Estimating Release of Trace Elements from an Area with Historical Open Pit Mining of Alum Shale Using Mass Transport and Element/Sulfate Ratios Calculations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Sampling and Analysis
3. Results and Discussion
3.1. Upstream Versus Downstream Concentrations
3.2. Localities Around the Waste Deposit
3.3. Piper Diagram and PCA
3.4. Pit Lakes
3.5. Mass Transport
3.6. Trace Element/Sulfate Ratios
3.7. Water Balance, Waste Deposit
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luek, A.; Rasmussen, J.B. Chemical, Physical and Biological Factors Shape Littoral Invertabrate Community Structure in Coal-Mining End-Pit Lakes. Environ. Manag. 2017, 59, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, D.K. Mine Waters: Acidic to circumneutral. Elements 2011, 7, 393–398. [Google Scholar] [CrossRef]
- Lattuada, R.M.; Menezes, C.T.B.; Pavei, P.T.; Peralba, M.C.R.; Dos Santos, J.H.Z. Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil. J. Hazard. Mater. 2009, 163, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Griffith, M.B.; Norton, S.B.; Alexander, L.C.; Pollard, A.I.; LeDuc, S.D. The effect of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: A review. Sci. Total Environ. 2012, 417, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.A.; Belmer, N.; Davies, P.J. Coal Mine Water Pollution and Ecological Impairment of One of Australia’s Most ‘Protected’ High Conservation-Value Rivers. Water Air Soil Pollut. 2017, 228, 90. [Google Scholar] [CrossRef]
- Parviainen, A.; Loukola-Ruskeeniemi, K. Environmental impact of mineralised black shales. Earth Sci. Rev. 2019, 192, 65–90. [Google Scholar] [CrossRef]
- Perkins, R.B.; Mason, C.E. The relative mobility of trace elements from short-term weathering of a black shale. Appl. Geochem. 2015, 56, 67–79. [Google Scholar] [CrossRef]
- Yu, C.; Lavergren, U.; Peltola, P.; Drake, H.; Bergbäck, B.; Åström, M.E. Retention and transport of arsenic, uranium and nickel in a black shale setting revealed by a long-term humidity cell test and sequential chemical extractions. Chem. Geol. 2014, 363, 134–144. [Google Scholar] [CrossRef]
- Jin, L.; Mathur, R.; Rother, G.; Cole, D.; Bazilevskaya, E.; Williams, J.; Carone, A.; Brantley, S. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering. Chem. Geol. 2013, 356, 50–63. [Google Scholar] [CrossRef]
- Yu, C.; Peng, B.; Peltola, P.; Tang, X.; Xie, S. Effect on weathering on abundance and release of potentially toxic elements in soils developed on Lower Cambrian black shales, P.R. China. Environ. Geochem. Health 2012, 34, 375–390. [Google Scholar] [CrossRef]
- Lavergren, U.; Åström, M.E.; Falk, H.; Bergbäck, B. Metal dispersion in groundwater in an area with natural and processed black shale—Nationwide perspective and comparison with acid sulfate soils. Appl. Geochem. 2009, 24, 359–369. [Google Scholar] [CrossRef]
- Andersson, A.; Dahlman, B.; Gee, D.G.; Snäll, S. The Scandinavian Alum Shales; Ser. Ca. No. 56; Sveriges Geologiska Undersökning: Uppsala, Sweden, 1985. [Google Scholar]
