Uptake of Trace Elements in Leaves of the Larrea Tridentata (DC.) Coville in Desert Washes of an Arid Environment
Abstract
:1. Introduction
2. Environmental Setting
3. Methods and Materials
3.1. Metals in Sediments
3.2. Metals in Leaves of the Larrea Tridentata (DC.) Coville
3.3. Correlation Plots, Box Plots, Transfer Ratios
3.4. Quality Control Measure
4. Results
4.1. Carnation Wash System
4.2. Eagle Wash System
4.3. Techatticup Wash System
5. Discussion
5.1. Comparisons of Trace Elements in L. Tridentata (DC.) Coville Leaves and Sediments in the Three Washes
5.2. Interwash Comparison
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hooda, P.S. Assessing Bioavailability of Soil Trace Elements. In Trace Elements in Soils; Hooda, P.S., Ed.; Wiley: West Sussex, UK, 2010; pp. 229–265. [Google Scholar]
- Appanna, V. Impact of heavy metals on an arctic Rhizobium. Bulletin Environ. Contam. Tox. 1991, 46, 450–455. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Polette, L.A.; Gardea-Torresdey, J.L.; Chianelli, R.R.; George, G.N.; Pickering, I.J.; Arenas, J. XAS and Microscopy Studies of the Uptake and Bio-transformation of Copper in Larrea tridentata (Creosote Bush). Microchem. J. 1998, 65, 227–236. [Google Scholar] [CrossRef]
- Morel, F.; Hering, J. Principles and Applications of Aquatic Chemistry, 1st ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1993; Volume 1. [Google Scholar]
- Reglero, M.M.; Monsalve-González, L.; Taggart, M.A.; Mateo, R. Transfer of metals to plants and red deer in an old lead mining area in Spain. Sci. Total Environ. 2008, 406, 287–297. [Google Scholar] [CrossRef]
- Ullah, A.; Heng, S.; Munis, M.F.H.; Fahad, S.; Yang, X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ. Exper. Bot. 2015, 117, 28–40. [Google Scholar] [CrossRef]
- Peralta-Videa, J.R.; Torresdey, G.; Gomez, E.; Tiemann, K.J.; Parsons, J.G.; Carrillo, G. Effect of mixed cadmium, copper, nickel, and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ. Poll. 2002, 119, 291–301. [Google Scholar] [CrossRef]
- Haque, N.; Peralta-Videa, J.R.; Jones, G.L.; Gill, T.E.; Gardea-Torresdey, J.L. Screening the Phytoremediation Potential of Desert Broom (Baccharis sarothroides Gray) Growing on Mine Tailings in Arizona, USA. Environ. Poll. 2008, 153, 362–368. [Google Scholar] [CrossRef]
- Andrade, S.A.L.; Silveira, A.P.D.; Mazzafera, P. Abruscular mycorrhiza alters metal uptake and the physiological response of Coffea arbica seedlings to increasing Zn and Cu concentrations in soil. Sci. Total Environ. 2010, 408, 5381–5391. [Google Scholar] [CrossRef] [PubMed]
- Apple, M.E.; Thee, C.I.; Smith-Longozo, V.L.; Cogar, C.R.; Wells, C.E.; Nowak, R.S. Arbuscular Mycorrhizal Colonization of Larrea Tridentata and Ambrosia Dumosa Roots Varies with Precipitation and Season in the Mojave Desert Symbiosis; University of Nevada: Las Vegas, NV, USA, 2004. [Google Scholar]
- Hildebrandt, U.; Regvar, M.; Bothe, H. Arbuscular mycorrhiza and heavy tolerance. Phytochemistry 2007, 68, 139–146. [Google Scholar] [CrossRef]
- Hancock, G.R.; Grabham, M.K.; Martin, P.; Evans, K.G.; Bollhöfer, A. A methodology for the assessments of rehabilitation success of post mining landscapes-sediment and radionuclide transport at the former Nabarlek uranium mine, Northern Territory, Australia. Sci. Total Environ. 2006, 354, 103–119. [Google Scholar] [CrossRef]
