Investigating the Effect of Urbanization on Weather Using the Weather Research and Forecasting (WRF) Model: A Case of Metro Manila, Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Domain
3. Results and Discussions
3.1. Effects on Sensible Heat Flux
3.2. Effects on Rainfall
3.2.1. Annual Variation of Monthly Rainfall
3.2.2. Average Seasonal Rainfall
3.3. Effects on Temperature
3.3.1. Maximum Temperature or Tmax
3.3.2. Minimum temperature or Tmin
3.3.3. Diurnal Temperature Range (DTR)
3.3.4. Trend analysis using M–K test and Sen’s Slope
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations DESA. Revision of World Urbanization Prospects. 2018. Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 9 November 2018).
- Wang, K.; Wang, J.; Wang, P.; Sparrow, M.; Yang, J.; Chen, H. Influences of urbanization on surface characteristics as derived from the Moderate-Resolution Imaging Spectroradiometer: A case study for the Beijing metropolitan area. J. Geophys. Res.-Atmos. 2007, 112, 1–12. [Google Scholar] [CrossRef]
- Çiçek, I.; Turkoglu, N. Urban effects on precipitation in Ankara. Atmosfera 2005, 18, 173–187. [Google Scholar]
- Huang, S.; Taniguchi, M.; Yamano, M.; Wang, C. Detecting urbanization effects on surface and subsurface thermal environment–A case study of Osaka. Sci. Total Environ. 2009, 407, 3142–3152. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, S.; Vishwanath, V.; Devi, K. Urban climate in Tamil Nadu, India: A statistical analysis of increasing urbanization and changing trends of temperature and rainfall. Energy Buildings 1990, 15, 231–243. [Google Scholar] [CrossRef]
- Jin, M.; Kessomkiat, W.; Pereira, G. Satellite–Observed Urbanization Characters in Shanghai, China: Aerosols, Urban Heat Island Effect, and Land-Atmosphere Interactions. Remote Sens. 2011, 3, 83–99. [Google Scholar] [CrossRef]
- Sugawara, H.; Narita, K. Roughness length for heat over an urban canopy. Theor. Appl. Climatol. 2009, 95, 291–299. [Google Scholar] [CrossRef]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef]
- Grimmond, C.; Oke, T. Evapotranspiration rates in urban areas. In Proceedings of the 22nd General Assembly of the International Union of Geodesy and Geophysics (IUGG99): Impacts of Urban Growth on Surface Water and Groundwater Quality, Birmingham, UK, 18–30 July 1999; International Association of Hydrological Sciences (IAHS): Oxfordshire, UK, 1999; pp. 235–244. [Google Scholar]
- Zhang, N.; Gao, Z.; Wang, X.; Chen, Y. Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor. Appl. Climatol. 2010, 102, 331–342. [Google Scholar] [CrossRef]
- Philippine Statistics Authority. Available online: https://psa.gov.ph/content/highlights-philippine-population-2015-census-population (accessed on 15 April 2018).
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.; Wang, W.; Powers, J. A Description of the Advanced Research WRF (ARW) Version 2 (NCAR/TN–468+STR); Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research: Boulder, CO, USA, 2005; Available online: http://opensky.ucar.edu/islandora/object/technotes%3A479/datastream/PDF/view (accessed on 14 January 2018).
- Wang, S.; Huang, S.; Li, Y. Sensitive numerical simulation and analysis of rainstorm using nested WRF model. J. Hydrodyn. Ser. B 2006, 18, 578–586. [Google Scholar] [CrossRef]
- Mafas, M.; Muhammadh, K.M.; Weerakoon, S.B.; Mutua, F. Comparative Study of WRF and REGCM Weather Predictions for the Upper Mahaweli River Basin. In Proceedings of the 7th International Conference on Sustainable Built Environment, Kandy, Sri Lanka, 16–18 December 2016; Available online: https://www.researchgate.net/publication/316524322_COMPARATIVE_STUDY_OF_WRF_REGCM_WEATHER_PREDICTIONS_FOR_THE_UPPER_MAHAWELI_RIVER_BASIN (accessed on 13 November 2018).
