Ammonia Recovery from Digestate Using Gas-Permeable Membranes: A Pilot-Scale Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Origin of Digestate
2.2. Pilot-Scale Plant Configuration
2.3. Operational Procedure and Experimental Runs
2.3.1. Operational Procedure
2.3.2. Effect of the Change of the Trapping Solution on TAN Removal from Digestate (Experiment I)
2.3.3. Study of the Maximum TAN Concentration in the Trapping Solution (Experiment II)
2.3.4. Comparison of the GPM Pilot Plant Performance during Treatment of Digestate and Raw Swine Manure
2.4. Sampling and Process Monitoring
2.5. Analytical Methods and Calculations
3. Results
3.1. Effect of the Change of the Trapping Solution on TAN Removal and Recovery (Experiment I)
3.2. Study of the Maximum TAN Concentration in the Trapping Solution (Experiment II)
3.3. Evaluation of the Performance of the Pilot-Scale Plant Recovering Ammonia from Digestate: Digestate vs. Manure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grando, R.L.; Antune, A.M.D.S.; da Fonseca, F.V.; Sánchez, A.; Barrena, R.; Font, X. Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development. Renew. Sustain. Energy Rev. 2017, 80, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Riva, C.; Orzi, V.; Carozzi, M.; Acutis, M.; Boccasile, G.; Lonati, S.; Tambone, F.; D’Imporzano, G.; Adani, F. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Sci. Total. Environ. 2016, 547, 206–214. [Google Scholar] [CrossRef]
- Iglesias, R.; Muñoz, R.; Polanco, M.; Díaz, I.; Susmozas, A.; Moreno, A.; Guirado, M.; Carreras, N.; Ballesteros, M. Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies 2021, 14, 2742. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- EC—European Commission. Directive (EU) 2016/2284 of the European Parlament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. Off. J. Eur. Common. 2016, L344, 1–31. [Google Scholar]
- European Council. Council Directive of 12 December 1991 Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources (91/676/EEC). Off. J. 1991, 375, 1–8. [Google Scholar]
- Folino, A.; Zema, D.A.; Calabrò, P.S. Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review. Sustainability 2020, 12, 4971. [Google Scholar] [CrossRef]
- Milan, Z.; Sánchez, E.; Weiland, P.; de Las Pozas, C.; Borja, R.; Mayari, R.; Rovirosa, N. Ammonia removal from anaero-bically treated piggery manure by ion exchange in columns packed with homoionic zeolites. Chem. Eng. J. 1997, 66, 65–71. [Google Scholar] [CrossRef]
- Demirer, S.U.; Demirer, G.; Chen, S. Ammonia removal from anaerobically digested dairy manure by struvite precipitation. Process. Biochem. 2005, 40, 3667–3674. [Google Scholar] [CrossRef]
- Masse, L.; Massé, D.; Pellerin, Y.; Dubreuil, J. Osmotic pressure and substrate resistance during the concentration of manure nutrients by reverse osmosis membranes. J. Membr. Sci. 2010, 348, 28–33. [Google Scholar] [CrossRef]
- Vanotti, M.B.; Szogi, A.A. Systems and Methods for Reducing Ammonia Emissions from Liquid Effluents and for Recov-Ering the Ammonia. U.S. Patent 9,005,333 B1, 14 April 2015. [Google Scholar]
- Munasinghe-Arachchige, S.P.; Nirmalakhandan, N. Nitrogen-Fertilizer Recovery from the Centrate of Anaerobically Digested Sludge. Environ. Sci. Technol. Lett. 2020, 7, 450–459. [Google Scholar] [CrossRef]
- Dube, P.J.; Vanotti, M.B.; Szogi, A.A.; Garcia-González, M.C. Enhancing recovery of ammonia from swine manure an-aerobic digester effluent using gas-permeable membrane technology. Waste Manag. 2016, 49, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-González, M.; Vanotti, M. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of waste strength and pH. Waste Manag. 2015, 38, 455–461. [Google Scholar] [CrossRef] [PubMed]
