Examining the Relationship between Phytoplankton Community Structure and Water Quality Measurements in Agricultural Waters: A Machine Learning Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sample Collection
2.2. Modelling with the Random Forest Algorithm
2.3. Performance Metrics
3. Results
3.1. Data Summary
3.2. Performance of Models
3.2.1. Model Accuracy
3.2.2. Model Validation
3.3. Spatial Patterns of Random Forest Model Performances
3.4. Importance of Variables-Predictors
3.5. Sensitivity to Inputs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marić, D.; Kraus, R.; Godrijan, J.; Supić, N.; Djakovac, T.; Precali, R. Phytoplankton Response to Climatic and Anthropogenic Influences in the North-Eastern Adriatic during the Last Four Decades. Estuar. Coast. Shelf Sci. 2012, 115, 98–112. [Google Scholar] [CrossRef]
- Marshall, H.G.; Lane, M.F.; Nesius, K.K.; Burchardt, L. Assessment and Significance of Phytoplankton Species Composition within Chesapeake Bay and Virginia Tributaries through a Long-Term Monitoring Program. Environ. Monit. Assess. 2009, 150, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Qin, B.; Teubner, K.; Dokulil, M.T. Long-Term Dynamics of Phytoplankton Assemblages: Microcystis-Domination in Lake Taihu, a Large Shallow Lake in China. J. Plankton Res. 2003, 25, 445–453. [Google Scholar] [CrossRef]
- Wynne, T.T.; Stumpf, R.P. Spatial and Temporal Patterns in the Seasonal Distribution of Toxic Cyanobacteria in Western Lake Erie from 2002–2014. Toxins 2015, 7, 1649–1663. [Google Scholar] [CrossRef] [Green Version]
- Znachor, P.; Nedoma, J.; Hejzlar, J.; Seďa, J.; Komárková, J.; Kolář, V.; Mrkvička, T.; Boukal, D.S. Changing Environmental Conditions Underpin Long-Term Patterns of Phytoplankton in a Freshwater Reservoir. Sci. Total Environ. 2020, 710, 135626. [Google Scholar] [CrossRef]
- Bergkemper, V.; Weisse, T. Do Current European Lake Monitoring Programmes Reliably Estimate Phytoplankton Community Changes? Hydrobiologia 2018, 824, 143–162. [Google Scholar] [CrossRef] [Green Version]
- Clayton, S.; Gibala-Smith, L.; Mogatas, K.; Flores-Vargas, C.; Marciniak, K.; Wigginton, M.; Mulholland, M.R. Imaging Technologies Build Capacity and Accessibility in Phytoplankton Species Identification Expertise for Research and Monitoring: Lessons Learned During the COVID-19 Pandemic. Front. Microbiol. 2022, 13, 823109. [Google Scholar] [CrossRef]
- Lawton, L.; Marsalek, B.; Padisak, J.; Chorus, I. Determination of Cyanobacteria in the Laboratory. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; E & FN Spon: London, UK; New York, NY, USA, 1999; ISBN 978-0-419-23930-7. [Google Scholar]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread Global Increase in Intense Lake Phytoplankton Blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- López-Felices, B.; Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Piquer-Rodríguez, M. Contribution of Irrigation Ponds to the Sustainability of Agriculture. A Review of Worldwide Research. Sustainability 2020, 12, 5425. [Google Scholar] [CrossRef]
- Descy, J.-P.; Leprieur, F.; Pirlot, S.; Leporcq, B.; Van Wichelen, J.; Peretyatko, A.; Teissier, S.; Codd, G.A.; Triest, L.; Vyverman, W.; et al. Identifying the Factors Determining Blooms of Cyanobacteria in a Set of Shallow Lakes. Ecol. Inform. 2016, 34, 129–138. [Google Scholar] [CrossRef]
