Biogas Production by Co-Digestion of Canteen Food Waste and Domestic Wastewater under Organic Loading Rate and Temperature Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock and Seed Sludge
2.2. Batch and Continuously Stirring a Tank Reactor (CSTR) Configuration and Experimental Design
2.3. Analytical Methods
3. Results and Discussion
3.1. Co-Substrate Compositions
3.2. C/N Ratio and Temperature Optimization of Batch Anaerobic Co-Digestion
3.3. Semi-Continuous Operation Performance
3.3.1. Biogas Performance
3.3.2. VFA, pH, TS, and VS Performance
3.3.3. Stability of Biogas Production During Digestion with Food Waste and Domestic Wastewater
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BMP | biomethane potential |
BOD | biochemical oxygen demand |
C/N | carbon/nitrogen |
COD | chemical oxygen demand |
CSTR | continuously stirring a tank reactor |
GC | gas chromatogram |
HRT | hydraulic retention time |
OC | organic carbon |
OLRs | organic loading rates |
RMUTL | Rajamangala University of Technology Lanna |
SS | suspended solids |
VS | volatile solid |
VFAs | volatile fatty acids |
VFA/Alk | volatile fatty acid/alkalinity |
TCD | thermal conductivity detector |
TDS | total dissolved solid |
TK | total potassium |
TKN | total kjeldahl nitrogen |
TN | total nitrogen |
TP | total phosphorus |
TS | total solid |
References
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Intergovernmental Panel on Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N.L. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- Sharp, A.; Sang-Arun, J. A Guide for Sustainable Urban Organic Waste Management in Thailand: Combining Food, Energy, and Climate Co-Benefits; Institute for Global Environmental Strategies: Kanagawa, Japan, 2012. [Google Scholar]
- Clercq, D.D.; Wen, Z.; Gottfried, O.; Schmidt, F.; Fei, F. A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion. Renew. Sustain. Energy Rev. 2017, 79, 204–221. [Google Scholar] [CrossRef]
- Panyaping, K.; Moontee, P. Potential of biogas production from mixed leaf and food waste in anaerobic reactors. J. Mater. Cycles Waste Manag. 2017, 20, 1–15. [Google Scholar] [CrossRef]
- Mac, S.; Llabr, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar]
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Koch, K.; Plabst, M.; Schmidt, A.; Helmreich, B.; Drewes, J.E. Co-digestion of food waste in a municipal wastewater treatment plant: Comparison of batch tests and full-scale experiences. Waste Manag. 2016, 47, 28–33. [Google Scholar] [CrossRef]
- Yong, Z.; Dong, Y.; Zhang, X.; Tan, T. Anaerobic co-digestion of food waste and straw for biogas production. Renew. Energy 2015, 78, 527–530. [Google Scholar] [CrossRef]
- Keucken, A.; Habagil, M.; Batstone, D.; Jeppsson, U.; Arnell, M. Anaerobic Co-digestion of sludge and organic food waste—Performance, inhibition, and impact on the microbial community. Energies 2018, 11, 2325. [Google Scholar] [CrossRef]
- Rattanapan, C.; Suksaroj, T.T.; Kantachote, D.; Katemai, W.; Rakkamon, T. Biogas production from co-digestion of domestic wastewater and food waste. Health Environ. J. 2012, 3, 1–9. [Google Scholar]
- Chan, P.C.; de Toledo, R.A.; Shim, H. Anaerobic co-digestion of food waste and domestic wastewater—Effect of intermittent feeding on short and long chain fatty acids accumulation. Renew. Energy 2018, 124, 129–135. [Google Scholar] [CrossRef]
- Dhar, H.; Kumar, P.; Kumar, S.; Mukherjee, S.; Vaidya, A.N. Effect of organic loading rate during anaerobic digestion of municipal solid waste. Bioresour. Technol. 2015, 217, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Wang, Y.; Xia, Y.; Chen, G.; Zhang, T. Investigation on the anaerobic co-digestion of food waste with sewage sludge. Appl. Microbiol. Biotechnol. 2017, 101, 7755–7766. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, D.; Wen, Z.; Fan, F. Performance evaluation of restaurant food waste and biowaste to biogas pilot projects in China and implications for national policy. J. Environ. Manag. 2017, 189, 115–124. [Google Scholar] [CrossRef]