- Gsella, A.; de Meij, A.; Kerschbaumer, A.; Reimer, E.; Thunis, P.; Cuvelier, C. Evaluation of MM5, WRF and TRAMPER meteorology over the complex terrain of the Po Valley, Italy. Atmos. Environ. 2014, 89, 797–806. [Google Scholar] [CrossRef]
- Karpouzos, D.; Kavalieratou, S.; Babajimopoulos, C. Trend analysis of precipitation data in Pieria Region (Greece). Eur. Water 2010, 30, 31–40. [Google Scholar]
- Chen, J.; Li, Q.; Niu, J.; Sun, L. Regional climate change and local urbanization effects on weather variables in Southeast China. Stoch. Environ. Res. Risk Assess. 2011, 25, 555–565. [Google Scholar] [CrossRef]
- Hirsch, R.; Helsel, D.; Cohn, T.; Gilroy, E. Statistical treatment of hydrologic data. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Mourato, S.; Moreira, M.; Corte-Real, J. Interannual variability of precipitation distribution patterns in Southern Portugal. Int. J. Climatol. 2010, 30, 1784–1794. [Google Scholar] [CrossRef]
- Subash, N.; Singh, S.S.; Priya, N. Variability of rainfall and effective onset and length of the monsoon season over a sub-humid climatic environment. Atmos. Res. 2011, 99, 479–487. [Google Scholar] [CrossRef]
- Duhan, D.; Pandey, A. Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmos. Res. 2013, 122, 136–149. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Da Silva, R.M.; Santos, C.A.G.; Moreira, M.; Corte-Real, J.; Silva, V.C.L.; Medeiros, I.C. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Asimakopoulos, D.; Asimakopoulos, V.; Chrisomallidou, N.; Klitsikas, N.; Mangold, D.; Michel, P. Energy and Climate in the Urban Built Environment; Santamouris, M., Ed.; James & James (Science Publishers) Ltd.: London, UK, 2001. [Google Scholar]
- Cao, Q.; Yu, D.; Georgescu, M.; Han, Z.; Wu, J. Impacts of land use and land cover change on regional climate: A case study in the agro-pastoral transitional zone of China. Environ. Res. Lett. 2015, 10, 124025. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.; Song, S.; Lee, H. Impact of future urban growth on regional climate changes in the Seoul Metropolitan Area, Korea. Sci. Total Environ. 2016, 571, 355–363. [Google Scholar] [CrossRef]
- Estoque, M.; Sta. Maria, M. Climate Changes Due to Urbanization of Metro Manila; Climate Studies Division, Manila Observatory: Quezon City, Philippines, 2000. [Google Scholar]
- Huff, F.; Vogel, J. Urban, topographic and diurnal effects on rainfall in the St. Louis region. J. Appl. Meteorol. 1978, 17, 565–577. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, F.; Miao, S.; Li, Q.; Xia, X.; Xuan, C. Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J. Geophys. Res.-Atmos. 2009, 114, 1–26. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, J.; Xia, J.; Feng, J. Review of recent studies of the climatic effects of urbanization in China. Adv. Clim. Chang. Res. 2016, 7, 154–168. [Google Scholar] [CrossRef]
- Nuruzzaman, M. Urban heat island: Causes, effects and mitigation measures—A review. Int. J. Environ. Mon. Anal. 2015, 3, 67–73. [Google Scholar] [CrossRef]
- Kitayama, H.; Katayama, T.; Hayashi, T.; Tsutsumi, J.; Ishii, A. Statistical analysis of the sea-land breeze and its effect on the air temperature in summer. J. Wind Eng. Ind. Aerodyn. 1991, 38, 93–99. [Google Scholar] [CrossRef]
- Karl, T.; Kukla, G.; Razuvayev, V.; Changery, M.; Quayle, R.; Heim, R.; Easterling, D.R.; Fu, C.B. Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 1991, 18, 2253–2256. [Google Scholar] [CrossRef]
Microphysics | Weather Research and Forecasting (WRF) Single Moment 3 Class Scheme |
---|---|
Shortwave and Longwave Radiation | Dudhia Scheme and Rapid Radiative Transport Model (RRTM) Scheme |
Planetary Boundary Layer | Yonsei University (YSU) Scheme |
Cumulus Physics | Kain-Fritsch Scheme |
Land Surface Physics | Noah Land Surface Model (LSM) Scheme |
Initial and Boundary Condition | National Center for Environmental Prediction – Final (NCEP-FNL) Reanalysis |
Sites | Location | Coordinates | MCC Type | LU |
---|---|---|---|---|
Metro Manila (MM) | Quezon City | 14.68° N 121.02° E | I | 1 |
Manila | 14.60° N 121.02° E | I | 1 | |
Pasig | 14.60° N 121.11° E | I | 1 | |
25 km N | Sta. Maria | 14.82° N 120.95° E | I | 3 |
Bulacan | 14.79° N 120.88° E | I | 3 | |