- Armands, G. Geochemical studies of uranium, molybdenum and vanadium in a Swedish alum shale. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 1972. [Google Scholar]
- Buchardt, B.; Thorshøj Nielsen, A.; Schovsbo, N.H. Alun Skiferen i Skandinavien. Geol. Tidsskr. 1997, 3, 1–30. (In Danish) [Google Scholar]
- Puura, E. Weathering of Mining Waste Rock Containing Alum Shale and Limestone: A Case-Study of the Maardu Dumps, Estonia. Ph.D. Thesis, Kungliga Tekniska Hogskolan, Stockholm, Sweden, 1998. [Google Scholar]
- Kalinowski, B.E.; Johnsson, A.; Arlinger, J.; Pedersen, K.; Ödegaard-Jensen, A.; Edberg, F. Microbial Mobilization of Uranium from Shale Mine Waste. Geomicrobiol. J. 2006, 23, 3–4. [Google Scholar] [CrossRef]
- Lavergren, U. Metal Dispersion from Natural and Processed Black Shale. Ph.D. Thesis, University of Kalmar, Kalmar, Sweden, 2008. [Google Scholar]
- Andrén, J. Potentiellt hög Urlakning av Arsenik Till Grundvattnet Från Rödfyrshög i Kinne-Kleva. (Potentially High Arsenic Leaching to the Groundwater from Heap of Rödfyr in Kinne-Kleva). Bachelor’s Thesis, Uppsala University, Uppsala, Sweden, 2016. (In Swedish with abstract in English). [Google Scholar]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Wällstedt, T.; Björkvald, L.; Gustafsson, J.P. Increasing concentrations of arsenic and vanadium in (southern) Swedish streams. Appl. Geochem. 2010, 25, 1162–1175. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Tang, Y.; Yang, K.; Rouff, A.A.; Elzinga, E.J.; Huang, J.-H. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site. J. Hazard. Mater. 2014, 264, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Cumberland, S.A.; Douglas, G.; Grice, K.; Moreau, J.W. Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth Sci. Rev. 2016, 159, 160–185. [Google Scholar] [CrossRef] [Green Version]
- Smedley, P.L.; Kinniburgh, D.G. Molybdenum in natural waters: A review of occurrence, distributions and controls. Appl. Geochem. 2017, 84, 387–432. [Google Scholar] [CrossRef] [Green Version]
- Chappaz, A.; Lyons, T.W.; Gregory, D.D.; Reinhard, C.T.; Gill, B.C.; Li, C.; Large, R.R. Does pyrite act as an important host for molybdenum in modern and ancient euxinic sediments? Geochim. Cosmochim. Acta 2014, 126, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Schovsbo, N.H.; Nielsen, A.T.; Gautier, D.L. The Lower Palaeozoic shale gas play in Denmark. Geol. Surv. Denmark Greenland Bull. 2014, 31, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Zhongbao, L.; Bo, G.; Dongjun, F.; Xuehui, C.; Wei, D.; Yang, W.; Donghui, L. Mineral composition of the Lower Cambrian black shale in the Upper Yangtze region and its significance in oil and shale gas exploration. Nat. Gas Ind. B 2017, 4, 340–345. [Google Scholar]
- Hade, S.; Soesoo, A. Estonian Graptolite Argillites Revisited: A Future Resource? Oil Shale 2014, 31, 4–18. [Google Scholar] [CrossRef] [Green Version]
- SMHI. Ladda ner Meteorologiska Observationer. Available online: https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer/#param=precipitation24HourSum,stations=all (accessed on 12 February 2020).