- Pinto, R.S.; Pinto, R.M.D.S.; Melo, F.F.S.; Campos, S.S.; Cordovil, C.M. A simple awareness campaign to promote food waste reduction in a University canteen. Waste Manag. 2018, 76, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xiao, G.; Peng, L.; Su, H.; Tan, T. The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 2013, 129, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Zamanzadeh, M.; Hagen, L.H.; Svensson, K.; Linjordet, R.; Horn, S.J. Anaerobic digestion of food waste—Effect of recirculation and temperature on performance and microbiology. Water Res. 2016, 96, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Dareioti, M.A.; Kornaros, M. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresour. Technol. 2014, 167, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, F.J.; Wesea, D.A.J.; Thayanithya, K.; Forsterb, C.F. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 2002, 27, 71–77. [Google Scholar] [CrossRef]
- Hobson, P.N.; Wheatley, A.D. Anaerobic Digestion, Modern Theory and Practice; Elsevier Science Publishers, Ltd.: Essex, UK, 1993. [Google Scholar]
- Poh, P.E.; Chong, M.F. Biomethanation of palm oil effluent (POME) with thermophilic mixed culture cultivated using POME as a substrate. Chem. Eng. J. 2010, 164, 146–154. [Google Scholar] [CrossRef]
- Lehtomäki, A. Biogas Production from Energy Croup and Croup Residues; University of Jyväskylä: Jyväskylä, Finland, 2006. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Waste Water, 22nd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- Metcalf, E. Wastewater Engineering Treatment and Reuse, 4th ed.; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Jinjaruk, T.; Chunkao, K.; Pongput, K.; Choeihom, C.; Pattamapitoon, T.; Wararam, W.; Thaipakdee, S.; Srichomphu, M.; Maskulrath, P. HDPE pipeline length for conditioning anaerobic process to decrease BOD in municipal wastewater. Environ. Asia 2018, 11, 31–44. [Google Scholar]
- Lin, J.; Gan, L.; Li, P.; Liu, F.; Wang, K.; Chen, L.; Gan, H. Effect of mixture ratio on anaerobic co-digestion with fluid and vegetable waste and food waste of China. J. Environ. Sci. 2011, 23, 1403–1507. [Google Scholar] [CrossRef]
- Department of Business Development, Thailand. The Situation of Restaurant Business in Thailand; Ministry of Commerce: Bangkok, Thailand, 2018.
- Jitpranee, S.; Latpala, S. Feasibility study of organic waste management for biogas production in Naresuan University. J. Ind. Technol. Lamp. Rajabhat Univ. 2009, 2, 37–43. [Google Scholar]
- Singkibut, K.; Jarusiri, W.; Jiradecha, P. The study of appropriate technology for biogas production from food waste among universities. Int. J. Energy Res. 2011, 8, 26–32. [Google Scholar]
- Hassan, M.; Ding, W.; Umar, M.; Rasool, G. Batch and semi-continuous anaerobic co-digestion of goose manure with alkali solubilized wheat straw: A case of carbon to nitrogen ratio and organic loading rate regression optimization. Bioresour. Technol. 2017, 230, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, C.; Bolzonella, D.; Pavan, P.; Fatone, F.; Cecchi, F. Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energy 2013, 55, 260–265. [Google Scholar] [CrossRef]
- Hassan, M.; Ding, W.; Shi, Z.; Zhao, S. Methane enhancement through codigestion of chicken manure and thermo-oxidative cleaved wheat straw with waste activated sludge: A C/N optimization case. Bioresour. Technol. 2016, 211, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Oh, B.R.; Chun, Y.N.; Kim, S.W. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J. Biosci. Bioeng. 2006, 102, 328–332. [Google Scholar] [CrossRef] [Green Version]