- García-González, M.; Vanotti, M.; Szogi, A. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration. J. Environ. Manag. 2015, 152, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Zarebska, A.; Romero Nieto, D.; Christensen, K.V.; Norddahl, B. Ammonia recovery from agricultural wastes by mem-brane distillation: Fouling characterization and mechanism. Water Res. 2014, 45, 1–10. [Google Scholar] [CrossRef]
- Bayrakdar, A.; Sürmeli, R.; Önder; Çalli, B. Anaerobic digestion of chicken manure by a leach-bed process coupled with side-stream membrane ammonia separation. Bioresour. Technol. 2018, 258, 41–47. [Google Scholar] [CrossRef]
- Riaño, B.; Molinuevo-Salces, B.; Vanotti, M.B.; García-González, M.C. Application of Gas-Permeable Membranes For-Semi-Continuous Ammonia Recovery from Swine Manure. Environments 2019, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- García-González, M.C.; Vanotti, M.B.; Szogi, A.A. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes. Sci. Agric. 2016, 73, 434–438. [Google Scholar] [CrossRef] [Green Version]
- González-García, I.; Riaño, B.; Molinuevo-Salces, B.; Vanotti, M.; García-González, M. Improved anaerobic digestion of swine manure by simultaneous ammonia recovery using gas-permeable membranes. Water Res. 2021, 190, 116789. [Google Scholar] [CrossRef]
- Molinuevo-Salces, B.; Riaño, B.; Vanotti, M.B.; Hernández-González, D.; García-González, M.C. Pilot-Scale Demonstration of Membrane-Based Nitrogen Recovery from Swine Manure. Membranes 2020, 10, 270. [Google Scholar] [CrossRef]
- American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water, Wastewater APHA, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Hansen, K.H.; Angelidaki, I.; Ahring, B.K. Anaerobic Digestion of Swine Manure: Inhibition by Ammonia. Water Res. 1998, 32, 5–12. [Google Scholar] [CrossRef]
- Daguerre-Martini, S.; Vanotti, M.; Rodriguez-Pastor, M.; Rosal, A.; Moral, R. Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter. Water Res. 2018, 137, 201–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanotti, M.B.; Szogi, A.A. Use of Gas-Permeable Membranes for the Removal and Recovery of Ammonia from High Strength Livestock Wastewater. In Proceedings of the WEF/IWA Nitrogen Recovery and Management Conference, Miami, FL, USA, 9–12 January 2011. [Google Scholar]
- García, M.C.; Vanotti, M.B.; Szogi, A.A. Abatement of ammonia emissions from digested manure using gas-permeable membranes. In Proceedings of the RAMIRAN 2015—16th International Conference Rural-Urban Symbiosis, Hamburg, Germany, 8–10 September 2015; pp. 310–313. [Google Scholar]
Parameter | A1 | B1 | B2 | B3 | B4 | B5 | C1 | C2 |
---|---|---|---|---|---|---|---|---|
pH | 8.32 | 7.75 | 8.26 | 8.60 | 8.41 | 8.45 | 7.40 | 7.92 |
Alkalinity (mg L−1) | 23,772 | 20,207 | 19,528 | 22,363 | 21,047 | 26,103 | 14,722 | 21,221 |
TKN (mg N L−1) | 3451 ± 3 | 3255 ± 135 | 2990 ± 14 | 3384 ± 14 | 3311 ± 72 | n.d. | 2629 ± 33 | 3854 ± 40 |
TAN (mg N L−1) | 2783 ± 64 | 2509 ± 19 | 2575 ± 8 | 2624 ± 215 | 2511 ± 1 | 2812 ± 0 | 2637 ± 54 | 2976 ± 32 |
Initial alkalinity: initial TAN ratio | 8.54 | 8.05 | 7.58 | 7.65 | 8.38 | 9.28 | 5.58 | 7.13 |
TS (g L−1) | 75.9 ± 8.9 | 57.4 ± 2.0 | 66.0 ± 14.2 | 59.8 ± 5.4 | 68.1 ± 0.7 | n.d. | 32.2 ± 1.1 | 55.2 ± 6.0 |
VS (g L−1) | 33.7 ± 4.9 | 27.7 ± 0.7 | 31.3 ± 6.7 | 28.7 ± 3.1 | 30.7 ± 0.1 | n.d. | 16.5 ± 1.0 | 28.6 ± 2.0 |
CODt (mg L−1) | 34,958 ± 3514 | 29,752 ± 492 | 31,358 ± 4089 | 39,202 ± 2879 | 27,602 ± 7570 | n.d. | 23,461 ± 2365 | 41,034 ± 2631 |
CODs (mg L−1) | 8223 ± 1358 | 6302 ± 679 | 7983 ± 1019 | 5982 ± 0 | 6382 ± 566 | n.d. | 8143 ± 113 | 12,546 ± 453 |
TVFA (mg COD L−1) | 240.9 ± 18.5 | 85.1 ± 0.6 | 406.5 ± 41.3 | 456.7 ± 6.2 | 160.5 ± 42.0 | n.d. | 230.6 ± 51.2 | 285.9 ± 73.1 |
