online: https://www.classnk.or.jp/hp/pdf/activities/statutory/ballastwater/approval_ballast_e.pdf (accessed on 28 July 2016).
- Lloyd’s Register Group. Available Ballast Water Treatment Systems. Available online: http://www.lr.org/en/services/environment-and-sustainability/ballastwatermanagement.aspx (accessed on 28 June 2016).
- United States Environmental Protection Agency (USEPA). Ultraviolet Disinfection Guidance Manual for the Final Long Term 2 Enhanced Surface Water Treatment Rule; USEPA: Washington, DC, USA, 2006.
- Culin, J.; Mustac, B. Environmental risks associated with ballast water management systems that create disinfection by-products (DBPs). Ocean. Coast. Manag. 2015, 105, 100–105. [Google Scholar] [CrossRef]
- Werschkun, B.; Banerji, S.; Basurko, O.C.; David, M.; Fuhr, F.; Gollasch, S.; Grummt, T.; Haarich, M.; Jha, A.N.; Kacan, S.; et al. Emerging risks from ballast water treatment: The run-up to the international ballast water management convention. Chemosphere 2014, 112, 256–266. [Google Scholar] [CrossRef] [PubMed]
- First, M.R.; Drake, L.A. Life after treatment: Detecting living microorganisms following exposition to UV light and chlorine dioxide. J. Appl. Phycol. 2014, 26, 227–235. [Google Scholar] [CrossRef]
- First, M.R.; Drake, L.A. Approaches for determining the effects of UV radiation on microorganisms in ballast water. Manag. Biol. Invasions 2013, 4, 87–99. [Google Scholar] [CrossRef]
- First, M.R.; Wamsley, S.H.R.; Riley, S.C.; Drake, L.A. Towards minimizing transport of aquatic nuisance species in ballast water: Do organisms in different size classes respond uniformly to biocidal treatment? Biol. Invasions 2016, 18, 647–660. [Google Scholar] [CrossRef]
- Martinez, L.R.; Andres, J.M.; Merino, A.A.; Nebot, E. Evaluation of ultraviolet disinfection of microalgae by growth modeling: Application to ballast water treatment. J. Appl. Phycol. 2016, 28, 2831–2842. [Google Scholar] [CrossRef]
- Grob, C.; Pollet, B.G. Regrowth in ship’s ballast water tanks: Think again! Mar. Pollut. Bull. 2016, 109, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Liebich, V.; Stehouwer, P.; Veldhuis, M. Re-growth of potential invasive phytoplankton following UV-based ballast water treatment. Aquat. Invasions 2012, 7, 29–36. [Google Scholar] [CrossRef]
- Ellegaard, M.; Lenau, T.; Lundholm, N.; Maibohm, C.; Friis, S.M.M.; Rottwitt, K.; Su, Y. The fascinating diatom frustule—Can it play a role for attenuation of UV radiation? J. Appl. Phycol. 2016, 28, 3295–3306. [Google Scholar] [CrossRef]
- Davey, H.M. Life, Death, and In-Between: Meanings and Methods in Microbiology. Appl. Environ. Microb. 2011, 77, 5571–5576. [Google Scholar] [CrossRef] [PubMed]
- Zetsche, E.M.; Meysman, F.J.R. Dead or alive? Viability assessment of micro and mesoplankton. J. Plankton Res. 2012, 34, 493–509. [Google Scholar] [CrossRef]
- Cangelosi, G.A.; Meschke, J.S. Dead or Alive: Molecular Assessment of Microbial Viability. Appl. Environ. Microb. 2014, 80, 5884–5891. [Google Scholar] [CrossRef] [PubMed]
- United States Coast Guard (USCG). The Facts about the MPN Method. Available online: http://mariners.coastguard.dodlive.mil/2015/12/14/12142015-coast-guard-decision-on-use-of-most-probable-number-method (accessed on 20 July 2016).