- Gardea-Torresdey, J.L.; Polette, L.; Arteaga, S.; Tiemann, K.J.; Bibb, J.; Gonzalez, J.H. Determination of the content of hazardous heavy metals on Larrea tridentata grown around a contaminated area. In Proceedings of the Eleventh Annual EPA Conf. on Hazardous Waste Research, (HSRC/WERC) Joint Conference on the Environment, Albuquerque, NM, USA, 21–23 May 1996; Erickson, L.R., Tillison, D.L., Grant, S.C., McDonald, J.P., Eds.; pp. 660–669. [Google Scholar]
- Gardea-Torresdey, J.L.; Hernandez, A.; Tiemann, K.J.; Bibb, J.; Rodriguez, O. Adsorption of toxic metal ions from solution by inactivated cells of Larrea tridentata (creosote bush). J. Hazard Subst. Res. 1998, 1, 3. [Google Scholar] [CrossRef]
- Gardea-Torresdey, J.L.; Bibb, J.; Tiemann, K.J.; Gonzalez, J.H.; Arenas, J. Adsorption of Copper Ions from Solution by Heavy Metal Stressed Larrea Tridentata (Creosote Bush) Biomass. In Proceedings of the Eleventh Annual EPA Conf. on Hazardous Waste Research (HSRC/WERC) Joint Conference on the Environment, Albuquerque, NM, USA, 21–23 May 1996; Erickson, L.R., Tillison, D.L., Grant, S.C., McDonald, J.P., Eds.; pp. 638–648. [Google Scholar]
- Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. African J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Briat, J.F.; Labrun, M. Plant responses to metal toxicity. Comptes Rendus de l’Académie des Sci.-Series III-Sci. de la Vie 1999, 322, 43–54. [Google Scholar] [CrossRef]
- McAuliffe, J.R.; Hamerlynck, E.P.; Eppes, M.C. Landscape dynamics fostering the development and persistence of long-lived creosote bush (Larrea tridentata) clones in the Mojave Desert. J. Arid Environ. 2007, 69, 96–126. [Google Scholar] [CrossRef]
- Schafer, J.L.; Mudrak, E.L.; Haines, C.E.; Parag, H.A.; Moloney, K.A.; Holzapfel, C. The association of native and non-native annual plants with Larrea tridentata (creosote bush) in the Mojave and Sonoran Deserts. J. Arid Environ. 2012, 87, 129–135. [Google Scholar] [CrossRef]
- Kim, S.J.; Vassão, D.G.; Moinuddin, S.G.A.; Bedgar, D.L.; Davin, L.B.; Lewis, N.G. Allyl/propenyl phenol synthases from the creosote bush and engineering production of specialty/commodity chemicals, eugenol/isoeugenol, in Escherichia coli. Arch. Biochem. Biophys. 2014, 541, 37–46. [Google Scholar] [CrossRef]
- Visioli1, G.; Vamerali, T.; Mattarozzi, M.; Dramis, L.; Sanangelantoni, A.M. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens. Front. Plant Sci. 2015, 6, 638. [Google Scholar] [CrossRef] [Green Version]
- Eilitta, M.; Mureithi, J.; Derpsch, R. Green Manure/Cover Crop Systems of Smallholder Farmers: Experiences from Tropical and Subtropical Regions; Springer Netherlands: Heidelberg, Germany, 2004; p. 355. [Google Scholar]
- Naumburg, E.; Loik, M.E.; Smith, S.D. Photosynthetic responses of Larrea tridentata to seasonal temperature extremes under elevated CO2. New Phytol. 2004, 162, 323–330. [Google Scholar] [CrossRef]
- Runyon, E.H. The Organization of the Creosote Bush with Respect to Drought. Ecology 1934, 15, 128–138. [Google Scholar] [CrossRef]
- USEPA. Test Methods for Evaluating Solids and Wastes—Physical/Chemical Methods; U.S. Environmental Protection Agency: Washington, DC, USA, 1986.
- Sims, D.B. Fate of Contaminants at an Abandoned Mining Site in an Arid Environment. Ph.D. Thesis, Kingston University, London, UK, 2011. [Google Scholar]
- Larsen, M.; Trapp, S.; Pirandello, A. Removal of cyanide by woody plants. Chemosphere 2004, 54, 325–333. [Google Scholar] [CrossRef]