- Rao, K.; Zhang, X.; Wang, M.; Liu, J.; Guo, W.; Huang, G.; Xu, J. The Relative Importance of Environmental Factors in Predicting Phytoplankton Shifting and Cyanobacteria Abundance in Regulated Shallow Lakes. Environ. Pollut. 2021, 286, 117555. [Google Scholar] [CrossRef] [PubMed]
- Fornarelli, R.; Galelli, S.; Castelletti, A.; Antenucci, J.P.; Marti, C.L. An Empirical Modeling Approach to Predict and Understand Phytoplankton Dynamics in a Reservoir Affected by Interbasin Water Transfers. Water Resour. Res. 2013, 49, 3626–3641. [Google Scholar] [CrossRef]
- Gayoso, A. Long-Term Phytoplankton Studies in the Bahía Blanca Estuary, Argentina. ICES J. Mar. Sci. 1998, 55, 655–660. [Google Scholar] [CrossRef] [Green Version]
- Schönfelder, I.; Gelbrecht, J.; Schönfelder, J.; Steinberg, C.E.W. Relationships between Littoral Diatoms and Their Chemical Environment in Northeastern German Lakes and Rivers. J. Phycol. 2002, 38, 66–89. [Google Scholar] [CrossRef]
- Mokhtar, A.; Elbeltagi, A.; Gyasi-Agyei, Y.; Al-Ansari, N.; Abdel-Fattah, M.K. Prediction of Irrigation Water Quality Indices Based on Machine Learning and Regression Models. Appl. Water Sci. 2022, 12, 76. [Google Scholar] [CrossRef]
- Yıldız, S.; Karakuş, C.B. Estimation of Irrigation Water Quality Index with Development of an Optimum Model: A Case Study. Environ. Dev. Sustain. 2020, 22, 4771–4786. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, Y.; Zhao, H.; Sun, M.; Li, X. Comparison of Models for Predicting the Changes in Phytoplankton Community Composition in the Receiving Water System of an Inter-Basin Water Transfer Project. Environ. Pollut. 2017, 223, 676–684. [Google Scholar] [CrossRef]
- Cheruvelil, K.S.; Soranno, P.A.; Bremigan, M.T.; Wagner, T.; Martin, S.L. Grouping Lakes for Water Quality Assessment and Monitoring: The Roles of Regionalization and Spatial Scale. Environ. Manag. 2008, 41, 425–440. [Google Scholar] [CrossRef]
- Maloney, K.O.; Smith, Z.M.; Buchanan, C.; Nagel, A.; Young, J.A. Predicting Biological Conditions for Small Headwater Streams in the Chesapeake Bay Watershed. Freshw. Sci. 2018, 37, 795–809. [Google Scholar] [CrossRef]
- Zhang, Q.; Blomquist, J.D.; Moyer, D.L.; Chanat, J.G. Estimation Bias in Water-Quality Constituent Concentrations and Fluxes: A Synthesis for Chesapeake Bay Rivers and Streams. Front. Ecol. Evol. 2019, 7, 109. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Huszar, V.; Kruk, C.; Naselli-Flores, L.; Melo, S. Towards a Functional Classification of the Freshwater Phytoplankton. J. Plankton Res. 2002, 24, 417–428. [Google Scholar] [CrossRef]
- Duarte, C.M.; Agustí, S.; Canjield, D.E., Jr. Patterns in Phytoplankton Community Structure in Florida Lakes. Limnol. Oceanogr. 1992, 37, 155–161. [Google Scholar] [CrossRef]
- Watson, S.B.; McCauley, E.; Downing, J.A. Patterns in Phytoplankton Taxonomic Composition across Temperate Lakes of Differing Nutrient Status. Limnol. Oceanogr. 1997, 42, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Heini, A.; Puustinen, I.; Tikka, M.; Jokiniemi, A.; Leppäranta, M.; Arvola, L. Strong Dependence between Phytoplankton and Water Chemistry in a Large Temperate Lake: Spatial and Temporal Perspective. Hydrobiologia 2014, 731, 139–150. [Google Scholar] [CrossRef]