- Marañón, E.; Castrillón, L.; Quiroga, G.; Fernández-Nava, Y.; Gómez, L.; García, M.M. Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. 2012, 32, 1821–1825. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Wang, G.; Wang, X. Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency. Bioresour. Technol. 2017, 237, 231–239. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Dhamodharan, K.; Kumar, V.; Kalamdhad, A.S. Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics. Bioresour. Technol. 2015, 180, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Voelklein, M.A.; Jacob, A.; O’Shea, R.; Murphy, J.D. Assessment of increasing loading rate on two-stage digestion of food waste. Bioresour. Technol. 2016, 202, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Nam, J.Y.; Shin, H.S. A comparison study on the high-rate codigestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresour. Technol. 2011, 102, 7272–7279. [Google Scholar] [CrossRef] [PubMed]
Parameters | Units | Domestic Wastewater | Canteen Food Waste | Seed Sludge |
---|---|---|---|---|
pH | - | 6.83 ± 0.18 | 5.21 ± 0.12 | 7.31 ± 0.24 |
COD | mg L−1 | 177.50 ± 45.16 | - | 41,705.25 ± 827.24 |
BOD | mg L−1 | 36.50 ± 2.38 | - | - |
TKN | mg L−1 | 37.50 ± 12.58 | - | - |
TS | mg L−1 | 289.25 ± 13.38 | - | 22,318.75 ± 1067.55 |
VS | mg L−1 | 126.00 ± 20.69 | - | 14,213.75 ± 808.34 |
SS | mg L−1 | 40.00 ± 6.58 | - | - |
TDS | mg L−1 | 238.00 ± 17.36 | - | - |
Alkalinity | mg L−1 | 169.00 ± 14.49 | - | 5189.5 ± 59.66 |
VFA | mg L−1 | 29.00 ± 3.37 | - | 1364.75 ± 81.63 |
C/N | - | 5.29 ± 2.40 | 21.52 ± 3.10 | - |
Moisture | % | - | 81.17 ± 5.96 | - |
TN | % | - | 3.59 ± 0.54 | - |
TP | % | - | 1.80 ± 0.60 | - |
TK | % | - | 0.08 ± 0.04 | - |
OC | % | - | 77.35 ± 7.26 | - |
VFA/Alk | - | - | - | 0.26 ± 0.02 |
Ratios (FW:DW) * | Cumulative Biogas Production (mL) | CH4 Content (%) | Cumulative CH4 Production (mL) | BMP (mL CH4/mg VS Removal) | VS Removal (mg) | C/N Ratios | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
35 °C | 55 °C | 35 °C | 55 °C | 35 °C | 55 °C | 35 °C | 55 °C | 35 °C | 55 °C | 35 °C | 55 °C | |
10:90 | 7053 | 5102 | 62 | 31 | 4372.86 | 1581.62 | 0.78 | 0.39 | 5619.52 | 4038.76 | 29.72 | 28.16 |
25:75 | 2619 | 2640 | 20 | 12 | 523.80 | 316.80 | 0.18 | 0.11 | 2910.64 | 2880.94 | 41.83 | 43.95 |
50:50 | 2893 | 2796 | 8 | 3 | 231.44 | 83.88 | 0.10 | 0.04 | 2352.41 | 2188.46 | 59.60 | 59.08 |
70:30 | 3161 | 3840 | 0.36 | 0.14 | 11.38 | 5.38 | 0.00 | 0.00 | 2377.63 | 2267.60 | 65.78 | 64.85 |
0:100 | 357 | 336 | 51 | 51 | 182.07 | 171.36 | 0.18 | 0.15 | 1022.63 | 1141.67 | 19.65 | 19.71 |
100:0 | 4801 | 4848 | 0.43 | 0.15 | 20.64 | 7.27 | 0.00 | 0.00 | 4674.69 | 3388.85 | 80.03 | 82.66 |
Seed | 208 | 348 | 43 | 49 | 89.44 | 170.52 | 0.14 | 0.21 | 653.83 | 815.59 | 12.57 | 13.13 |
Parameter | Unit | Organic Loading Rates (g VS L−1 d−1) | ||
---|---|---|---|---|
0.66 | 0.33 | 0.22 | ||
Biogas productivity | mL L−1 d−1 | 710 ± 85.57 | 2253 ± 120.10 | 2760 ± 115.33 |
Methane productivity | mL L−1 d−1 | 137.28 ± 23.96 | 894.61 ± 78.76 | 1395.67 ± 237.97 |
Methane content | % | 19.352 ± 2.48 | 39.72 ± 2.99 | 50.43 ± 7.31 |
Methane yield | mL g−1 VS | 15.81 ± 11.80 | 131.84 ±139.86 | 196.85 ± 195.49 |
pH | - | 5.77 ± 0.54 | 6.52 ± 0.69 | 6.78 ± 0.73 |
TS removal | % | 31.91 ± 3.42 | 33.16 ± 2.23 | 37.62 ± 2.27 |
VS removal | % | 82.69 ± 1.65 | 73.96 ± 0.84 | 57.10 ± 0.94 |
VFA | mg L−1 | 5915.83 ± 129.58 | 2990.52 ± 230.48 | 1283.19 ± 375.43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rattanapan, C.; Sinchai, L.; Tachapattaworakul Suksaroj, T.; Kantachote, D.; Ounsaneha, W. Biogas Production by Co-Digestion of Canteen Food Waste and Domestic Wastewater under Organic Loading Rate and Temperature Optimization. Environments 2019, 6, 16. https://doi.org/10.3390/environments6020016
Rattanapan C, Sinchai L, Tachapattaworakul Suksaroj T, Kantachote D, Ounsaneha W. Biogas Production by Co-Digestion of Canteen Food Waste and Domestic Wastewater under Organic Loading Rate and Temperature Optimization. Environments. 2019; 6(2):16. https://doi.org/10.3390/environments6020016
Chicago/Turabian StyleRattanapan, Cheerawit, Lalita Sinchai, Thunwadee Tachapattaworakul Suksaroj, Duangporn Kantachote, and Weerawat Ounsaneha. 2019. "Biogas Production by Co-Digestion of Canteen Food Waste and Domestic Wastewater under Organic Loading Rate and Temperature Optimization" Environments 6, no. 2: 16. https://doi.org/10.3390/environments6020016