- National Research Council (NRC). Disinfectants and Disinfectant By-Products; National Academy of Sciences: Washington, DC, USA, 1987; p. 212. ISBN 0-309-55504-3. [Google Scholar]
- Kim, E.C.; Oh, J.H.; Lee, S.G. Consideration on the maximum allowable dosage of active substance produced by ballast wter management system using electrolysis. J. e-Navig. Marit. Econ. 2016, 4, 88–96. [Google Scholar]
- Halevy, I.; Bachan, A. The geologic history of seawater pH. Science 2017, 355, 1069–1071. [Google Scholar] [CrossRef] [PubMed]
- Kelsall, G.H. Hypochlorite electro-generation. I. A parametric study of a parallel plate electrode cell. J. Appl. Electrochem. 1984, 14, 177–186. [Google Scholar] [CrossRef]
- Krstajic, N. Hypochlorite production II. Direct electrolysis in a cell divided by anionic membrane. J. Appl. Electrochem. 1991, 21, 637–641. [Google Scholar] [CrossRef]
- Cha, H.G.; Seo, M.H.; Lee, H.Y.; Lee, J.Y.; Lee, D.S.; Shin, K.; Choi, K.Y. Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide. Mar. Pollut. Bull. 2015, 95, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, C.; Yoon, J. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Res. 2009, 43, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Lacasa, E.; Tsolaki, E.; Sbokou, Z.; Rodrigo, M.A.; Mantzavinos, D.; Diamadopoulos, E. Electrochemical disinfection of simulated ballast water on conductive diamond electrodes. Chem. Eng. J. 2013, 223, 516–523. [Google Scholar] [CrossRef]
- Morris, J.C. The acid ionization constant of HOCl from 5° to 35°. J. Phys. Chem. 1966, 70, 3798–3805. [Google Scholar] [CrossRef]
- Delacroix, S.; Vogelsang, C.; Tobiesen, A.; Liltved, H. Disinfection by-products and ecotoxicity of ballast water after oxidative treatment. Results and experiences from seven years of full-scale testing of ballast water management systems. Mar. Pollut. Bull. 2013, 73, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonsior, M.; Mitchelmore, C.; Heyes, A.; Harir, M.; Richardson, S.D.; Petty, W.T.; Wright, D.A.; Kopplin, P.S. Bromination of marine dissolved organic matter following full scale electrochemical ballast water disinfection. Environ. Sci. Technol. 2015, 49, 9048–9055. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Dang, K.; Chi, H.; Guan, D. Corrosion of marine carbon steel by electrochemically treated ballast water. J. Mar. Eng. Technol. 2009, 8, 49–55. [Google Scholar] [CrossRef]
- United States Coast Guard (USCG). Ballast Water Treatment Corrosion Scoping Study. Available online: http://www.dtic.mil/docs/citations/ADA613422 (accessed on 15 August 2016).
- Baere, K.D.; Verstraelen, H.; Rigo, P.; Passel, S.V.; Lenaerts, S.; Potters, G. Study on alternative approaches to corrosion protection of ballast tanks using an economic model. Mar. Struct. 2013, 32, 1–17. [Google Scholar] [CrossRef]
- Kahkonen, E.; Nordstrom, K. Toward a nontoxic poison: Current trends in (European Union) biocides regulation. Integr. Environ. Assess. Manag. 2008, 4, 471–477. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EU) No 528/2012 of the European Parliament and of the Council. Concerning the Making Available on the Market and Use of Biocidal Products. Available online: https://www.echa.europa.eu/documents/10162/17158507/consolidated_bpr_en.pdf (accessed on 27 July 2017).
- International Maritime Organization (IMO). Procedure for Approval of Ballast Water Management Systems that Make Use of Active Substances (G9). Available online: http://www.imo.org/blast/blastDataHelper.asp?data_id=22479&filename=169%2857%29.pdf (accessed on 1 August 2017).