- Hu, S.; Liu, H.; Zhao, W.; Shi, T.; Hu, Z.; Li, Q.; Wu, G. Comparison of Machine Learning Techniques in Inferring Phytoplankton Size Classes. Remote Sens. 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Halsey, K.H.; Giovannoni, S.J.; Graus, M.; Zhao, Y.; Landry, Z.; Thrash, J.C.; Vergin, K.L.; de Gouw, J. Biological Cycling of Volatile Organic Carbon by Phytoplankton and Bacterioplankton. Limnol. Oceanogr. 2017, 62, 2650–2661. [Google Scholar] [CrossRef]
- Parson, M.J.; Parker, B.C. Algal Flora in Mountain Lake, Virginia: Past and Present. Castanea 1989, 54, 79–86. [Google Scholar]
- Marshall, H.G. Phytoplankton in Virginia Lakes and Reservoirs. Va. J. Sci. 2013, 64, 3–15. [Google Scholar] [CrossRef]
- Marshall, H.G. Phytoplankton in Virginia Lakes and Reservoirs: Part II. Va. J. Sci. 2014, 65, 3–8. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Johnson, L.T.; Wynne, T.T.; Baker, D.B. Forecasting Annual Cyanobacterial Bloom Biomass to Inform Management Decisions in Lake Erie. J. Great Lakes Res. 2016, 42, 1174–1183. [Google Scholar] [CrossRef]
- Stauffer, B.A.; Bowers, H.A.; Buckley, E.; Davis, T.W.; Johengen, T.H.; Kudela, R.; McManus, M.A.; Purcell, H.; Smith, G.J.; Vander Woude, A.; et al. Considerations in Harmful Algal Bloom Research and Monitoring: Perspectives from a Consensus-Building Workshop and Technology Testing. Front. Mar. Sci. 2019, 6, 399. [Google Scholar] [CrossRef]
- Rousso, B.Z.; Bertone, E.; Stewart, R.; Hamilton, D.P. A Systematic Literature Review of Forecasting and Predictive Models for Cyanobacteria Blooms in Freshwater Lakes. Water Res. 2020, 182, 115959. [Google Scholar] [CrossRef] [PubMed]
- Wood, R. Acute Animal and Human Poisonings from Cyanotoxin Exposure—A Review of the Literature. Environ. Int. 2016, 91, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jiang, X.; Manubolu, M.; Riedl, K.; Ludsin, S.A.; Martin, J.F.; Lee, J. Fresh Produce and Their Soils Accumulate Cyanotoxins from Irrigation Water: Implications for Public Health and Food Security. Food Res. Int. 2017, 102, 234–245. [Google Scholar] [CrossRef]
- Weralupitiya, C.; Wanigatunge, R.P.; Gunawardana, D.; Vithanage, M.; Magana-Arachchi, D. Cyanotoxins Uptake and Accumulation in Crops: Phytotoxicity and Implications on Human Health. Toxicon 2022, 211, 21–35. [Google Scholar] [CrossRef]
- Aguilera, A.; Aubriot, L.; Echenique, R.O.; Salerno, G.L.; Brena, B.M.; Pírez, M.; Bonilla, S. Synergistic Effects of Nutrients and Light Favor Nostocales over Non-Heterocystous Cyanobacteria. Hydrobiologia 2017, 794, 241–255. [Google Scholar] [CrossRef]
- Verspagen, J.M.H.; de Waal, D.B.V.; Finke, J.F.; Visser, P.M.; Donk, E.V.; Huisman, J. Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes. PLoS ONE 2014, 9, e104325. [Google Scholar] [CrossRef] [Green Version]
- Komárek, J. Review of the Cyanobacterial Genera Implying Planktic Species after Recent Taxonomic Revisions According to Polyphasic Methods: State as of 2014. Hydrobiologia 2016, 764, 259–270. [Google Scholar] [CrossRef]
- Smith, J.E.; Stocker, M.D.; Wolny, J.L.; Hill, R.L.; Pachepsky, Y.A. Intraseasonal Variation of Phycocyanin Concentrations and Environmental Covariates in Two Agricultural Irrigation Ponds in Maryland, USA. Environ. Monit. Assess. 2020, 192, 706. [Google Scholar] [CrossRef]
- Brient, L.; Lengronne, M.; Bertrand, E.; Rolland, D.; Sipel, A.; Steinmann, D.; Baudin, I.; Legeas, M.; Rouzic, B.L.; Bormans, M. A Phycocyanin Probe as a Tool for Monitoring Cyanobacteria in Freshwater Bodies. J. Environ. Monit. 2008, 10, 248–255. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Tedesco, L.; Clercin, N.; Hall, B.; Li, S.; Shi, K.; Liu, D.; Sun, Y. Remote Estimation of Phycocyanin (PC) for Inland Waters Coupled with YSI PC Fluorescence Probe. Environ. Sci. Pollut. Res. 2013, 20, 5330–5340. [Google Scholar] [CrossRef] [PubMed]
