Effects of Organic Fertilizer Mixed with Food Waste Dry Powder on the Growth of Chinese Cabbage Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physicochemical Properties of Soil
2.2. Measurement of Available Phosphorous, Nitrate, and Cation Exchange Capacity
3. Experimental Set Up
4. Morphological Analysis
5. Endogenous Abscisic Acid (ABA) Quantification
6. ICP Analysis of the Uptake of Different Elements
7. Statistical Analysis
8. Results and Discussion
8.1. Physicochemical Properties of Soil
8.2. Effect of Food Waste on the Growth, Biomass, and Chlorophyll Content of Chinese Cabbage
8.3. Effect of Food Waste on ABA and Mineral Uptake in Chinese Cabbage
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bratovcic, A.; Zohorović, M.; Odobasic, A.; Šestan, I. Efficiency of food waste as an organic fertilizer. Int. J. Eng. Sci. Res. Technol. 2018, 7, 527–530. [Google Scholar] [CrossRef]
- Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; bin Ujang, Z. The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef]
- Scherhaufer, S.; Moates, G.; Hartikainen, H.; Wald, K.; Obersteiner, G. Environmental impacts food waste in Europe. Waste Manag. 2018, 77, 98–113. [Google Scholar] [CrossRef]
- Kumar, K.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess. 2017, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Paritosh, K.; Kushwaha, S.K.; Yadav, M.; Pareek, N.; Chawade, A.; Vivekanand, V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Res. Int. 2017, 2017, 1–19. [Google Scholar] [CrossRef]
- Melikoglu, M.; Lin, C.S.K.; Webb, C. Analysing global food waste problem: Pinpointing the facts and estimating the energy content. Cent. Eur. J. Eng. 2013, 3, 157–164. [Google Scholar] [CrossRef]
- Mao, I.-F.; Tsai, C.-J.; Shen, S.-H.; Lin, T.-F.; Chen, W.-K.; Chen, M.-L. Critical components of odors in evaluating the performance of food waste composting plants. Sci. Total Environ. 2006, 370, 323–329. [Google Scholar] [CrossRef]
- Kim, J.-D.; Park, J.-S.; In, B.-H.; Kim, D.; Namkoong, W. Evaluation of pilot-scale in-vessel composting for food waste treatment. J. Hazard. Mater. 2008, 154, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Broom, D. South Korea Once Recycled 2% of Its Food Waste. Now It Recycles 95%. In Proceedings of the World Economic Forum. Available online: https://www.weforum.org/agenda/2019/04/south-korea-recycling-food-waste/ (accessed on 12 April 2019).
- Shvetsova, O.A.; Lee, J.H. Minimizing the environmental impact of industrial production: Evidence from south korean waste treatment investment projects. Appl. Sci. 2020, 10, 3489. [Google Scholar] [CrossRef]
- Kiran, E.U.; Trzcinski, A.P.; Ng, W.J.; Liu, Y. Bioconversion of food waste to energy: A review. Fuel 2014, 134, 389–399. [Google Scholar] [CrossRef]
- Stenmarck, Â.; Jensen, C.; Quested, T.; Moates, G.; Buksti, M.; Cseh, B.; Juul, S.; Parry, A.; Politano, A.; Redlingshofer, B. Estimates of European Food Waste Levels; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2016. [Google Scholar]
- Iglesias, R.; Muñoz, R.; Polanco, M.; Díaz, I.; Susmozas, A.; Moreno, A.D.; Guirado, M.; Carreras, N.; Ballesteros, M. Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies 2021, 14, 2742. [Google Scholar] [CrossRef]
- David, A.; Govil, T.; Tripathi, A.K.; McGeary, J.; Farrar, K.; Sani, R.K. Thermophilic Anaerobic Digestion: Enhanced and Sustainable Methane Production from Co-Digestion of Food and Lignocellulosic Wastes. Energies 2018, 11, 2058. [Google Scholar] [CrossRef] [Green Version]