- United States Coast Guard (USCG). Evaluation of Biocides for Potential Treatment of Ballast Water. Available online: http://www.dtic.mil/dtic/tr/fulltext/u2/a429663.pdf (accessed on 1 August 2017).
- International Maritime Organization (IMO). List of Ballast Water Management Systems that Make Use of Active Substances Which Received Basic and Final Approval. Available online: http://www.imo.org/en/OurWork/Environment/BallastWaterManagement/Documents/BWM.2-CIRC.34-REV.4.pdf (accessed on 1 August 2017).
- Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 2002, 35, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Ullah, S.; Ahmad, I.; Qureshi, A.K.; Balkhairf, K.S.; Rehmang, M.A. Green biocides, a promising technology: Current and future applications to industry and industrial processes. J. Sci. Food Agric. 2014, 94, 388–403. [Google Scholar] [CrossRef] [PubMed]
- Galindo, C.L.; Garrido, M.C.; Casanueva, J.F.; Nebot, H. Degradation models and ecotoxicity in marine waters of two antifouling compounds: Sodium hypochlorite and an alkylamine surfactant. Sci. Total Environ. 2010, 408, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- Gregg, M.D.; Hallegraeff, G.M. Efficacy of three commercially available ballast water biocides against vegetative microalgae, dinoflagellate cysts and bacteria. Harmful Algae 2007, 6, 567–584. [Google Scholar] [CrossRef]
- Arehmouch, L.; Ghillebaert, F.; Chaillou, C.; Roubaud, P. Lethal effects of Mexel 432 an antifouling agent on embryolarval development of Common Carp (Cyprinus carpio L.). Ecotoxicol. Environ. Saf. 1999, 42, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Coulon, I.D.; Bordenave, S.A.; Doumenc, D.; Khalanski, M. Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell cultures. Toxicol. In Vitro 2000, 14, 245–251. [Google Scholar] [CrossRef]
- Wright, D.A.; Dawson, R.; Orano-Dwason, C.E. Shipboards trials of menadione as a ballast water treatment. Mar. Technol. 2007, 44, 68–76. [Google Scholar]
- Wright, D.A.; Dawson, R.; Caceres, V.; Dawson, C.E.O.; Kananen, G.E.; Cutler, S.J.; Cutler, H.G. Shipboard testing of the efficacy of SeaKleen as a ballast water treatment to eliminate non-indigenous species aboard a working tanker in Pacific waters. Environ. Technol. 2009, 30, 893–910. [Google Scholar] [CrossRef] [PubMed]
- Carbona, S.L.; Frosen, S.V.; Masson, D.; Sassi, J.; Pineau, S.; Lehtiniemi, M.; Corroler, D. Efficacy and environmental acceptability of two ballast water treatment chemicals and an alkylamine based-biocide. Sci. Total Environ. 2010, 409, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Jiang, S.; Li, L.; Bai, W.; Zhou, J. Corrosion behavior of cold rolled steel in peracetic acid solutions. Corros. Sci. 2008, 50, 35–40. [Google Scholar] [CrossRef]
- Li, L.; Qu, Q.; Bai, W.; Chen, Y.; Zhang, S.; Gao, G.; Ding, Z. Effect of NaCl on the corrosion of cold rolled steel in peracetic acid solution. Int. J. Electrochem. Sci. 2012, 7, 3773–3786. [Google Scholar]
- Pohanish, R.P. HazMat Data: For First Response, Transportation, Storage, and Security, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2004; p. 1263. [Google Scholar]