- Kumla Kommun. Water Monitoring Program in Kvarntorp; Annual Reports 1993–2019; Kvarntorps Vatten: Örebro, Sweden, 1993. (In Swedish) [Google Scholar]
- Salomonsson, G. (Archive material, Arkivcentrum, Örebro, Sweden). Avledning av ammoniakvatten till Kvarntorpssjöarna, Terra Bona. Unpublished Report. 1970; 30p. (In Swedish) [Google Scholar]
- Tamm, O.F.S. Studier över klimatets humiditet i Sverige. In Bulletin of the Royal School of Forestry; Bulletin of the Royal School of Forestry: Stockholm, Sweden, 1959; Volume 32, p. 50, (In Swedish and German). [Google Scholar]
- Åhlgren, K.; Sjöberg, V.; Grawunder, A.; Allard, B.; Bäckström, M. Chemistry of Acidic and Neutralized Alum Shale Pit Lakes 50 Years after Mine Closure, Kvarntorp, Sweden. Mine Water Environ. 2020, 39, 481–497. [Google Scholar] [CrossRef] [Green Version]
- Johannesson, K.H.; Tang, J. Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system. J. Hydrol. 2009, 378, 13–28. [Google Scholar] [CrossRef]
- Schneider, A.B.; Koschinsky, A.; Kiprotich, J.; Poehle, S.; do Nascimento, P.C. An experimental study on the mixing behavior of Ti, Zr, V and Mo in the Elbe, Rhine and Weser estuaries. Estuar. Coast. Shelf Sci. 2016, 170, 34–44. [Google Scholar] [CrossRef]
- Sun, W.; Selim, H.M. Kinetic modeling of molybdenum sorption and transport in soils. Environ. Sci. Pollut. 2020, 27, 20227–20234. [Google Scholar] [CrossRef]
- Bauer, S.; Blomqvist, S.; Ingri, J. Distribution of dissolved and suspended particulate molybdenum, vanadium and tungsten in the Baltic Sea. Mar. Chem. 2017, 196, 135–147. [Google Scholar] [CrossRef]
- Holm, T.; Ekholm, D.; Johansson, L.; Bäckström, M.; Rehn, I.; Forsmark, T.; Axenhamn, L.; Sundblad, B. Kvarntorpsområdet—Studie av Kvarntorpshögen; Report; SWECO VIAK AB and SGU: Gothenburg, Sweden, 2005. (In Swedish) [Google Scholar]
- Monur, M.C.; Ptacek, C.J.; Hayashi, M.; Blowes, D.; Birks, S.J. Seasonal cycling and mass-loading of dissolved metals and sulfate discharging from an abandoned mine site in northern Canada. Appl. Geochem. 2014, 41, 176–188. [Google Scholar] [CrossRef]
- Chi Fru, E.; Hemmingsson, C.; Callac, N.; Perez, N.; Panova, E.G.; Broman, C.; el Albani, A. Atmospheric weathering of Scandinavian alum shales and the fractionation of C, N and S isotopes. Appl. Geochem. 2016, 74, 94–108. [Google Scholar] [CrossRef]
- Lerat, J.G.; Sterpenich, J.; Mosser-Ruck, R.; Lorgeoux, C.; Bihannic, I.; Fialips, C.I.; Schovsbo, N.H.; Pironon, J.; Gaucher, E.C. Metals and radionuclides (MaR) in the Alum Shale of Denmark: Identification of MaR-bearing phases for the better management of hydraulic fracturing waters. J. Nat. Gas Sci. Eng. 2018, 53, 139–152. [Google Scholar] [CrossRef]
- Åhlgren, K.; Sjöberg, V.; Bäckström, M. Leaching of U, V, Ni and Mo from alum shale waste as a function of redox and pH–suggestion for a leaching method. In Mine Water: Risk to Opportunity, Proceedings of the 11th ICARD/IMWA: Pretoria, South Africa, 10–14 September 2018; Wolkersdorfer, C., Sartz, L., Weber, A., Burgess, J., Tremblay, G., Eds.; Tshwane University of Technology: Pretoria, South Africa, 2018; pp. 782–787. [Google Scholar]
