Sustainable Concrete Performance—CO2-Emission
Abstract
:1. Introduction
2. Research Significance
3. Materials and Methods
3.1. Concrete Utility Function Formulation
3.2. Utility Function Components
3.2.1. Compressive Strength
3.2.2. Greenhouse Gas Emission
3.2.3. Cost
3.2.4. Durability
3.3. Carbonation Resistance Model
3.3.1. Research Database
3.3.2. Carbonation Coefficient Model
3.3.3. Utility Analysis Database
4. Results
4.1. Carbonation Coefficient k/k0.5 Model
4.1.1. Fly Ash Additive
4.1.2. GGBS Additive
4.2. Performance Analysis
4.2.1. Concrete with Fly Ash
4.2.2. Concrete with GGBS
5. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Ready Mixed Concrete Organization (ERMCO). ERMCO Statistics 2015. Available online: www.ermco.eu/document/ermco-statistics-2015-final-pdf/ (accessed on 9 December 2017).
- Czarnecki, L.; Justnes, H. Sustainable durable concrete. Cem. Lime Concr. 2012, 6, 341–362. [Google Scholar]
- Maas, G.P. Comparison of Quay Wall Designs in Concrete, Steel, Wood and Composites with Regard to the Co-Emission and the Life Cycle Analysis. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 18 February 2011. [Google Scholar]
- Kajaste, R.; Hurme, M. Cement industry greenhouse gas emissions—Management options and abatement cost. J. Clean. Prod. 2016, 112, 4041–4052. [Google Scholar] [CrossRef]
- Czarnecki, L.; Woyciechowski, P. Model of concrete carbonation as limited process—Experimental investigations of fluidal ash concrete. In Brittle Matrix Composites; Brandt, A.M., Olek, J., Glinicki, M.A., Leung, C.K.Y., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2009; Volume 9, pp. 183–194. [Google Scholar]
- Kim, T.; Chae, C. Evaluation analysis of the CO2 emission and absorption life cycle for precast concrete in Korea. Sustainability 2016, 8, 663. [Google Scholar] [CrossRef]
- Kashef-Haghighi, S.; Shao, Y.; Ghoshal, S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing. Cem. Concr. Res. 2015, 67, 1–10. [Google Scholar] [CrossRef]
- Xi, F.; Davis, S.; Ciais, P.; Crawford-Brown, D.; Guan, D.; Pade, C.; Shi, T.; Syddall, M.; Lv, J.; Ji, L.; et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 2016, 9, 880–883. [Google Scholar] [CrossRef]
- García-Segura, T.; Yepes, V.; Alcalá, J. Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int. J. Life Cycle Assess. 2014, 19, 3–12. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Price, L.; Lin, E. Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renew. Sustain. Energy Rev. 2012, 16, 6220–6238. [Google Scholar] [CrossRef]
- EFCA. EFCA Environmental Declaration Superplasticizing Admixtures—June 2002. 2002. Available online: https://www.google.com.sg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiwpIiH5qHZAhWKgI8KHeiYBe8QFgglMAA&url=https%3A%2F%2Fswe.sika.com%2Fdms%2Fgetdocument.get%2F60b7f6a6-92fc-36b7-ae01-45e0c48e395d%2FSuperplasticizerED.pdf&usg=AOvVaw2Cy3NFA2aJezks9IrtmWuI (accessed on 9 December 2017).