- Cui, Y.T.; Teo, S.L.M.; Leong, W.; Chai, C.L.L. Searching for environmentally-benign antifouling biocides. Int. J. Mol. Sci. 2014, 15, 9255–9284. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Mukherjee, A.; Misra, S.C.; Ramesh, U.S. Need of natural biocides in antifouling paints for prevention of marine pollution. Int. J. Innov. Med. Res. Dev. 2015, 4, 43–49. [Google Scholar]
- Ruiz, G.M.; Carlton, J.T.; Grosholz, E.D.; Hines, A.H. Global invasions of marine and estuarine habitats by non-indigenous species: Mechanisms, extent, and consequences. Am. Zool. 1997, 37, 621–632. [Google Scholar] [CrossRef]
- Vorkapic, A.; Komar, I.; Mrcelic, G.J. Shipboard Ballast Water Treatment Systems on Seagoing Ships. Trans. Marit. Sci. 2016, 1, 19–28. [Google Scholar] [CrossRef]
- Elton, C. A new invader. J. Anim. Ecol. 1936, 5, 188–192. [Google Scholar] [CrossRef]
- Medcof, J.C. Living marine animals in a ship’s ballast water. In Proceedings of the National Shellfisheries Association; The National Shellfisheries Association: Waldoboro, ME, USA, 1975. [Google Scholar]
- David, B.; Wolfender, J.; Dias, D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev. 2015, 14, 299–315. [Google Scholar] [CrossRef]
- Newmann, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2017, 34, 235–294. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, K.C. Organic synthesis: The art and science of replicating the molecules of living nature and creating others like them in the laboratory. Proc. Math. Phys. Eng. Sci. 2014, 470. [Google Scholar] [CrossRef] [PubMed]
- Maier, M.E. Design and synthesis of analogues of natural products. Org. Biomol. Chem. 2015, 13, 5302–5343. [Google Scholar] [CrossRef] [PubMed]
Target Organisms | Concentration in the BW Discharge |
---|---|
Size ≥ 50 µm | <10 viable organisms per cubic meter |
Size ≥ 10 µm and < 50 µm | <10 viable organisms per milliliter |
Vibrio cholerae (serotypes O1 and O139) | <1 (CFU) per 100 milliliter |
Escherichia coli | <250 (CFU) per 100 milliliter |
Enterococci | <100 (CFU) per 100 milliliter |
Process | Chemical Reactions |
---|---|
Solvation | NaCl(s) + H2O(l) → H+(aq) + OH−(aq) + Na+(aq) + Cl−(aq) |
Electrolysis: | |
(cathode) | 2H+(aq) + 2e− → H2(g) |
(anode) | 2Cl−(aq) → Cl2(g) + 2e− |
Hydrolysis | Cl2(g) + H2O(l) → HOCl(aq) + H+(aq) + Cl−(aq) |
Dissociation | HOCl ⇌ H+ + OCl− Dissociation constant, |
Carbonation | CO2(g) + H2O(l) ⇌ H+(aq) + HCO3−(aq) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, W.R.; Fernandes, F.C.; Lopes, C.C.; Lopes, R.S.C.; Miller, W.; Ruiz, G. Which Ballast Water Management System Will You Put Aboard? Remnant Anxieties: A Mini-Review. Environments 2017, 4, 54. https://doi.org/10.3390/environments4030054
Batista WR, Fernandes FC, Lopes CC, Lopes RSC, Miller W, Ruiz G. Which Ballast Water Management System Will You Put Aboard? Remnant Anxieties: A Mini-Review. Environments. 2017; 4(3):54. https://doi.org/10.3390/environments4030054
Chicago/Turabian StyleBatista, William R., Flavio C. Fernandes, Claudio C. Lopes, Rosangela S. C. Lopes, Whitman Miller, and Gregory Ruiz. 2017. "Which Ballast Water Management System Will You Put Aboard? Remnant Anxieties: A Mini-Review" Environments 4, no. 3: 54. https://doi.org/10.3390/environments4030054
APA StyleBatista, W. R., Fernandes, F. C., Lopes, C. C., Lopes, R. S. C., Miller, W., & Ruiz, G. (2017). Which Ballast Water Management System Will You Put Aboard? Remnant Anxieties: A Mini-Review. Environments, 4(3), 54. https://doi.org/10.3390/environments4030054