- Falk, H.; Lavergren, U.; Bergbäck, B. Metal mobility in alum shale from Öland, Sweden. J. Geochem. Explor. 2006, 90, 157–165. [Google Scholar] [CrossRef]
- Kim, D.-M.; Yun, S.-T.; Cho, Y.; Hong, J.-H.; Batsaikhan, B.; Oh, J. Hydrochemical assessment of environmental status of surface and ground water in mine areas in South Korea: Emphasis on geochemical behaviors of metals and sulfate in ground water. J. Geochem. Explor. 2017, 183, 33–45. [Google Scholar] [CrossRef]
- Jones, A.; Rogerson, M.; Greenway, G.; Potter, H.A.B.; Mayes, W.M. Mine water geochemistry and metal flux in a major historic Pb-Zn-F orefield, the Yorkshire Pennines, UK. Environ. Sci. Pollut. Res. 2013, 20, 7570–7581. [Google Scholar] [CrossRef] [PubMed]
- Matern, K.; Lux, C.; Ufer, K.; Kaufhold, S.; Mansfeldt, T. Removal of nickel from groundwater by iron and manganese oxides. Int. J. Environ. Sci. Technol. 2018, 16, 2895–2904. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, L.; Chai, L.; Liao, Y.; Yao, W.; Xiao, R. Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate. Environ. Sci. Pollut. 2015, 22, 12624–12632. [Google Scholar] [CrossRef]
- Xu, N.; Christodoulatos, C.; Braida, W. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: Effect of pH and competitive anions. Chemosphere 2006, 62, 1726–1735. [Google Scholar] [CrossRef]
- Yuan, F.; Cai, Y.; Yang, S.; Liu, Z.; Chen, L.; Lang, Y.; Wang, K.; Wang, S. Simultaneous sequestration of uranyl and arsenate at the goethite/water interface. J. Radioanal. Nucl. Chem. 2017, 311, 815–831. [Google Scholar] [CrossRef]
- Fekete, B.M.; Vörösmarty, C.J.; Roads, J.O.; Willmott, C.J. Uncertainties in Precipitation and Their Impacts on Runoff Estimates. J. Clim. 2004, 17, 294–304. [Google Scholar] [CrossRef]
- Peel, M.C.; McMahon, T.A.; Finlayson, B.L. Vegetation impact on mean annual evapotranspiration at a global catchment scale. Water Resour. Res. 2010, 46, 16. [Google Scholar] [CrossRef]
Locality | Period | n | Also Included in Monitoring Programme |
---|---|---|---|
W1, upstream west | 2015–2019 | 37 | x |
W2, upstream west | 2015–2019 | 26 | |
W3, Söderhavet | 2015–2019 | 37 | |
W4, Nordsjön | 2015–2019 | 37 | |
5, stagnant water | 2015–2016 | 6 | |
6, stagnant water | 2015–2019 | 25 | |
W7, Serpentine | 2015–2019 | 37 | x |
W8, western stream | 2015–2019 | 36 | |
W9, downstream west | 2015–2019 | 37 | x |
10, industrial area | 2015–2019 | 37 | |
E11, upstream east | 2015–2019 | 33 | x |
E12, Norrtorpssjön | 2015–2019 | 37 | x |
E13, downstream east | 2015–2019 | 37 | x |
E14, downstream west | 2015–2019 | 37 | |
E15, downstream east | 2015–2019 | 35 | |
W+E 16 | 2015–2019 | 36 | |
17, downstream | 2015–2017 | 14 | |
18, Almbro | 2015–2019 | 37 | |
19, Surpölen | 2017–2019 | 4 | |
20, eastern inlet Söderhavet | 2019 | 1 | |
21, Mellansjön | 2019 | 1 | |