- Ross, C. Preserving the Culture While Closing the Holes-Abandoned Mine Reclamation in Nevada. In Proceedings of the 30th annual National Association of Abandoned Mine Land Program Conference, Durango, CO, USA, 26–29 October 2008. [Google Scholar]
- Prasad, M.N.V. Cadmium Toxicity and Tolerance in Vascular Plants. Environ. Exper. Bot. 1995, 35, 525–545. [Google Scholar] [CrossRef]
- An, Y.-J. Assessment of comparative toxicities of lead and copper using plant Assay. Chemosphere 2006, 62, 1359–1365. [Google Scholar] [CrossRef] [PubMed]
- Mackay, W.P.; Mena, R.; Pingitore, N.E.; Redetzke, K.; Freeman, C.E.; Newman, H.; Gardea, J.; Navarro, H. Seasonal changes in concentration and distribution of heavy metals in creosote bush, Larrea tridentata (Zygophyllaceae), tissues in the El Paso, TX/Ciudad Juarez, Mexico area. SIDA Contrib. Bot. 1998, 18, 287–296. [Google Scholar]
- Sheppard, S.D.; Evenden, W.G. Critical compilation and review of plant/soil concentration ratios for uranium, thorium and lead. J. Environ. Radio. 1988, 8, 255–285. [Google Scholar] [CrossRef]
- Sheppard, S.C.; Evenden, W.G. Characteristics of plant concentration ratios assessed in a 64-site field survey of 23 elements. J. Environ. Radio. 1990, 11, 15–36. [Google Scholar] [CrossRef]
- Vandenhove, H.; Olyslaegers, G.; Sanzharova, N.; Shubina, O.; Reed, E.; Shang, Z.; Velasco, H. Proposal for new best estimates of the soil-to-plant transfer factor U, Th, Ra, and Po. J. Environ. Radio. 2009, 100, 721–732. [Google Scholar] [CrossRef]
- Sims, D.B.; Hooda, P.S.; Gillmore, G.K. Sediment Contamination along Desert Wash Systems from Historic Mining Sites in a Hyperarid Region of Southern Nevada, USA. Soil Sed. Contam. 2013, 22, 737–752. [Google Scholar] [CrossRef]
- Sims, D.B.; Collumb, C.; Hodge, V.F.; Vatalis, K.I.; George, V. Larrea Tridentata Uptake of Trace Metals in Mine Tailings of an Arid Region. Int. J. Plant Soil Sci. 2015, 9, 1–11. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Lin, Z.-Q.; Arroyo, I.; Terry, N. Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere 2005, 60, 1203–1213. [Google Scholar] [CrossRef]
- Gardea-Torresdey, J.L.; Peralta-Videa, J.R.; Montes, M.; de la Rosa, G.; Corral-Diaz, B. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: Impact on plant growth and uptake of nutritional elements. Bioresour. Tech. 2004, 92, 229–235. [Google Scholar] [CrossRef] [PubMed]
Sample Location (meter) | pH | Hg | Ag | As | Ba | Cd | Cr | Pb | Se |
---|---|---|---|---|---|---|---|---|---|
Background | 8.5 | <0.01 | <0.01 | 37 | 6.88 | <0.01 | 0.629 | <0.05 | 6.14 |
Source | 8.5 | 0.11 | <0.01 | 31 | 18.4 | <0.01 | 6.18 | <0.05 | 0.514 |
50 | 8.5 | <0.01 | <0.01 | 6.2 | 15 | <0.01 | 6.07 | <0.05 | 0.359 |
100 | 8.2 | 0.10 | <0.01 | 44 | 4.5 | <0.01 | 0.656 | <0.05 | 21.1 |
200 | 8.4 | 0.11 | <0.01 | 17.9 | 4.18 | <0.01 | 0.388 | <0.05 | 17.3 |
400 | 8.6 | 0.09 | <0.01 | 16.8 | 4.20 | <0.01 | 0.394 | <0.05 | 16.7 |
1000 | 8.5 | <0.01 | <0.01 | 4.97 | 37.5 | <0.01 | 0.445 | <0.05 | 13.1 |
2000 | 8.4 | 0.10 | <0.01 | <0.05 | 1.74 | <0.01 | 0.741 | <0.05 | 7.47 |
4000 | 8.4 | 0.14 | <0.01 | 3.32 | 5.94 | <0.01 | <0.01 | <0.05 | 8.11 |
6000 | 8.5 | 0.13 | <0.01 | 0.08 | 7.62 | <0.01 | 1.06 | <0.05 | 10.4 |
STDV | - | 0.06 | - | 15.6 | 11.8 | - | 2.6 | - | 7.36 |
Mean | - | 0.09 | - | 14.1 | 11.9 | - | 1.94 | - | 9.79 |
Max | 8.6 | 0.14 | - | 44.3 | 37.5 | - | 6.18 | - | 21.1 |