- Marshall, H.G.; Alden, R.W. A Comparison of Phytoplankton Assemblages and Environmental Relationships in Three Estuarine Rivers of the Lower Chesapeake Bay. Estuaries 1990, 13, 287–300. [Google Scholar] [CrossRef]
- John, D.M.; Whitton, B.A.; Brook, A.J. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae; Cambridge University Press: London, UK, 2011; 724p, ISBN 978-0-521-19375-7. [Google Scholar]
- Bellinger, E.D.; Sigee, D.C. Freshwater Algae, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Smith, J.E.; Wolny, J.L.; Stocker, M.D.; Hill, R.L.; Pachepsky, Y.A. Temporal Stability of Phytoplankton Functional Groups within Two Agricultural Irrigation Ponds in Maryland, USA. Front. Water 2021, 3, 14. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Williams, E.J.; Kloot, N. Interpolation in a Series of Correlated Observations. Aust. J. Appl. Sci. 1953, 4, 1–17. [Google Scholar]
- Dembowska, E.A.; Mieszczankin, T.; Napiórkowski, P. Changes of the Phytoplankton Community as Symptoms of Deterioration of Water Quality in a Shallow Lake. Environ. Monit. Assess. 2018, 190, 95. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Gao, Y.; Song, X.; Chen, S. Characteristics of Phytoplankton Community and Water Net Primary Productivity Response to the Nutrient Status of the Poyang Lake and Gan River, China. Ecohydrology 2019, 12, e2136. [Google Scholar] [CrossRef]
- Lee, T.A.; Rollwagen-Bollens, G.; Bollens, S.M. The Influence of Water Quality Variables on Cyanobacterial Blooms and Phytoplankton Community Composition in a Shallow Temperate Lake. Environ. Monit. Assess. 2015, 187, 315. [Google Scholar] [CrossRef]
- Tango, P.J.; Butler, W. Cyanotoxins in Tidal Waters of Chesapeake Bay. Northeast. Nat. 2008, 15, 403–416. [Google Scholar] [CrossRef]
- Shimoda, Y.; Arhonditsis, G.B. Phytoplankton Functional Type Modelling: Running before We Can Walk? A Critical Evaluation of the Current State of Knowledge. Ecol. Model. 2016, 320, 29–43. [Google Scholar] [CrossRef]
- Beversdorf, L.J.; Weirich, C.A.; Bartlett, S.L.; Miller, T.R. Variable Cyanobacterial Toxin and Metabolite Profiles across Six Eutrophic Lakes of Differing Physiochemical Characteristics. Toxins 2017, 9, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Maggio, J.; Fernández, C.; Parodi, E.R.; Diaz, M.S.; Estrada, V. Modeling Phytoplankton Community in Reservoirs. A Comparison between Taxonomic and Functional Groups-Based Models. J. Environ. Manag. 2016, 165, 31–52. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.K.; Fontana, S.; Reyes, M.; Kehoe, M.; Pomati, F. The Predictability of a Lake Phytoplankton Community, from Hours to Years. Ecol. Lett. 2017, 21, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Marshall, H.G.; Burchardt, L.; Lacouture, R. A Review of Phytoplankton Composition within Chesapeake Bay and Its Tidal Estuaries. J. Plankton Res. 2005, 27, 1083–1102. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Negahban-Azar, M.; Shirmohammadi, A.; Montas, H. Developing a Multicriteria Decision Analysis Framework to Evaluate Reclaimed Wastewater Use for Agricultural Irrigation: The Case Study of Maryland. Hydrology 2021, 8, 4. [Google Scholar] [CrossRef]