22, Alaborg south | 2019 | 1 | |
23, Alaborg north | 2019 | 1 | |
24, ditch | 2016–2019 | 6 | |
25, ditch | 2018–2019 | 2 | |
Cooling water | 2018 | 1 |
mg/kg dw | Median Drill Cores, Shale n = 14 | Shale 8–11 | Shale 53 | Fines 38 | Fines 39 | Shale Ash 50 | Shale Ash 42 |
---|---|---|---|---|---|---|---|
Al | 60,000 | 49,000 | 58,000 | 54,000 | 56,000 | 79,000 | 87,000 |
Ca | 5790 | 5500 | 1700 | 18,000 | 23,000 | 20,000 | 2300 |
Fe | 50,900 | 29,000 | 30,000 | 40,000 | 30,000 | 80,000 | 93,000 |
K | 29,000 | 32,000 | 36,000 | 30,000 | 32,000 | 37,000 | 44,000 |
Mg | 4900 | 3800 | 5100 | 3800 | 3600 | 3600 | 3600 |
Mn | 230 | <80 | 150 | 150 | <80 | 230 | 230 |
S | 57,100 | 30,200 | 29,500 | 47,100 | 49,400 | 16,000 | 4,800 |
As | 65 | 35 | 43 | 44 | 95 | 26 | 37 |
Mo | 139 | 159 | 197 | 111 | 179 | 317 | 150 |
Ni | 114 | 27 | 77 | 58 | 28 | 56 | 84 |
Sr | 72 | 84 | 69 | 73 | 90 | 100 | 90 |
U | 96 | 74 | 115 | 73 | 66 | 177 | 194 |
V | 488 | 444 | 632 | 464 | 472 | 752 | 696 |
Zn | 45 | 24 | 45 | 98 | 46 | 27 | 32 |
EC | Alk | SO42− | Cl− | Ca | Fe | K | Mg | As | Li | Mn | Mo | Ni | Sr | U | V | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | µS/cm | meq/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | µg/L | |
W1 (n = 37) | 7.45 | 256 | 2.04 | 27 | 12 | 48 | 0.49 | 2.3 | 2.1 | 0.82 | 0.9 | 48 | 3.8 | 2.9 | 63 | 4.8 | 0.63 |
W2 (n = 26) | 7.65 | 315 | 2.68 | 30 | 11 | 66 | 0.38 | 2 | 2.1 | 0.75 | 1.2 | 41 | 3.4 | 3 | 82 | 8 | 0.61 |
W3 (n = 37) | 7.59 | 808 | 2.62 | 200 | 99.9 | 121 | 0.32 | 20.3 | 9.2 | 0.44 | 57.9 | 95 | 10.1 | 10.9 | 260 | 16 | 0.08 |
W4 (n = 37) | 7.64 | 874 | 2.36 | 306 | 71 | 156 | 0.23 | 22.7 | 12.2 | 0.36 | 62.9 | 208 | 10.8 | 13.1 | 301 | 19.9 | 0.08 |
5 (n = 6) | 6.49 | 1180 | 4.62 | 486 | 13.3 | 277 | 12.85 | 5.1 | 10.1 | 2.25 | 11.2 | 2970 | 5.9 | 17.5 | 272 | 7.2 | 0.5 |
6 (n = 25) | 7.24 | 3190 | 3.8 | 2190 | 12 | 423 | 1.64 | 302 | 157 | 1.24 | 791 | 1390 | 274 | 30.2 | 1240 | 42.2 | 0.28 |
W7 (n = 37) | 6.87 | 2180 | 0.75 | 1560 | 50 | 285 | 0.67 | 124 | 136 | 0.29 | 635 | 1220 | 3.9 | 73.6 | 326 | 8.1 | 0.2 |
W8 (n = 36) | 7.49 | 946 | 2.58 | 354 | 71.4 | 167 | 0.58 | 25.7 | 17.5 | 0.4 | 78.4 | 361 | 10.6 | 12.6 | 319 | 20.9 | 0.17 |
W9 (n = 37) | 7.26 | 733 | 1.86 | 260 | 38.8 | 109 | 0.72 | 18.8 | 14.9 | 0.49 | 67.3 | 346 | 6.7 | 13.4 | 185 | 12.9 | 0.24 |
10 (n = 37) | 6.49 | 1090 | 1.65 | 564 | 46 | 212 | 12.3 | 13.4 | 8.8 | 2.3 | 27.1 | 1330 | 11.5 | 73.7 | 206 | 21.5 | 3.96 |
E11 (n = 33) | 7.69 | 462 | 2.99 | 55 | 16.7 | 91 | 0.18 | 2.3 | 2.7 | 0.58 | 1.3 | 23 | 3.5 | 3.2 | 102 | 10.2 | 0.49 |
E12 (n = 37) | 7.29 | 2030 | 1.49 | 1300 | 142 | 471 | 0.18 | 29.8 | 42.8 | 0.31 | 150.5 | 370 | 5.9 | 17.8 | 1810 | 26.2 | 0.05 |
E13 (n = 37) | 7.36 | 929 | 2.27 | 427 | 53.3 | 178 | 0.28 | 9.8 | 12.8 | 0.43 | 43.1 | 160 | 4.4 | 9.6 | 538 | 17 | 0.29 |
E14 (n = 37) | 7.66 | 705 | 1.86 | 256 | 41.3 | 106 | 0.44 | 18.6 | 15.2 | 0.5 | 65.4 | 280 | 6.5 | 12.6 | 185 | 11.9 | 0.29 |
E15 (n = 35) | 7.76 | 972 | 2.79 | 373 | 73 | 190 | 0.37 | 11 | 16.2 | 0.78 | 49.7 | 134 | 3.9 | 8 | 592 | 11.6 | 0.83 |
