In order to comply with European Union (EU) perspectives on energy generation and consumption by EU members for the 2030 and 2050 horizons, a significant increase in the penetration of renewable energy sources (RES) and a reduction of energy needs, through energy savings and efficiency policies, are mandatory. Both approaches are especially relevant in the transport and buildings sectors, and within the latter, Public Administration building stock is of special relevance.
On the other hand, reliable energy indexes must be developed in order to supervise the evolution of the consumed energy, which is ultimately associated with greenhouse effect gas emissions. This detailed supervision intends to assist energy planners in achieving local, national, and European targets for energy savings and efficiency.
This paper is divided into three sections. The first section includes the introduction to the topic, and the reference framework in the EU zone and a description of the building stock from the health system of the Castilla y León region, which has been used as a case study. The second section, entitled “Materials and Methods”, describes the proposed methodology and the origin of the used data. Scope and limitations of the work are also presented in this section. The next section presents and discusses the obtained results, while the final section collects the authors’ conclusions and proposals for future research in the field.
1.1. Innovations Introduced by the 2018/844/EU Directive
On 30 May 2018, EU Directive 2018/844 [
8] was published, updating Directive 2010/31/EU [
9] on the energy performance of buildings and Directive 2012/27/EU [
10] on energy efficiency. In this document, the EU declares its commitment to developing a sustainable, competitive, secure, and decarbonized energy system, while at the same time it recalls the commitments of the Energy Union and the Energy and Climate Policy Framework for 2030. The EU Commission finds the need to provide Member States and investors a clear vision to guide their policies and investment decisions, including national milestones and actions for energy efficiency to be accomplished over the short-term (2030), mid-term (2040), and long-term (2050). Then, it is required that Member States specify the expected output of their long-term renovation strategies and monitor developments by establishing domestic progress indicators, which are subject to national conditions and developments.
In order to meet proposed goals in the energy field, the EU concludes that Member States and investors need to apply new measures, and it focusses on the need for the de-carbonization of the building stock, responsible for approximately 36% of all CO2 emissions in the Union, as soon as possible. This conclusion is in line with those from the 2015 Paris Agreement on climate change following the 21st Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), boosting the EU’s efforts to decarbonize its building stock.
To achieve a highly energy efficient and decarbonized building stock and to ensure that the long-term renovation strategies result in the necessary progress towards the transformation of existing buildings into nZEBs, or even PEBs, clear guidelines should be provided and, more importantly, measurable, targeted actions should be established [
11,
12].
Each long-term renovation strategy should be in line with applicable planning and should encompass, among other conditions: (i) an overview of the national building stock; (ii) policies and actions to target all public buildings; and (iii) an evidence-based estimate of expected energy savings and wider benefits, establishing measurable progress indicators. Moreover, databases for energy performance certificates should permit data collection on the measured or calculated energy consumption of the buildings covered, including at least the public buildings stock.
It should be noted that EU Directive 2018/844 points out the real need to determine the energy performance of a building based on its calculated or actual energy use and it shall reflect typical energy use, not only for space heating, cooling or domestic hot water, but also for lighting and other electrical technical building systems [
8].
1.2. Power Consumption of the Health System in the Castilla y León Region
The Autonomous Community of Castilla y León in Spain is the sixth largest region of the country, having almost 2.5 million inhabitants in 2018 and with health services that are divided into 39 different areas including primary care, specialized health, and administrative sections. It serves the medical needs of over two million patients with 7.81 health professionals per every thousand potential patients [
13].
The building stock of the health system in Castilla y León consists of different sets of buildings, which are usually classified into hospitals and health centers. The latter may also be organized into health centers with and without emergency services. Clinics, residences and administrative buildings and warehouses are the minority and they are usually classified as “others”.
Table 1 shows the inventory description of each category, focusing on their electrical energy needs, while
Figure 1 shows their distribution.
Figure 1a helps introduce the reader to the energy context, showing the geographical distribution of the average annual Area Consumption Index (ACI), while the pie chart shown in
Figure 1b depicts the electrical energy consumption distribution for the described administrative categories.
It can be observed that the majority of the annual electricity consumption comes from the hospitals (almost 81% of the total). The other categories represent approximately 25 GWh·year−1 of annual electric consumption. On the other hand, the variation in total electricity consumption, evaluated through the standard deviation, is relatively small on an annual basis, considering the evaluated period, which is from January 2015 to December 2017.
Finally, it should be noticed that the buildings classification provided is valid for administrative purposes, but is inefficient for an energy analysis. Thus, one of the main objectives of this paper is to show the obtained results of a new proposed method to identify reference buildings according to an energetic perspective, which may differ from a purely administrative classification.
1.3. Building Sustainability, Energy Indexes, and Annual Electric Energy Profiles
Several authors claim that over recent times, world energy consumption has increased disproportionately in relation to population growth, mainly as a result of economic development and a lack of social awareness [
14]. Thus, many studies have attempted to assess the sustainability of the energy consumption at a global level, from a demand side perspective, concluding that the building industry requires more attention and more effective actions than other sectors due to its high energy consumption [
15,
16]. So, a growing number of countries have introduced energy-efficient strategies in their public-use buildings. Currently, energy consumption in public buildings is 40% greater than that of residential buildings and 30% of the non-residential buildings in Europe are public buildings [
14]. Therefore, evaluation of building energy efficiency and energy conservation is extremely necessary [
17].