- Sjunnesson, J. Life Cycle Assessment of Concrete; Lund University: Lund, Sweden, 2005. [Google Scholar]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Marinković, S.B.; Malešev, M.; Ignjatovic, I. Life cycle assessment (LCA) of concrete made using recycled concrete or natural aggregates. In Eco-Efficient Construction and Building Materials; Woodhead Publishing: Cambridge, UK, 2014; Volume 11, pp. 239–266. ISBN 978-0-85709-045-4. [Google Scholar]
- Mohammadi, J.; South, W. Life cycle assessment (LCA) of benchmark concrete products in Australia. Int. J. Life Cycle Assess. 2017, 22, 1588–1608. [Google Scholar] [CrossRef]
- Yang, Z.; Kowalski, K.J.; Olek, J.; Nantung, T. Effects of sand characteristics and fly ash contents on properties of flowable fill. ACI Mater. J. 2014, 111, 543–552. [Google Scholar] [CrossRef]
- Kowalski, K.J.; Yang, Z.; Olek, J.; Nantung, T. Development of specification for accelerated approval process of flowable fill mixtures. J. Mater. Civ. Eng. 2009, 21, 740–748. [Google Scholar] [CrossRef]
- Radlińska, A.; Yost, J.R.; Salera, M.J. Material properties of structurally viable alkali-activated fly ash concrete. J. Mater. Civ. Eng. 2013, 25, 1456–1464. [Google Scholar] [CrossRef]
- Dembovska, L.; Bajare, D.; Ducman, V.; Korat, L.; Bumanis, G. The use of different by-products in the production of lightweight alkali activated building materials. Constr. Build. Mater. 2017, 135, 315–322. [Google Scholar] [CrossRef]
- Yost, J.R.; Radlińska, A.; Ernst, S.; Salera, M. Structural behavior of alkali activated fly ash concrete. Part 1: Mixture design, material properties and sample fabrication. Mater. Struct. 2013, 46, 435–447. [Google Scholar] [CrossRef]
- Hong, J.; Shen, Q.G.; Peng, Y.; Feng, Y.; Mao, C. Uncertainty analysis for measuring greenhouse gas emissions in the building construction phase: A case study in China. J. Clean. Prod. 2016, 129, 183–195. [Google Scholar] [CrossRef]
- Załęgowski, K.; Jackiewicz-Rek, W.; Garbacz, A.; Courard, L. Carbon footprint of concrete (in Polish). Mater. Bud. 2013, 12, 34–36. [Google Scholar]
- Hasanbeigi, A.; Menke, C.; Therdyothin, A. Technical and cost assessment of energy efficiency improvement and greenhouse gas emission reduction potentials in Thai cement industry. Energy Effic. 2011, 4, 93–113. [Google Scholar] [CrossRef]
- Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. J. Clean. Prod. 2017, 140, 1037–1048. [Google Scholar] [CrossRef]
- Kim, T.; Chae, C.; Kim, G.; Jang, H. Analysis of CO2 emission characteristics of concrete used at construction sites. Sustainability 2016, 8, 348. [Google Scholar] [CrossRef]
- Kim, T.; Lee, S.; Chae, C.; Jang, H.; Lee, K. Development of the CO2 emission evaluation tool for the life cycle assessment of concrete. Sustainability 2017, 9, 2116. [Google Scholar] [CrossRef]
- Baek, C.; Tae, S.; Kim, R.; Shin, S. Life cycle CO2 assessment by block type changes of apartment housing. Sustainability 2016, 8, 752. [Google Scholar] [CrossRef]
- Cho, S.-H.; Chae, C.-U. A study on life cycle CO2 emissions of low-carbon building in South Korea. Sustainability 2016, 8, 579. [Google Scholar] [CrossRef]
- Stengel, T.; Schießl, P. Life cycle assessment (LCA) of ultra high performance concrete (UHPC) structures. In Eco-Efficient Construction and Building Materials; Woodhead Publishing: Cambridge, UK, 2014; Volume 22, pp. 528–564. ISBN 978-0-85709-045-4. [Google Scholar]
- Yepes, V.; Martí, J.V.; García-Segura, T. Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Autom. Constr. 2015, 49, 123–134. [Google Scholar] [CrossRef]
- Yeo, D.; Potra, F.A. Sustainable design of reinforced concrete structures through CO2 emission optimization. J. Struct. Eng. 2015, 141, B4014002. [Google Scholar] [CrossRef]
- Baykasoğlu, A.; Öztaş, A.; Özbay, E. Prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches. Expert Syst. Appl. 2009, 36, 6145–6155. [Google Scholar] [CrossRef]
- Ozbay, E.; Oztas, A.; Baykasoglu, A.; Ozbebek, H. Investigating mix proportions of high strength self compacting concrete by using Taguchi method. Constr. Build. Mater. 2009, 23, 694–702. [Google Scholar] [CrossRef]
- Kim, H.T. Assessment of construction cost saving by concrete mixing the activator material. Sustainability 2016, 8, 403. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Schau, E.M.; Lehman, A.; Traverso, M. Towards life cycle sustainability assessment. Sustainability 2010, 2, 3309–3322. [Google Scholar] [CrossRef]