W+E 16 (n = 36) | 7.6 | 763 | 2.02 | 286 | 43.3 | 119 | 0.47 | 17.2 | 15.7 | 0.59 | 63.4 | 236 | 6 | 10.5 | 254 | 11.6 | 0.44 |
17 (n = 14) | 7.41 | 407 | 1.88 | 61 | 26.8 | 56 | 0.76 | 5.3 | 7.1 | 0.65 | 12.1 | 254 | 2.6 | 10.1 | 112 | 5.6 | 0.88 |
18 (n = 37) | 7.47 | 422 | 2.13 | 62 | 34 | 55 | 0.63 | 5.9 | 7.1 | 0.7 | 10 | 278 | 2.8 | 9.5 | 112 | 5.4 | 0.8 |
19 (n = 4) | 3.26 | 1800 | 0 | 1300 | 10.5 | 393 | 4.69 | 10.5 | 45 | 0.35 | 92 | 4570 | 0.4 | 46.6 | 1240 | 20.8 | 0.04 |
20 (n = 1) | 7.58 | 2280 | 2.8 | 610 | 450 | 280 | 1.13 | 76.3 | 19.4 | 0.61 | 334 | 826 | 19.2 | 45 | 1260 | 34.7 | 0.14 |
21 (n = 1) | 7.88 | 2200 | 2.25 | 230 | 620 | 219 | 0.07 | 76.6 | 7.7 | 0.91 | 282 | 42 | 73.7 | 34.7 | 900 | 19.7 | 0.64 |
22 (n = 1) | 7.89 | 465 | 2.99 | 140 | 3.7 | 104 | 0.07 | 3.9 | 5 | 0.36 | 4 | 43 | 0.9 | 3.4 | 98 | 0.2 | 0.02 |
23 (n = 1) | 7.72 | 373 | 3.7 | 63 | 3.5 | 79 | 0.08 | 3.1 | 3.9 | 0.89 | 3.8 | 81 | 2.4 | 3.4 | 94 | 2.1 | 0.05 |
24 (n = 6) | 6.02 | 1260 | 0.53 | 809 | 43.9 | 267 | 10.3 | 25.9 | 21.7 | 1.08 | 84.5 | 2200 | 6.4 | 163 | 243 | 17 | 2.8 |
25 (n = 2) | 5.9 | 1190 | 0.22 | 785 | 37 | 196 | 13.6 | 49.2 | 56.2 | 2.55 | 288 | 2810 | 6.4 | 137 | 174 | 20.4 | 1.42 |
Cooling water | 6.59 | 89 | 0.48 | 6.9 | 8.2 | 13 | 0.19 | 0.8 | 0.9 | 0.74 | 0.6 | 24 | 2.25 | 0.5 | 19 | 0.37 | 0.17 |
Nordsjön Outlet *, Mm3 (W4) | Serpentine System *, Mm3 (W7) | Cooling Water *, Mm3 | Downstream Waterflow * Mm3 (W9) | Precipitation, Fortum *, mm | Average Annual Temperature, °C, Örebro Airport 95130 ** | |
---|---|---|---|---|---|---|
2015 | 5.983 | 0.271 | 1.249 | 7.5 | 672 | 8.1 |
2016 | 2.888 | 0.185 | 1.258 | 4.331 | 414 | 7.8 |
2017 | 2.510 | 0.169 | 1.252 | 3.93 | 651 | 7.7 |
2018 | 3.694 | 0.214 | 1.255 | 5.163 | 469 | 8.2 |
2019 | 2.503 | 0.398 | 1.198 | 4.099 | 727 | 8.2 |
Locality | Catchment Area, km2 |
---|---|
W1 | 7.2 |
W2 | 12.8 |
W3 | 19.9 |
W4 | 21.9 |
W9 | 24.35 |
W14 | 29.88 |
E11 | 5.57 |
E12 | 0.52 |
E13 | 7.17 |
E15 | 20.5 |
W+E | 52.1 |
Annual Transport | W1 | W2 Upstream | W3 Söderhavet | W4 Nordsjön | Waste Deposit * | W7 Serpentine | Cooling Water | W9 West | W14 | E11 | E12 ** | E13 Eastern | E15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SO42−, tonnes | 16–40 | 37–60 | 430–500 | 730–1000 | 82.6 | 260–300 | 8 | 810–1360 | 1200–1700 | 29–60 | 435–630 | 493–671 | 360–1300 |
Cl−, tonnes | 4–18 | 15–47 | 190–280 | 170–250 | 0.9 | 8–10 | 10 | 150–500 (≤225) *** | 180–280 | 9–19 | 46–68 | 65–77 | 70–230 |
As, kg | 0.7–1.2 | 1.1–1.6 | 0.9–1.6 | 0.95–1.1 | 0.78 | 0.06–0.08 | 0.85 | 1.7–2.7 | 2.5–3.7 | 0.25–0.83 | 0.09–0.2 | 0.33–0.85 | 1.21–3.2 |
Li, kg | 0.65–1.75 | 1.7–2.7 | 109–221 | 132–220 | 31.6 | 96–220 | 0.8 | 245–368 | 301–446 | 0.82–1.5 | 49–80 | 50.4–80.7 | 42–166 |
Mo, kg | 2.2–5 | 4–17 (≤7) | 21–40 (≤25) | 28–42 | 3.6 | 0.85–3.3 | 2.4 | 26–39 | 34–50 | 2.3–4 | 0.4–1.6 | 3.9–5.01 | 4.6–13.8 |
Ni, kg | 5.8–29 (3.4–11.6) | 4.6–57 (≤11.4) | 23–90 (≤36) | 33–90 (≤44.5) | 8 | 14–39 (≤26.9) | 0.6 | 51–122 (≤87) | 54.5–95 (≤65) | 2.37–9.5 (≤4.8) | 5.7–11.6 | 8.39–13.98 | 12.8–32.5 |