- Pilarska, A.A.; Pilarski, K.; Wolna-Maruwka, A.; Boniecki, P.; Zaborowicz, M. Use of Confectionery Waste in Biogas Production by the Anaerobic Digestion Process. Molecules 2019, 24, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragicevic, I.; Sogn, T.A.; Eich-Greatorex, S. Recycling of Biogas Digestates in Crop Production—Soil and Plant Trace Metal Content and Variability. Front. Sustain. Food Syst. 2018, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Schneider, F. Review of food waste prevention on an international level. In Proceedings of the Institution of Civil Engineers-Waste and Resource Management; ICE Publishing: London, UK, 2013; pp. 187–203. [Google Scholar]
- Evans, D.M. Food Waste: Home Consumption, Material Culture and Everyday Life; Bloomsbury Publishing: London, UK, 2014. [Google Scholar]
- Appelhof, M.; Olszewski, J. Worms Eat. My Garbage: How to Set Up and Maintain a Worm Composting System: Compost Food Waste, Produce Fertilizer for Houseplants and Garden, and Educate Your Kids and Family; Storey Publishing: Adams, MA, USA, 2017. [Google Scholar]
- Choi, Y.-C.; Choi, J.-Y.; Kim, J.-G.; Kim, M.-S.; Kim, W.-T.; Park, K.-H.; Bae, S.-W.; Jeong, G.-S. Potential usage of food waste as a natural fertilizer after digestion by Hermetia illucens (Diptera: Stratiomyidae). Int. J. Ind. Entomol. 2009, 19, 171–174. [Google Scholar]
- Owamah, H.I.; Dahunsi, S.O.; Oranusi, U.S.; Alfa, M.I. Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta. Waste Manag. 2014, 34, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Cha-um, S.; Kirdmanee, C. Remediation of salt-affected soil by the addition of organic matter: An investigation into improving glutinous rice productivity. Sci. Agric. 2011, 68, 406–410. [Google Scholar] [CrossRef]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Tartoura, K.A.H.; Youssef, S.A.; Tartoura, E.-S.A.A. Compost alleviates the negative effects of salinity via up-regulation of antioxidants in Solanum lycopersicum L. plants. Plant. Growth Regul. 2014, 74, 299–310. [Google Scholar] [CrossRef]
- Zheng, S.; Jiang, J.; He, M.; Zou, S.; Wang, C. Effect of kelp waste extracts on the growth and development of Pakchoi (Brassica chinensis L.). Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rady, M.M.; Semida, W.M.; Hemida, K.A.; Abdelhamid, M.T. The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. Int. J. Recycl. Org. Waste Agric. 2016, 5, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Diacono, M.; Montemurro, F. Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture 2015, 5, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Damiani, M.; Pastorello, T.; Carlesso, A.; Tesser, S.; Semenzin, E. Quantifying environmental implications of surplus food redistribution to reduce food waste. J. Clean. Prod. 2021, 289, 125813. [Google Scholar] [CrossRef]
- Barrera, E.L.; Hertel, T. Global food waste across the income spectrum: Implications for food prices, production and resource use. Food Policy 2021, 98, 101874. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Peng, Y.; Ye, C.; Zhang, S. Effects of antibiotics on hydrolase activity and structure of microbial community during aerobic co-composting of food waste with sewage sludge. Bioresour. Technol. 2021, 321, 124506. [Google Scholar] [CrossRef] [PubMed]
- Andraskar, J.; Yadav, S.; Kapley, A. Challenges and Control Strategies of Odor Emission from Composting Operation. Appl. Biochem. Biotechnol. 2021, 193, 2331–2356. [Google Scholar] [CrossRef]
- Jin, C.; Sun, S.; Yang, D.; Sheng, W.; Ma, Y.; He, W.; Li, G. Anaerobic digestion: An alternative resource treatment option for food waste in China. Sci. Total. Environ. 2021, 779, 146397. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.J.; Orsat, V.; Singh, A. Challenges and potential solutions to utilization of carrot rejects and waste in food processing. Br. Food J. 2021, 123, 2036–2048. [Google Scholar] [CrossRef]