Min | 8.2 | - | - | - | 1.74 | - | - | - | 0.36 |
Sample Location (meter) | pH | Hg | Ag | As | Ba | Cd | Cr | Pb | Se |
---|---|---|---|---|---|---|---|---|---|
Background | 8.5 | <0.01 | <0.01 | <0.05 | 2.73 | <0.01 | 0.198 | <0.05 | 9.7 |
Source | 8.4 | <0.01 | <0.01 | <0.05 | 4.12 | <0.01 | 0.875 | <0.05 | 12.1 |
50 | 8.5 | 0.09 | <0.01 | <0.05 | 4.52 | <0.01 | 1.01 | <0.05 | 11.4 |
100 | 8.3 | 0.08 | <0.01 | <0.05 | 5.56 | <0.01 | 0.241 | <0.05 | 21.5 |
200 | 8.5 | 0.09 | <0.01 | <0.05 | 11.0 | <0.01 | 0.545 | <0.05 | 12.4 |
400 | 8.4 | <0.01 | <0.01 | <0.05 | 9.72 | <0.01 | 0.909 | <0.05 | 34.7 |
1000 | 8.5 | 0.13 | <0.01 | <0.05 | 10.9 | <0.01 | 0.203 | <0.05 | 11.3 |
2000 | 8.5 | 0.11 | <0.01 | <0.05 | 12.2 | <0.01 | 0.535 | <0.05 | 11.4 |
4000 | 8.2 | 0.121 | <0.01 | 0.103 | 14.5 | <0.01 | 0.589 | <0.05 | 18.6 |
6000 | 8.5 | 0.12 | <0.01 | 0.152 | 13.8 | <0.01 | 0.503 | <0.05 | 12.21 |
STDV | - | 0.05 | - | 0.05 | 4.10 | - | 0.28 | - | 7.46 |
Mean | - | 0.08 | - | 0.03 | 9.04 | - | 0.63 | - | 15.88 |
Max | 8.5 | 0.121 | - | 0.152 | 14.50 | - | 1.01 | - | 34.7 |
Min | 8.2 | - | - | - | 4.12 | - | 0.20 | - | 11.3 |
Sample Location (meter) | pH | Hg | Ag | As | Ba | Cd | Cr | Pb | Se |
---|---|---|---|---|---|---|---|---|---|
Background | 8.4 | <0.01 | <0.01 | <0.05 | 2.83 | <0.01 | 0.191 | <0.05 | 13.4 |
Source | 8.4 | 0.118 | <0.01 | 0.144 | 3.48 | <0.01 | 0.842 | <0.05 | 13.9 |
50 | 8.3 | 0.089 | <0.01 | 13.8 | 2.59 | <0.01 | <0.01 | <0.05 | 13.9 |
100 | 8.6 | 0.104 | <0.01 | 33 | 3.78 | <0.01 | <0.01 | <0.05 | 15.4 |
200 | 8.5 | <0.01 | <0.01 | 10.1 | 1.88 | <0.01 | 0.291 | <0.05 | 5.35 |
400 | 8.5 | 0.115 | <0.01 | <0.05 | 3.1 | <0.01 | 0.131 | <0.05 | 2.76 |
1000 | 8.5 | 0.125 | <0.01 | 11.0 | 3.35 | <0.01 | 0.922 | <0.05 | <0.05 |
2000 | 8.3 | 0.077 | <0.01 | 9.12 | 3.7 | <0.01 | 0.081 | <0.05 | 10.8 |
4000 | 8.2 | 0.051 | <0.01 | 8.41 | 3.21 | <0.01 | 0.078 | <0.05 | 9.75 |
6000 | 8.5 | 0.054 | <0.01 | 8.21 | 3.31 | <0.01 | 0.071 | <0.05 | 9.41 |
STDV | - | 0.04 | - | 9.71 | 0.59 | - | 0.36 | - | 5.32 |
Mean | - | 0.08 | - | 10.44 | 3.16 | - | 0.27 | - | 9.03 |
Max | 8.6 | 0.13 | - | 33.16 | 3.78 | - | 0.92 | - | 15.4 |
Min | 8.2 | - | - | - | 1.88 | - | - | - | - |
Element | STDV | Mean |
---|---|---|
Hg | 0.29 | 0.29 |
As 1 | 3.01 | 1.28 |
Ba | 0.07 | 0.10 |
Cr | 0.80 | 0.23 |
Se | 6.56 | 3.66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sims, D.B.; Collumb, C.J.; Hudson, A.C.; Walton, D.J. Uptake of Trace Elements in Leaves of the Larrea Tridentata (DC.) Coville in Desert Washes of an Arid Environment. Environments 2019, 6, 58. https://doi.org/10.3390/environments6060058
Sims DB, Collumb CJ, Hudson AC, Walton DJ. Uptake of Trace Elements in Leaves of the Larrea Tridentata (DC.) Coville in Desert Washes of an Arid Environment. Environments. 2019; 6(6):58. https://doi.org/10.3390/environments6060058
Chicago/Turabian StyleSims, Douglas B., Christopher J. Collumb, Amanda C. Hudson, and Douglas J. Walton. 2019. "Uptake of Trace Elements in Leaves of the Larrea Tridentata (DC.) Coville in Desert Washes of an Arid Environment" Environments 6, no. 6: 58. https://doi.org/10.3390/environments6060058
APA StyleSims, D. B., Collumb, C. J., Hudson, A. C., & Walton, D. J. (2019). Uptake of Trace Elements in Leaves of the Larrea Tridentata (DC.) Coville in Desert Washes of an Arid Environment. Environments, 6(6), 58. https://doi.org/10.3390/environments6060058