Many authors have considered the intense energy consumption problem of the building sector by considering thermal consumption [
17,
18,
19] and therefore, different solutions highlighting bioclimatic architecture strategies [
20] have been proposed with great success. Bioclimatic architectural systems have demonstrated that they can effectively contribute to the reduction of energy consumption while considering potential construction solutions at both passive and active levels. These analyses have been carried out not only for residential buildings, but also for industrial ones where energy savings through the incorporation of automation techniques are difficult to afford and when there is no single directive or standardized method of estimating and validating the energy consumption process in such buildings [
18].
Although thermal comfort in Northern European countries has low impact on power consumption, as they are usually satisfied by gas boilers the warmer countries face high electricity energy demands in public buildings due to air conditioning needs [
19]. Furthermore, these systems are quite sensitive to slight outdoor temperature changes and climate change has forced engineers to find and design sustainable low-energy systems, especially for public buildings [
19]. Identifying the building parameters that significantly impact energy performance is an important step for enabling the reduction of the heating and cooling energy loads [
21]. Moreover, as the application of energy savings and energy efficiency directives increases, especially in European countries, thermal demand is becoming electric demand due to the intensive use of electric heat-pumps. So, the analysis of power consumption in buildings is becoming much more relevant today than in the past, when it was several orders lower than thermal demand. Moreover, monitoring can provide advanced visualization and data analysis tools to achieve energy savings and peak power optimization [
22,
23].
Several authors have conducted different studies to obtain reference indexes for energy consumption of buildings. At this point, we should highlight the work of Rodríguez-González, A.B. et al. [
24] who attempted to propose a standardized energy efficiency index for buildings relating the energy consumption within a building to reference consumption. These authors focused on the need to establish adequate standardized levels of performance and separation of building types to avoid making unfair comparisons between buildings. Moreover, this type of index may be used to detect abnormal behaviors at selected time scales [
25]. These indexes may be developed not only for health care facilities, but also for educational, office and residential buildings [
26,
27].
It is advisable to consider the distinction made in the VDI 3807 standard between building demand and characteristic consumption [
28]. While the demand value is calculated according to the acknowledged rules of technology, using assumptions such as boundary conditions, standardized types of use and scenarios, the characteristic consumption is determined based on measured and corrected consumption values. In this work, the methodology was applied to true consumption values from monthly measurements made over 3 years. Thus, the results are expressed in terms of energy consumption instead of energy demand, although the results may be applied to estimate the electrical energy demands of future buildings.
This sort of consumption analysis may be used during the building operation, e.g., as an initial value for the assessment of energy consumption of a particular building, or to compare buildings of the same type and use, for periodic assessments of the actual consumption and user behavior, such as a tool for management and controlling.
Furthermore, it should be considered that the isolated analysis of the energy indexes offers a specific perspective of the energetic behavior of a facility or building. So, this sort of analysis must be conducted upon defining a levelized structure where building energy indices may be aggregated and disaggregated, accordingly to the analysis purposes. This aggregation capability can further explain changes over time. At the same time, the aggregated structure of the analysis helps to separate energy trends based on their source: (i) activity level, (ii) structure, or (iii) energy intensity.
When evaluating the energy consumption of a building, measurements should be independent of building size. The Area Consumption Index (ACI) and Occupation Consumption Index (OCI) are the most widely used. As for the ACI calculation, which is usually a more reliable indicator than OCI when the electric energy consumption is analyzed, the final use of the energy will define the surface value to be considered: the gross surface (BGF), the net surface (NF), the occupied surface (OF) or the heated/cooled surface (HF). The occupied surface is used in most applications, but this value is rarely known or available, and therefore, net surface value is used instead [
28]. In this case, the reference area has been defined as the sum of all habitable gross floor areas of the building. In most cases, the habitable area is similar to the heatable area, which, according to VDI 3807 and DIN 277 standards, is calculated by subtracting major non-heatable gross floor areas from the building’s gross floor area. The reference area of buildings in which only the entire storeys are heated, is identical to the storey area, which in general, may be taken from the building proposal. In the absence of these data, according to the DIN 277 standard [
29], the assignable area for main uses (NF) was used. Also in the absence of this value, the building’s total gross floor area was used (in accordance with the German Energy Saving Ordinance, EnEV [
30]). The VDI 3807 Part 2 standard estimates the NF/BGF ratio at 85% for hospitals and health centers.
Thus, the reference index in this study has been calculated and defined as the Area Consumption Index, whose expression may be seen in Equation (1). This index has been determined on a monthly or annual basis.
In Equation (1),
E′ is the corrected energy during the time period and
A the reference area. In contrast to heating or cooling energy consumptions, outdoor-temperature effect corrections are not usually needed for electrical energy consumption. Nevertheless, when the measured period is not a full natural year (365 days), corrections must be made accordingly [
31].
The characteristic energy consumption value can be used for predicting the energy consumption of a large building inventory [
24,
32,
33]. Moreover, these values can help to very accurately estimate the future electric energy demand of certain areas based on the known building areas and building use types, resulting especially useful for energy planning studies [
26].
Finally, when considering characteristic energy consumption, it must be considered that changes in building inventory, equipment, or occupation may occur, affecting the significance of the average value of the characteristic energy consumption. However, consumption variations along periodic time periods, such as natural years, tend to remain invariant or have very slight differences. Furthermore, when comparing characteristic energy consumption values of buildings in other countries with trend values in this work, the boundary conditions prevailing in those countries should also be considered.
As a novel approach in this work, obtained reference buildings will be defined not only by the characteristic value, but also by a definition of the energy consumption throughout a natural year, resulting as truly useful in order to increase the accuracy of the consumption estimation over the short-term [
34,
35]. Seasonal variations may also then be observed and, in some cases, this may help to find abnormal energetic behaviors from the dynamics of the consumption point of view [
36].