- Fragoso, C.R.; Marques, D.M.L.M.; Collischonn, W.; Tucci, C.E.M.; van Nes, E.H. Modelling Spatial Heterogeneity of Phytoplankton in Lake Mangueira, a Large Shallow Subtropical Lake in South Brazil. Ecol. Model. 2008, 219, 125–137. [Google Scholar] [CrossRef]
- Huang, J.; Gao, J.; Hörmann, G.; Fohrer, N. Modeling the Effects of Environmental Variables on Short-Term Spatial Changes in Phytoplankton Biomass in a Large Shallow Lake, Lake Taihu. Environ. Earth Sci. 2014, 72, 3609–3621. [Google Scholar] [CrossRef]
- Liu, X.; Feng, J.; Wang, Y. Chlorophyll a Predictability and Relative Importance of Factors Governing Lake Phytoplankton at Different Timescales. Sci. Total Environ. 2019, 648, 472–480. [Google Scholar] [CrossRef]
- Rigosi, A.; Fleenor, W.; Rueda, F. State-of-the-Art and Recent Progress in Phytoplankton Succession Modelling. Environ. Rev. 2010, 18, 423–440. [Google Scholar] [CrossRef]
- Bradshaw, C.; Kautsky, U.; Kumblad, L. Ecological Stoichiometry and Multi-Element Transfer in a Coastal Ecosystem. Ecosystems 2012, 15, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Finkel, Z.V.; Beardall, J.; Flynn, K.J.; Quigg, A.; Rees, T.A.V.; Raven, J.A. Phytoplankton in a Changing World: Cell Size and Elemental Stoichiometry. J. Plankton Res. 2010, 32, 119–137. [Google Scholar] [CrossRef] [Green Version]
- Guedes, I.A.; Rachid, C.T.C.C.; Rangel, L.M.; Silva, L.H.S.; Bisch, P.M.; Azevedo, S.M.F.O.; Pacheco, A.B.F. Close Link Between Harmful Cyanobacterial Dominance and Associated Bacterioplankton in a Tropical Eutrophic Reservoir. Front. Microbiol. 2018, 9, 424. [Google Scholar] [CrossRef] [PubMed]
- Agawin, N.S.R.; Rabouille, S.; Veldhuis, M.J.W.; Servatius, L.; Hol, S.; van Overzee, H.M.J.; Huisman, J. Competition and Facilitation between Unicellular Nitrogen-Fixing Cyanobacteria and Non—Nitrogen-Fixing Phytoplankton Species. Limnol. Oceanogr. 2007, 52, 2233–2248. [Google Scholar] [CrossRef]
- Newell, S.E.; Davis, T.W.; Johengen, T.H.; Gossiaux, D.; Burtner, A.; Palladino, D.; McCarthy, M.J. Reduced Forms of Nitrogen Are a Driver of Non-Nitrogen-Fixing Harmful Cyanobacterial Blooms and Toxicity in Lake Erie. Harmful Algae 2019, 81, 86–93. [Google Scholar] [CrossRef]
- Chapman, A.D.; Schelske, C.L. Recent Appearance of Cylindrospermopsis (Cyanobacteria) in Five Hypereutrophic Florida Lakes. J. Phycol. 1997, 33, 191–195. [Google Scholar] [CrossRef]
- Burchardt, L.; Marshall, H. Algal Composition and Abundance in the Neuston Surface Micro Layer From a Lake and Pond in Virginia (U.S.A.). J. Limnol. 2003, 62, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Awada, H.; Aronica, S.; Bonanno, A.; Basilone, G.; Zgozi, S.W.; Giacalone, G.; Fontana, I.; Genovese, S.; Ferreri, R.; Mazzola, S.; et al. A Novel Method to Simulate the 3D Chlorophyll Distribution in Marine Oligotrophic Waters. Commun. Nonlinear Sci. Numer. Simul. 2021, 103, 106000. [Google Scholar] [CrossRef]
- Zhang, J.; Zhi, M.; Zhang, Y. Combined Generalized Additive Model and Random Forest to Evaluate the Influence of Environmental Factors on Phytoplankton Biomass in a Large Eutrophic Lake. Ecol. Indic. 2021, 130, 108082. [Google Scholar] [CrossRef]
- Derot, J.; Yajima, H.; Schmitt, F.G. Benefits of Machine Learning and Sampling Frequency on Phytoplankton Bloom Forecasts in Coastal Areas. Ecol. Inform. 2020, 60, 101174. [Google Scholar] [CrossRef]