- Yeo, J.; Oh, J.-i.; Cheung, H.H.L.; Lee, P.K.; An, A.K. Smart Food Waste Recycling Bin (S-FRB) to turn food waste into green energy resources. J. Environ. Manag. 2019, 234, 290–296. [Google Scholar] [CrossRef]
- Mebius, L.J. A rapid method for the determination of organic carbon in soil. Anal. Chim. Acta 1960, 22, 120–124. [Google Scholar] [CrossRef]
- Yang, W.-S.; Kang, S.-S.; Kim, K.-I.; Hong, S.-D. Comparison of determination methods for available-P in soil of plastic film house. Korean J. Soil Sci. Fertil. 2006, 39, 163–172. [Google Scholar]
- Mehlich, A. New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc. Commun. Soil Sci. Plant Anal. 1978, 9, 477–492. [Google Scholar] [CrossRef]
- Calazans, S.O.L.; Morais, V.A.; Scolforo, J.R.S.; Zinn, Y.L.; Mello, J.M.; Mancini, L.T.; Silva, C.A. Soil organic carbon as a key predictor of N in forest soils of Brazil. J. Soils Sediments 2018, 18, 1242–1251. [Google Scholar] [CrossRef]
- Asaf, S.; Khan, A.L.; Khan, M.A.; Imran, Q.M.; Yun, B.-W.; Lee, I.-J. Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose. Microbiol. Res. 2017, 205, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Asaf, S.; Khan, M.A.; Khan, A.L.; Waqas, M.; Shahzad, R.; Kim, A.-Y.; Kang, S.-M.; Lee, I.-J. Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: An example of Sphingomonas sp. and Serratia marcescens. J. Plant Interact. 2017, 12, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Adhikari, A.; Jan, R.; Ali, S.; Imran, M.; Kim, K.M.; Lee, I.J. Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants. Plant Biol. 2020, 22, 850–862. [Google Scholar] [CrossRef]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Adhikari, A.; Jan, R.; Ali, S.; Imran, M.; Kim, K.-M.; Lee, I.-J. Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings. BioMed Res. Int. 2019, 2019, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Jan, R.; Kang, S.-M.; Kim, K.-M.; Lee, I.-J. Rhizobacteria AK1 remediates the toxic effects of salinity stress via regulation of endogenous phytohormones and gene expression in soybean. Biochem. J. 2019, 476, 2393–2409. [Google Scholar] [CrossRef] [PubMed]
- Sahile, A.A.; Khan, M.A.; Hamayun, M.; Imran, M.; Kang, S.-M.; Lee, I.-J. Novel Bacillus cereus Strain, ALT1, Enhance Growth and Strengthens the Antioxidant System of Soybean under Cadmium Stress. Agronomy 2021, 11, 404. [Google Scholar] [CrossRef]
- Naga Raju, M.; Golla, N.; Vengatampalli, R. Soil Physicochemical Properties. In Soil Enzymes: Influence of Sugar Industry Effluents on Soil Enzyme Activities; Maddela, N.R., Golla, N., Vengatampalli, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 5–10. [Google Scholar] [CrossRef]
- Fomenky, N.N.; Tening, A.S.; Chuyong, G.B.; Mbene, K.; Asongwe, G.A.; Che, V.B. Selected physicochemical properties and quality of soils around some rivers of Cameroon. J. Soil Sci. Environ. Manag. 2018, 9, 68–80. [Google Scholar]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Dixon, J.B.; Schulze, D.G. Soil Mineralogy with Environmental Applications; Soil Science Society of America Inc.: Madison, WI, USA, 2002. [Google Scholar]
- Brevik, E.C.; Fenton, T.E.; Lazari, A. Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precis. Agric. 2006, 7, 393–404. [Google Scholar] [CrossRef]
- Quinton, J.N.; Govers, G.; Van Oost, K.; Bardgett, R.D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 2010, 3, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Nie, M.; Powell, J.R.; Bissett, A.; Pendall, E. Soil physico-chemical properties are critical for predicting carbon storage and nutrient availability across Australia. Environ. Res. Lett. 2020, 15, 094088. [Google Scholar] [CrossRef]