Experiment I | Experiment II | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | B1 | B2 | B3 | B4 | B5 | C1 | C2 | ||
Operation time | days | 1–7 | 7–16 | 16–27 | 1–15 | 15–29 | 29–38 | 38–44 | 44 -50 | 18 | 7 |
Trapping solution | m3 | 0.15 | 0.15–0.14 | 0.15 | 0.13–0.14 | 0.13–0.14 | 0.14–0.13 | 0.13–0.11 | 0.13- 0.13 | 0.13–0.15 | 0.15 |
Digestate | m3 | 5.08–4.99 | 4.99–4.79 | 4.97–4.88 | 5.05–5.05 | 5.05–4.90 | 5.06–4.86 | 5.23–5.12 | 5.08–4.99 | 5.12–4.88 | 5.16–5.14 |
Membrane surface | m2 | 8.85 | 8.85 | 8.85 | 12.13 | 11.13 | 11.95 | 11.95 | 11.95 | 8.85 | 8.85 |
Temperature digestate | °C | 22.7 ± 1.7 | 20.7 ± 0.7 | 21.0 ± 0.7 | 27.2 ± 1.14 | 28.4 ± 0.9 | 29.4 ± 1.8 | 27.4 ± 1.7 | 28.6 ± 1.1 | 23.9 ± 1.1 | 18.4 ± 0.7 |
Temperature trapping solution | °C | 25.4 ± 1.9 | 23.8 ± 1.1 | 24.8 ± 1.0 | 28.8 ± 1.3 | 30.5 ± 0.9 | 31.9 ± 1.7 | 30.8 ± 0.8 | 32.6 ± 2.9 | 28.8 ± 1.4 | 22.7 ± 0.8 |
Parameter | Unit | A1 | A2 | A3 | |
---|---|---|---|---|---|
pH | Initial | 8.32 | 9.11 | 9.09 | |
Final | 9.11 | 9.09 | 8.65 | ||
Alkalinity | mg CaCO3 L−1 | Initial | 23,772 | 15,702 | 11,625 |
Final | 15,702 | 11,625 | 9596 | ||
Removed TAN | % | - | 32.16 | 35.33 | 30.47 |
TAN in trapping solution | mg N L−1 | Initial | 1357 | 1125 | 857 |
Final | 12,494 | 9719 | 7221 | ||
Recovered TAN in trapping solution | % | - | 57.52 | 30.67 | 20.67 |
TAN recovery rate | g N m−2 d−1 | - | 14.48 | 9.96 | 8.23 |
Parameter | Unit | B1 | B2 | B3 | B4 | B5 | |
---|---|---|---|---|---|---|---|
pH | - | Initial | 7.75 | 8.26 | 8.14 | 8.41 | 8.45 |
Final | 8.54 | 8.60 | 8.76 | 8.94 | 9.18 | ||
Removed TAN | % | - | 37.78 | 41.59 | 19.47 | 6.49 | 4.34 |
TAN in the trapping solution | mg N L−1 | Initial | 373 | 12,860 | 24,160 | 30,236 | 27,139 |
Final | 16,698 | 24,682 | 30,492 | 32,321 | 20,589 | ||
Recovered TAN in trapping solution | % | - | 56.66 | 30.40 | 20.74 | 23.60 | 26.01 |
TAN recovery rate | g m−2 d−1 | - | 14.89 | 10.97 | 8.73 | 3.64 | 3.14 |
Parameter | Digestate * | Raw Swine Manure ** | ||
---|---|---|---|---|
Range | Average | Range | Average | |
Initial pH | 7.40–8.32 | 7.85 ± 0.33 | 7.26- 7.75 | 7.60 ± 0.21 |
Final pH | 8.48–9.11 | 8.71 ± 0.25 | 8.20–8.91 | 8.61 ± 0.30 |
Initial TAN wastewater (g N L−1) | 2.51–2.98 | 2.73 ± 0.17 | 2.30–3.05 | 2.78 ± 0.28 |
Final TAN wastewater (g N L−1) | 1.17–2.70 | 1.82 ± 0.58 | 1.22–2.51 | 1.84 ± 0.49 |
Removed TAN (%) | 9.44–57.37 | 34.18 ± 17.08 | 14.30–49.46 | 34.20 ± 14.37 |
Final TAN trapping solution (g N L−1) | 6.19–23.12 | 14.63 ± 6.17 | 8.48–32.10 | 20.74 ± 10.09 |
Recovered TAN (%) | 43.16–57.52 | 55.25 ± 7.31 | 42.81–79.69 | 62.03 ± 13.29 |
TAN recovery rate (g N m−2 d−1) | 14.48–20.97 | 16.15 ± 2.78 | 8.38–38.20 | 19.72 ± 12.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaño, B.; Molinuevo-Salces, B.; Vanotti, M.B.; García-González, M.C. Ammonia Recovery from Digestate Using Gas-Permeable Membranes: A Pilot-Scale Study. Environments 2021, 8, 133. https://doi.org/10.3390/environments8120133
Riaño B, Molinuevo-Salces B, Vanotti MB, García-González MC. Ammonia Recovery from Digestate Using Gas-Permeable Membranes: A Pilot-Scale Study. Environments. 2021; 8(12):133. https://doi.org/10.3390/environments8120133
Chicago/Turabian StyleRiaño, Berta, Beatriz Molinuevo-Salces, Matías B. Vanotti, and María Cruz García-González. 2021. "Ammonia Recovery from Digestate Using Gas-Permeable Membranes: A Pilot-Scale Study" Environments 8, no. 12: 133. https://doi.org/10.3390/environments8120133
APA StyleRiaño, B., Molinuevo-Salces, B., Vanotti, M. B., & García-González, M. C. (2021). Ammonia Recovery from Digestate Using Gas-Permeable Membranes: A Pilot-Scale Study. Environments, 8(12), 133. https://doi.org/10.3390/environments8120133