U, kg | 4.6–7.6 | 11.5–16.5 | 32–48 | 47–65 | 7.6 | 1.1–4 | 0.45 | 44–61.5 | 51–90 | 6.3–9 | 6.9–9 | 14–17.4 | 16–37 |
V, kg | 0.59–1.04 | 0.74–1.77 | 0.43–1.77 | 0.2–0.97 | 0.44 | 0.03–0.17 | 0.2 | 1.14–1.5 | 1.33–2.7 | 0.227–0.56 | 0.009–0.28 | 0.22–0.74 | 1.77–3.5 |
pH | Ni (μg/L) | Mo (μg/L) | U (μg/L) | As (μg/L) | Zn (μg/L) | V (μg/L) | Sr (μg/L) | SO42− (mg/L) | |
---|---|---|---|---|---|---|---|---|---|
S 8–11, L/S 2 | 2.18 | 16,700 | 1410 | 23,000 | 6860 | 22,000 | 7510 | 815 | 15,000 |
S 8–11, L/S 8 | 2.89 | 508 | 18.9 | 671 | 24.0 | 680 | 24.3 | 167 | 660 |
S 53, L/S 2 | 2.85 | 5650 | 16.4 | 1770 | 33.2 | 8060 | 26.7 | 373 | 2100 |
S 53, L/S 8 | 3.62 | 168 | 3.54 | 45 | 2.90 | 252 | 0.098 | 16.1 | 94 |
F 38, L/S 2 | 2.19 | 10,100 | 645 | 9540 | 5680 | 18,600 | 206 | 317 | no data |
F 38, L/S 8 | 2.73 | 874 | 10.5 | 789 | 119 | 1590 | 1.21 | 346 | 2000 |
F 39, L/S 2 | 1.99 | 3310 | 4290 | 5890 | 8940 | 4000 | 2640 | 621 | 7700 |
F 39, L/S 8 | 2.78 | 381 | 308 | 541 | 413 | 446 | 136 | 494 | 2000 |
A 50, L/S 2 | 5.25 | 84.8 | 2460 | 8.19 | 17.9 | 395 | 180 | 420 | 1500 |
A 50, L/S 8 | 5.38 | 15.7 | 574 | 5.36 | 16.9 | 64.6 | 52.0 | 174 | 760 |
A 42, L/S 2 | 7.02 | 833 | 205 | 0.81 | 2.49 | 1.21 | 14.6 | 29.6 | 300 |
A 42, L/S 8 | 6.96 | 684 | 169 | 0.25 | 1.64 | 1.42 | 11.3 | 8.39 | 85 |
Ni/SO42− | Mo/SO42− | U/SO42− | As/SO42− | Zn/SO42− | V/SO42− | Sr/SO42− | |||
S 8–11, L/S 2 | 1.11 | 0.094 | 1.54 | 0.458 | 1.47 | 0.501 | 0.054 | ||
S 8–11, L/S 8 | 0.77 | 0.029 | 1.02 | 0.036 | 1.03 | 0.037 | 0.253 | ||
S 53, L/S 2 | 2.69 | 0.008 | 0.842 | 0.016 | 3.84 | 0.013 | 0.178 | ||
S 53, L/S 8 | 1.79 | 0.038 | 0.479 | 0.031 | 2.68 | 0.001 | 0.172 | ||
F 38, L/S 2 | – | – | – | – | – | – | – | ||
F 38, L/S 8 | 0.437 | 0.005 | 0.395 | 0.059 | 0.795 | 0.001 | 0.173 | ||
F 39, L/S 2 | 0.429 | 0.557 | 0.764 | 1.16 | 0.519 | 0.343 | 0.081 | ||
F 39, L/S 8 | 0.19 | 0.154 | 0.27 | 0.206 | 0.223 | 0.068 | 0.247 | ||
A 50, L/S 2 | 0.057 | 1.64 | 0.005 | 0.012 | 0.263 | 0.120 | 0.280 | ||
A 50, L/S 8 | 0.021 | 0.755 | 0.007 | 0.022 | 0.085 | 0.068 | 0.228 | ||
A 42, L/S 2 | 2.78 | 0.683 | 0.003 | 0.008 | 0.263 | 0.049 | 0.099 | ||
A 42, L/S 8 | 8.05 | 1.98 | 0.003 | 0.019 | 0.017 | 0.133 | 0.099 |
N | Ni/SO42− | Mo/SO42− | U/SO42− | As/SO42− | Zn/SO42− | V/SO42− | Sr/SO42− | |
---|---|---|---|---|---|---|---|---|
Shale/Fines, average | 1.059 | 0.126 | 0.759 | 0.281 | 1.508 | 0.138 | 0.165 | |
Shale/Fines/Shale ash, average | 1.666 | 0.540 | 0.484 | 0.184 | 1.017 | 0.121 | 0.169 | |
W1, Upstream west | 30 | 0.295 | 0.151 | 0.253 | 0.038 | 0.132 | 0.036 | 2.59 |
W2, Upstream east | 20 | 0.132 | 0.125 | 0.327 | 0.032 | 0.105 | 0.026 | 2.97 |
W3, Söderhavet | 30 | 0.055 | 0.049 | 0.092 | 0.003 | 0.028 | 0.0018 | 1.29 |
W4, Nordsjön | 30 | 0.081 | 0.043 | 0.080 | 0.002 | 0.019 | 0.0016 | 1.04 |
W7, Serpentine | 30 | 0.069 | 0.004 | 0.007 | 0.0003 | 0.002 | 0.00019 | 0.224 |
W9, Western system | 30 | 0.066 | 0.029 | 0.046 | 0.002 | 0.013 | 0.0012 | 0.720 |