- Uchida, R. Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. Plant Nutr. Manag. Hawaii’s Soils 2000, 4, 31–55. [Google Scholar]
- Lee, E.-P.; Han, Y.-S.; Lee, S.-I.; Cho, K.-T.; Park, J.-H.; You, Y.-H. Effect of nutrient and moisture on the growth and reproduction of Epilobium hirsutum L., an endangered plant. J. Ecol. Environ. 2017, 41, 35. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Kim, S.H.; Wong, J.W. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef]
- Khan, M.A.; Sahile, A.A.; Jan, R.; Asaf, S.; Hamayun, M.; Imran, M.; Adhikari, A.; Kang, S.-M.; Kim, K.-M.; Lee, I.-J. Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC Plant Biol. 2021, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Golwala, H.; Zhang, X.; Iskander, S.M.; Smith, A.L. Solid waste: An overlooked source of microplastics to the environment. Sci. Total. Environ. 2021, 769, 144581. [Google Scholar] [CrossRef]
- Adhikari, A.; Khan, M.A.; Lee, K.E.; Kang, S.M.; Dhungana, S.K.; Bhusal, N.; Lee, I.J. The Halotolerant Rhizobacterium—Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean (Glycine max L.). Microorganisms 2020, 8, 1256. [Google Scholar] [CrossRef]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Jan, R.; Kang, S.-M.; Kim, K.-M.; Lee, I.-J. Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol. 2020, 20, 175. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Jan, R.; Kang, S.-M.; Kim, K.-M.; Lee, I.-J. Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS ONE 2020, 15, e0232228. [Google Scholar] [CrossRef]
- Kubi, H.A.A.; Khan, M.A.; Adhikari, A.; Imran, M.; Kang, S.-M.; Hamayun, M.; Lee, I.-J. Silicon and Plant Growth-Promoting Rhizobacteria Pseudomonas psychrotolerans CS51 Mitigates Salt Stress in Zea mays L. Agriculture 2021, 11, 272. [Google Scholar] [CrossRef]
- Asaf, S.; Hamayun, M.; Khan, A.L.; Waqas, M.; Khan, M.A.; Jan, R.; Lee, I.J.; Hussain, A. Salt tolerance of Glycine max L. induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol. Biochem. 2018, 128, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Hamayun, M.; Asaf, S.; Khan, M.; Yun, B.-W.; Kang, S.-M.; Lee, I.-J. Rhizospheric Bacillus spp. Rescues Plant Growth Under Salinity Stress via Regulating Gene Expression, Endogenous Hormones, and Antioxidant System of Oryza sativa L. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Woldemariam, S.H.; Lal, S.; Zelelew, D.Z.; Solomon, M.T. Effect of Potassium Levels on Productivity and Fruit Quality of Tomato (Lycopersicon esculentum L.). J. Agric. Stud. 2018, 6, 104–117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, B.; Zhang, J.; Christie, P.; Li, X. Organic fertilizer application and Mg fertilizer promote banana yield and quality in an Udic Ferralsol. PLoS ONE 2020, 15, e0230593. [Google Scholar] [CrossRef]
- Maathuis, F.J.M. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef]
- Nabel, M.; Schrey, S.D.; Poorter, H.; Koller, R.; Jablonowski, N.D. Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass yields on marginal soils by increasing soil fertility. Biomass Bioenergy 2017, 107, 207–213. [Google Scholar] [CrossRef]
- Mu, D.; Hawks, J.; Diaz, A. Impacts on vegetable yields, nutrient contents and soil fertility in a community garden with different compost amendments. AIMS Environ. Sci. 2020, 7, 350–365. [Google Scholar] [CrossRef]
- Dlamini, M.V.; Mukabwe, W.O.; Sibandze, N.N. The effects of organic liquid fertilizer (Vegetable waste) on moisture retention, soil physical properties and yield of lettuce (Lactuca sativa L.) Grown in the malkerns area, a region in the kingdom of eswatini. Adv. Agric. Hortic. Entomol. 2020, 1–6. [Google Scholar] [CrossRef]