- Cheng, Y.; Bhoot, V.N.; Kumbier, K.; Sison-Mangus, M.P.; Brown, J.B.; Kudela, R.; Newcomer, M.E. A Novel Random Forest Approach to Revealing Interactions and Controls on Chlorophyll Concentration and Bacterial Communities during Coastal Phytoplankton Blooms. Sci. Rep. 2021, 11, 19944. [Google Scholar] [CrossRef]
- Yajima, H.; Derot, J. Application of the Random Forest Model for Chlorophyll-a Forecasts in Fresh and Brackish Water Bodies in Japan, Using Multivariate Long-Term Databases. J. Hydroinformatics 2017, 20, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.R.; Gurevitch, A.; Adams, M.S. Factors Causing Elevated Biological Oxygen Demand in the Littoral Zone of Lake Wingra, Wisconsin. Hydrobiologia 1979, 67, 3–9. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; He, G.; Han, J.; Wang, T. Exploration of Relationships between Phytoplankton Biomass and Related Environmental Variables Using Multivariate Statistic Analysis in a Eutrophic Shallow Lake: A 5-Year Study. J. Environ. Sci. 2007, 19, 920–927. [Google Scholar] [CrossRef]
- Karadžić, V.; Simić, G.S.; Natić, D.; Ržaničanin, A.; Ćirić, M.; Gačić, Z. Changes in the Phytoplankton Community and Dominance of Cylindrospermopsis raciborskii (Wolosz.) Subba Raju in a Temperate Lowland River (Ponjavica, Serbia). Hydrobiologia 2013, 711, 43–60. [Google Scholar] [CrossRef]
- Kehoe, M.J.; Chun, K.P.; Baulch, H.M. Who Smells? Forecasting Taste and Odor in a Drinking Water Reservoir. Environ. Sci. Technol. 2015, 49, 10984–10992. [Google Scholar] [CrossRef] [PubMed]
- Taboada-Castro, M.M.; Diéguez-Villar, A.; Taboada-Castro, M.T. Transfer of Nutrients and Major Ions of an Agricultural Catchment to Runoff Waters: Analysis of Their Spatial Distribution. In Proceedings of the Conserving Soil and Water for Society: Sharing Solutions, Brisbane, Australia, 4–8 July 2004; pp. 1–4. [Google Scholar]
- Varol, M. Phytoplankton Functional Groups in a Monomictic Reservoir: Seasonal Succession, Ecological Preferences, and Relationships with Environmental Variables. Environ. Sci. Pollut. Res. 2019, 26, 20439–20453. [Google Scholar] [CrossRef] [PubMed]
- Lindner, T.; Puck, J.; Verbeke, A. Beyond Addressing Multicollinearity: Robust Quantitative Analysis and Machine Learning in International Business Research. J. Int. Bus. Stud. 2022, 53, 1307–1314. [Google Scholar] [CrossRef]
- Darst, B.F.; Malecki, K.C.; Engelman, C.D. Using Recursive Feature Elimination in Random Forest to Account for Correlated Variables in High Dimensional Data. BMC Genet. 2018, 19, 65. [Google Scholar] [CrossRef] [Green Version]
- Bøvelstad, H.M.; Nygård, S.; Størvold, H.L.; Aldrin, M.; Borgan, Ø.; Frigessi, A.; Lingjærde, O.C. Predicting Survival from Microarray Data—A Comparative Study. Bioinformatics 2007, 23, 2080–2087. [Google Scholar] [CrossRef] [Green Version]
- Sauerbrei, W.; Boulesteix, A.-L.; Binder, H. Stability Investigations of Multivariable Regression Models Derived from Low- and High-Dimensional Data. J. Biopharm. Stat. 2011, 21, 1206–1231. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Wallace, J.; Campbell, E. Estimating Annual Runoff in Response to Forest Change: A Statistical Method Based on Random Forest. J. Hydrol. 2020, 589, 125168. [Google Scholar] [CrossRef]