25 km E | Cogeo | 14.65° N 121.21° E | I | 3 |
25 km S | Gen. Trias | 14.40° N 120.88° E | I | 3 |
50 km N | Angeles | 15.17° N 120.62° E | 1 | 3 |
50 km W | Mariveles | 14.45° N 120.55° E | I | 3 |
50 km S | Gen. Aguinaldo | 14.19° N 120.80° E | I | 6 |
Calamba | 14.17° N 121.13° E | I | 3 | |
75 km N | Gapan | 15.22° N 120.95° E | I | 3 |
75 km W | Olongapo | 14.83° N 120.33° E | I | 3 |
75 km S | Lipa | 13.94° N 121.16° E | I | 2 |
Luisiana (L) | 14.17° N 121.52° E | III | 6 | |
100 km N | Cabanatuan | 15.50° N 120.97° E | III | 3 |
100 km S | San Pablo | 14.03° N 121.35° E | I | 6 |
San Juan | 13.76° N 121.41° E | I | 6 | |
Elevated Area | Infanta | 14.73° N 121.65° E | II | 6 |
Tagaytay | 14.15° N 120.98° E | I | 6 | |
Lucena | 13.94° N 121.61° E | II | 6 | |
Dingalan | 15.42° N 121.32° E | II | 6 |
Mann Kendall Test and Sens Slope Estimate on 11 Years Rainfall | ||||||||||||
Locations | MM | 25 km S | 25 km N | 25 km E | 50 km S | 50 km N | 50 km W | 75 km S | 75 km N | 75 km W | 100 km S | 100 km N |
Kendall’s Tau (τ) | 0.013 | 0.024 | 0.023 | 0.02 | 0.046 | 0.006 | 0.073 | 0.019 | 0.033 | 0.019 | 0.019 | 0.029 |
p-value (two-tailed) | 0.829 | 0.685 | 0.704 | 0.74 | 0.483 | 0.922 | 0.214 | 0.584 | 0.575 | 0.754 | 0.746 | 0.627 |
Sen’s Slope (Q) | 0.128 | 0.125 | 0.164 | 0.183 | 0.341 | 0.061 | 0.728 | 0.091 | 0.125 | 0.076 | 0.172 | 0.083 |
Mann Kendall Test and Sens Slope Estimate on 11 Years Maximum Temperature (Tmax) | ||||||||||||
Locations | MM | 25 km S | 25 km N | 25 km E | 50 km S | 50 km N | 50 km W | 75 km S | 75 km N | 75 km W | 100 km S | 100 km N |
Kendall’s Tau (τ) | 0.056 | 0.021 | 0.035 | 0.049 | 0.01 | 0.046 | 0.038 | 0.019 | 0.02 | −0.031 | 0.054 | 0.046 |
p-value (two-tailed) | 0.353 | 0.721 | 0.558 | 0.402 | 0.871 | 0.431 | 0.521 | 0.732 | 0.735 | 0.601 | 0.365 | 0.439 |
Sen’s Slope (Q) | 0.002 | 0.001 | 0.001 | 0.002 | 0 | 0.002 | 0.001 | 0.001 | 0.001 | −0.001 | 0.002 | 0.002 |
Mann Kendall Test and Sens Slope Estimate on 11 Years Minimum Temperature (Tmin) | ||||||||||||
Locations | MM | 25 km S | 25 km N | 25 km E | 50 km S | 50 km N | 50 km W | 75 km S | 75 km N | 75 km W | 100 km S | 100 km N |
Kendall’s Tau (τ) | 0.076 | 0.077 | 0.048 | 0.06 | 0.089 | 0.043 | 0.091 | 0.043 | 0.049 | 0.047 | 0.075 | 0.067 |
p-value (two-tailed) | 0.202 | 0.197 | 0.421 | 0.312 | 0.184 | 0.461 | 0.120 | 0.469 | 0.410 | 0.427 | 0.214 | 0.256 |
Sen’s Slope (Q) | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.002 | 0.003 | 0.001 | 0.002 | 0.002 | 0.003 | 0.003 |
Mann Kendall Test and Sens Slope Estimate on 11 Years Diurnal Temperature Range (DTR) | ||||||||||||
Locations | MM | 25 km S | 25 km N | 25 km E | 50 km S | 50 km N | 50 km W | 75 km S | 75 km N | 75 km W | 100 km S | 100 km N |
Kendall’s Tau (τ) | −0.033 | −0.068 | −0.038 | −0.026 | −0.062 | −0.032 | −0.04 | −0.018 | −0.027 | −0.037 | −0.015 | −0.04 |
p-value (two-tailed) | 0.572 | 0.259 | 0.542 | 0.655 | 0.291 | 0.593 | 0.497 | 0.684 | 0.645 | 0.530 | 0.805 | 0.499 |
Sen’s Slope (Q) | −0.002 | −0.003 | −0.002 | −0.001 | −0.004 | −0.002 | −0.002 | −0.002 | −0.002 | −0.003 | −0.001 | −0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveros, J.M.; Vallar, E.A.; Galvez, M.C.D. Investigating the Effect of Urbanization on Weather Using the Weather Research and Forecasting (WRF) Model: A Case of Metro Manila, Philippines. Environments 2019, 6, 10. https://doi.org/10.3390/environments6020010
Oliveros JM, Vallar EA, Galvez MCD. Investigating the Effect of Urbanization on Weather Using the Weather Research and Forecasting (WRF) Model: A Case of Metro Manila, Philippines. Environments. 2019; 6(2):10. https://doi.org/10.3390/environments6020010
Chicago/Turabian StyleOliveros, Jervie M., Edgar A. Vallar, and Maria Cecilia D. Galvez. 2019. "Investigating the Effect of Urbanization on Weather Using the Weather Research and Forecasting (WRF) Model: A Case of Metro Manila, Philippines" Environments 6, no. 2: 10. https://doi.org/10.3390/environments6020010
APA StyleOliveros, J. M., Vallar, E. A., & Galvez, M. C. D. (2019). Investigating the Effect of Urbanization on Weather Using the Weather Research and Forecasting (WRF) Model: A Case of Metro Manila, Philippines. Environments, 6(2), 10. https://doi.org/10.3390/environments6020010