pH [1:5] | EC | OM | NO3-N | AP | Ex. Cation (cmol/kg) | |||
---|---|---|---|---|---|---|---|---|
[1:5] (dS/m) | (g/kg) | (mg/kg) | (mg/kg) | K | Ca | Mg | Na | |
6.6 | 2.8 | 20 | 141.8 | 330 | 1.11 | 11.61 | 3.65 | 0.6 |
Fertilizations | NT | CF | MF | MF × 2 | MF × 4 | MF × 6 |
---|---|---|---|---|---|---|
Leaf Length (cm) | 11.8 ± 0.87 ab | 12.9 ± 2.19 a | 12.6 ± 0.95 a | 11.7 ± 0.76 ab | 10.9 ± 0.32 ab | 8.2 ± 0.46 b |
Root Length (cm) | 9.3 ± 0.77 a | 11.8 ± 2.20 a | 15.3 ± 7.98 a | 11.1 ± 0.13 a | 11.7 ± 2.39 a | 9.8 ± 1.07 a |
Fresh Weight (g) | 13.4 ± 4.33 ab | 14.7 ± 4.62 a | 16.5 ± 3.69 a | 9.5 ± 1.39 ab | 7.9 ± 1.81 ab | 3.3 ± 0.29 b |
Dry Weight (g) | 2.5 ± 0.48 bc | 3.9 ± 0.61 a | 3.4 ± 0.13 ab | 2.6 ± 0.39 bc | 2.0 ± 0.35 cd | 1.2 ± 0.29 d |
Fertilizations | NT | CF | MF | MF × 2 | MF × 4 | MF × 6 |
---|---|---|---|---|---|---|
Chlorophyll Contents mg/m2 | 487.7 ± 27.28 b | 521.7 ± 13.13 a | 477.3 ± 34.89 b | 464.3 ± 38.52 b | 439.3 ± 40.91 c | 427.7 ± 37.53 c |
Chlorophyll Fluorescence (Fv/Fm) | 0.80 ± 0.011 a | 0.79 ± 0.023 a | 0.79 ± 0.010 a | 0.81 ± 0.039 a | 0.76 ± 0.038 a | 0.82 ± 0.023 a |
Transpiration Efficiencies (mmol/m2) | 2.0 ± 0.35 ab | 2.3 ± 0.31 a | 2.0 ± 0.37 ab | 1.6 ± 0.27 ab | 1.5 ± 0.24 ab | 1.3 ± 0.00 b |
Stomatal Conductance (mol/m2 s) | 0.08 ± 0.020 a | 0.09 ± 0.015 a | 0.07 ± 0.013 ab | 0.05 ± 0.007 ab | 0.04 ± 0.007 b | 0.03 ± 0.000 b |
Photosynthetic Rate (µmol/m2s) | 2.8 ± 0.04 a | 2.9 ± 1.14 a | 2.3 ± 0.81 ab | 2.0 ± 0.98 ab | 1.2 ± 0.33 ab | 0.2 ± 0.16 b |
Fertilizations | NT | CF | MF | MF × 2 | MF × 4 | MF × 6 |
---|---|---|---|---|---|---|
K | 39,299.7 ± 1293.15 bc | 35,599.1 ± 1196.16 cd | 41,376.2 ± 1799.51 b | 45,963.0 ± 453.94 a | 34,778.5 ± 255.90 d | 33,702.2 ± 1560.46 d |
Ca | 26,330.3 ± 313.83 c | 24,458.4 ± 46.37 e | 27,073.3 ± 235.13 b | 28,049.7 ± 72.54 a | 25,568.1 ± 144.60 d | 25,286.8 ± 70.72 d |
P | 5196.9 ± 32.98 a | 5261.6 ± 58.48 a | 5152.1 ± 32.12 a | 5244.7 ± 36.28 a | 4894.4 ± 104.39 b | 4661.9 ± 25.51 c |
Mg | 5597.6 ± 30.18 d | 5641.4 ± 17.84 cd | 5768.0 ± 3.47 bcd | 6046.8 ± 20.85 a | 5826.1 ± 132.71 bc | 5892.6 ± 2.15 ab |
Na | 5368.8 ± 213.93 bc | 4543.9 ± 240.26 c | 5165.0 ± 343.59 bc | 5466.0 ± 102.77 bc | 6322.9 ± 179.15 b | 8739.3 ± 605.16 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.-M.; Shaffique, S.; Kim, L.-R.; Kwon, E.-H.; Kim, S.-H.; Lee, Y.-H.; Kalsoom, K.; Aaqil Khan, M.; Lee, I.-J. Effects of Organic Fertilizer Mixed with Food Waste Dry Powder on the Growth of Chinese Cabbage Seedlings. Environments 2021, 8, 86. https://doi.org/10.3390/environments8080086
Kang S-M, Shaffique S, Kim L-R, Kwon E-H, Kim S-H, Lee Y-H, Kalsoom K, Aaqil Khan M, Lee I-J. Effects of Organic Fertilizer Mixed with Food Waste Dry Powder on the Growth of Chinese Cabbage Seedlings. Environments. 2021; 8(8):86. https://doi.org/10.3390/environments8080086
Chicago/Turabian StyleKang, Sang-Mo, Shifa Shaffique, Lee-Rang Kim, Eun-Hae Kwon, Seong-Heon Kim, Yun-Hae Lee, Kalsoom Kalsoom, Muhammad Aaqil Khan, and In-Jung Lee. 2021. "Effects of Organic Fertilizer Mixed with Food Waste Dry Powder on the Growth of Chinese Cabbage Seedlings" Environments 8, no. 8: 86. https://doi.org/10.3390/environments8080086
APA StyleKang, S. -M., Shaffique, S., Kim, L. -R., Kwon, E. -H., Kim, S. -H., Lee, Y. -H., Kalsoom, K., Aaqil Khan, M., & Lee, I. -J. (2021). Effects of Organic Fertilizer Mixed with Food Waste Dry Powder on the Growth of Chinese Cabbage Seedlings. Environments, 8(8), 86. https://doi.org/10.3390/environments8080086