E11, Upstream east | 26 | 0.136 | 0.163 | 0.263 | 0.039 | 0.075 | 0.024 | 2.35 |
E12, Norrtorpssjön | 30 | 0.019 | 0.005 | 0.023 | 0.0003 | 0.003 | 7.04 × 10−5 | 1.46 |
E13, Eastern system | 23 | 0.025 | 0.011 | 0.038 | 0.001 | 0.008 | 0.0013 | 1.52 |
Ni | Mo | U | As | Zn | V | |
---|---|---|---|---|---|---|
W3, Söderhavet | 30.3 | 11.0 | 5.26 | 61.3 | 36.3 | 67.2 |
W4, Nordsjön | 20.6 | 12.6 | 6.05 | 92.0 | 53.5 | 75.6 |
W7, Serpentine | 24.1 | 135 | 72.4 | 613 | 509 | 637 |
W9, Western system | 25.2 | 18.6 | 10.5 | 92.0 | 78.2 | 101 |
E12, Norrtorpssjön | 55.7 | 25.2 | 33.0 | 937 | 503 | 1 960 |
E13, Eastern system | 42.4 | 11.5 | 20.0 | 281 | 189 | 106 |
Ni | Mo | U | As | V | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Calc | Meas | Calc | Meas | Calc | Meas | Calc | Meas | Calc | Meas | |
W3, Söderhavet | 1700 | 56.5 | 340 | 30.5 | 210 | 40.0 | 770 | 12.5 | 73.9 | 1.1 |
W4, Nordsjön | 1300 | 61.5 | 440 | 35.0 | 340 | 56.0 | 94 | 1.03 | 44.6 | 0.59 |
W7, Serpentine | 640 | 26.5 | 280 | 2.08 | 180 | 2.55 | 43 | 0.07 | 63.7 | 0.10 |
W9, Western system | 2200 | 86.5 | 600 | 32.5 | 550 | 52.8 | 200 | 2.20 | 133 | 1.32 |
E12, Norrtorpssjön | 480 | 8.65 | 25 | 1.00 | 260 | 7.95 | 140 | 0.15 | 274 | 0.14 |
E13, Eastern system | 470 | 11.2 | 50 | 4.46 | 310 | 15.7 | 170 | 0.59 | 50.9 | 0.48 |
pH | Ni (%) | Mo (%) | U (%) | As (%) | Zn (%) | V (%) | |
---|---|---|---|---|---|---|---|
W3, Söderhavet | 7.60 | 96.7 | 90.9 | 81.0 | 98.4 | 97.3 | 98.5 |
W4, Nordsjön | 7.62 | 95.1 | 92.0 | 83.5 | 98.9 | 98.1 | 98.7 |
W7, Serpentine | 6.69 | 95.9 | 99.3 | 98.6 | 99.8 | 99.8 | 99.8 |
W9, Western system | 7.23 | 95.0 | 94.6 | 90.5 | 98.9 | 98.7 | 99.0 |
E12, Norrtorpssjön | 7.32 | 98.2 | 96.0 | 97.0 | 99.9 | 99.8 | 100 |
E13, Eastern system | 7.32 | 97.6 | 91.3 | 95.0 | 99.6 | 99.5 | 99.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Åhlgren, K.; Sjöberg, V.; Bäckström, M. Estimating Release of Trace Elements from an Area with Historical Open Pit Mining of Alum Shale Using Mass Transport and Element/Sulfate Ratios Calculations. Environments 2020, 7, 100. https://doi.org/10.3390/environments7110100
Åhlgren K, Sjöberg V, Bäckström M. Estimating Release of Trace Elements from an Area with Historical Open Pit Mining of Alum Shale Using Mass Transport and Element/Sulfate Ratios Calculations. Environments. 2020; 7(11):100. https://doi.org/10.3390/environments7110100
Chicago/Turabian StyleÅhlgren, Kristina, Viktor Sjöberg, and Mattias Bäckström. 2020. "Estimating Release of Trace Elements from an Area with Historical Open Pit Mining of Alum Shale Using Mass Transport and Element/Sulfate Ratios Calculations" Environments 7, no. 11: 100. https://doi.org/10.3390/environments7110100
APA StyleÅhlgren, K., Sjöberg, V., & Bäckström, M. (2020). Estimating Release of Trace Elements from an Area with Historical Open Pit Mining of Alum Shale Using Mass Transport and Element/Sulfate Ratios Calculations. Environments, 7(11), 100. https://doi.org/10.3390/environments7110100