- Barecka, M.H.; Zbicinski, I.; Heim, D. Environmental, energy and economic aspects in a zero-emission façade system design. Manag. Environ. Qual. Int. J. 2016, 27, 708–721. [Google Scholar] [CrossRef]
- Keeble, B.R. The Brundtland Report: ‘Our common future’. Med. War 1988, 4, 17–25. [Google Scholar] [CrossRef]
- Marinković, S. On the selection of the functional unit in LCA of structural concrete. Int. J. Life Cycle Assess. 2017, 22, 1634–1636. [Google Scholar] [CrossRef]
- Drobiec, Ł.; Jasiński, R.; Piekarczyk, A. Diagnostic of Reinforced Concrete Structures, Methodology, Field and Laboratory Tests of Concrete and Steel (in Polish); Wydawnictwo Naukowe PWN: Warsaw, Poland, 2010; ISBN 978-830-116-103-3. [Google Scholar]
- International Organization for Standardization (ISO). ISO 14067:2013, Carbon Footprints of Products—Requirements and Guidelines for Quantification and Communication; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- Martínez-Rocamora, A.; Solís-Guzmán, J.; Marrero, M. LCA databases focused on construction materials: A review. Renew. Sustain. Energy Rev. 2016, 58, 565–573. [Google Scholar] [CrossRef]
- Rouwette, R. LCA of Geopolymer Concrete (E-Crete); start2see Pty Ltd.: Melbourne, Australia, 2012. [Google Scholar]
- Higgins, D. Sustainable concrete: How can additions contribute? In Annual Technical Symposium; The Institute of Concrete Technology: Surrey, UK, 2006. [Google Scholar]
- Material Costs. Available online: http://www.Cennik-budowlany.Pl (accessed on 24 May 2015).
- Latawiec, R. Lafarge Poland. Internal Construction Company Data/Poland. 2017; Unpublished data. [Google Scholar]
- PN-EN 206:2014-04. Concrete—Part 1: Specification, Performance, Production and Conformity. 2014. Available online: https://sklep.pkn.pl/pn-en-206-2014-04p.html (accessed on 27 December 2017). (In Polish).
- Woyciechowski, P. Influence of mineral additives on concrete carbonation. In Brittle Matrix Composites 10; Brandt, A.M., Olek, J., Glinicki, M.A., Leung, C.K.Y., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2012; pp. 115–124. [Google Scholar]
- Czarnecki, L.; Emmons, P.H. Repair and Protection of Concrete Structures (in Polish); Polski Cement: Kraków, Poland, 2002. [Google Scholar]
- Burden, D. The Durability of Concrete Containing High Levels of Fly Ash. Master’s Thesis, University of New Brunswick, Fredericton and Saint John, NB, Canada, 3 January 2006. [Google Scholar]
- Khunthongkeaw, J.; Tangtermsirikul, S.; Leelawat, T. A study on carbonation depth prediction for fly ash concrete. Constr. Build. Mater. 2006, 20, 744–753. [Google Scholar] [CrossRef]
- Collepardi, M.; Collepardi, S.; Olagot, J.O.; Simonelli, F. The influence of slag and fly ash on the carbonation of concrete. In Proceedings of the ACI SP-221-29 Eighth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Las Vegas, NV, USA, 23–29 May 2004; pp. 23–29. [Google Scholar]
- Malhotra, V.M. Mechanical properties and freezing and thawing durability of concrete incorporating a ground granulated blast-furnace slag. Can. J. Civ. Eng. 1989, 16, 140–156. [Google Scholar] [CrossRef]
- Oner, A.; Akyuz, S. An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem. Concr. Compos. 2007, 29, 505–514. [Google Scholar] [CrossRef]
Case | f28 | Rcarb | C | E |
---|---|---|---|---|
Weights | ||||
1 | 0.4 | 0.3 | 0.2 | 0.1 |
2 | 0.3 | 0.2 | 0.1 | 0.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latawiec, R.; Woyciechowski, P.; Kowalski, K.J. Sustainable Concrete Performance—CO2-Emission. Environments 2018, 5, 27. https://doi.org/10.3390/environments5020027
Latawiec R, Woyciechowski P, Kowalski KJ. Sustainable Concrete Performance—CO2-Emission. Environments. 2018; 5(2):27. https://doi.org/10.3390/environments5020027
Chicago/Turabian StyleLatawiec, Rafal, Piotr Woyciechowski, and Karol J. Kowalski. 2018. "Sustainable Concrete Performance—CO2-Emission" Environments 5, no. 2: 27. https://doi.org/10.3390/environments5020027
APA StyleLatawiec, R., Woyciechowski, P., & Kowalski, K. J. (2018). Sustainable Concrete Performance—CO2-Emission. Environments, 5(2), 27. https://doi.org/10.3390/environments5020027