- Ransom, C.J.; Kitchen, N.R.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernández, F.G.; Franzen, D.W.; Laboski, C.A.M.; Myers, D.B.; Nafziger, E.D.; et al. Statistical and Machine Learning Methods Evaluated for Incorporating Soil and Weather into Corn Nitrogen Recommendations. Comput. Electron. Agric. 2019, 164, 104872. [Google Scholar] [CrossRef] [Green Version]
- Brönmark, C.; Hansson, L.-A. Environmental Issues in Lakes and Ponds: Current State and Perspectives. Environ. Conserv. 2002, 29, 290–307. [Google Scholar] [CrossRef]
- Chopyk, J.; Allard, S.; Nasko, D.J.; Bui, A.; Mongodin, E.F.; Sapkota, A.R. Agricultural Freshwater Pond Supports Diverse and Dynamic Bacterial and Viral Populations. Front. Microbiol. 2018, 9, 792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merem, E.C.; Isokpehi, R.; Foster, D.; Wesley, J.; Nwagboso, E.; Romorno, C.; Richardson, C. Using Geo-Information Systems in Assessing Water Quality in the Mid-Atlantic Region Agricultural Watershed of Maryland. Int. J. Ecosyst. 2012, 2, 112–139. [Google Scholar] [CrossRef] [Green Version]
- Binding, C.E.; Pizzolato, L.; Zeng, C. EOLakeWatch; Delivering a Comprehensive Suite of Remote Sensing Algal Bloom Indices for Enhanced Monitoring of Canadian Eutrophic Lakes. Ecol. Indic. 2021, 121, 106999. [Google Scholar] [CrossRef]
- Burford, M.A.; Carey, C.C.; Hamilton, D.P.; Huisman, J.; Paerl, H.W.; Wood, S.A.; Wulff, A. Perspective: Advancing the Research Agenda for Improving Understanding of Cyanobacteria in a Future of Global Change. Harmful Algae 2020, 91, 101601. [Google Scholar] [CrossRef]
Dataset | 2017 | 2017 + 2018 |
---|---|---|
A | TEMP, pH, DO, NTU, SPC | TEMP, pH, DO, NTU, SPC, PAR |
B | CHL, Phyco, FDOM | CHL, Phyco, FDOM, CDOM |
C | n/a | K, Ca2+, Mg2+, NH4+, NO3, H2PO4− |
Pond 1 | Pond 2 | |||
---|---|---|---|---|
Input Group | Nostocales | Chroococcales | Nostocales | Chroococcales |
2017 | ||||
A | 0.753 | 0.699 | 0.729 | 0.719 |
B | 0.863 | 0.716 | 0.824 | 0.673 |
AB | 0.781 | 0.682 | 0.735 | 0.649 |
2018 | ||||
A | 0.521 | 0.381 | 0.387 | 0.444 |
B | 0.520 | 0.337 | 0.437 | 0.462 |
C | 0.505 | 0.377 | 0.387 | 0.438 |
AB | 0.492 | 0.355 | 0.386 | 0.448 |
AC | 0.496 | 0.385 | 0.385 | 0.427 |
BC | 0.506 | 0.348 | 0.388 | 0.418 |
ABC | 0.506 | 0.355 | 0.378 | 0.426 |
2017 + 2018 | ||||
A | 0.596 | 0.655 | 0.548 | 0.541 |
B | 0.669 | 0.685 | 0.613 | 0.597 |
AB | 0.614 | 0.627 | 0.535 | 0.509 |
Green Algae | Diatoms | Cyanobacteria | |||||||
---|---|---|---|---|---|---|---|---|---|
Input Group | Imp Var 1 | Imp Var 2 | Imp Var 3 | Imp Var 1 | Imp Var 2 | Imp Var 3 | Imp Var 1 | Imp Var 2 | Imp Var 3 |
2017 | |||||||||
A | TEMP | SPC | DO | NTU | SPC | TEMP | TEMP | pH | SPC |
4.3 | 2.7 | 2.6 | 14.3 | 12.6 | 12.4 | 21.0 | 15.5 | 14.9 | |
B | FDOM | Phyco | CHL | Phyco | FDOM | CHL | CHL | Phyco | FDOM |
6.7 | 3.8 | 3.2 | 22.0 | 15.4 | 10.9 | 37.3 | 22.2 | 17.3 | |
AB | FDOM | TEMP | Phyco | Phyco | TEMP | NTU | CHL | TEMP | pH |
2.8 | 2.8 | 1.9 | 9.7 | 8.0 | 7.7 | 14.2 | 12.2 | 11.0 | |
2018 | |||||||||
A | TEMP | SPC | DO | TEMP | SPC | DO | TEMP | SPC | NTU |
9.5 | 6.1 | 6.1 | 10.0 | 8.0 | 7.0 | 32.3 | 25.9 | 16.1 | |
B | CHL | FDOM | CDOM | FDOM | CDOM | CHL | FDOM | CHL | CDOM |
20.6 | 8.9 | 4.2 | 17.5 | 16.0 | 9.1 | 44.9 | 30.1 | 23.3 | |
C | K | NO3 | Ca2+ | NO3 | H2PO4− | Ca2+ | NO3 | K | H2PO4− |
13.1 | 4.8 | 4.8 | 12.9 | 9.7 | 8.6 | 29.1 | 28.7 | 18.9 | |
AB | CHL | FDOM | TEMP | CDOM | FDOM | TEMP | TEMP | SPC | FDOM |
10.3 | 5.3 | 4.5 | 6.6 | 6.0 | 5.5 | 18.5 | 17.7 | 15.6 | |
AC | K | Ca2+ | NO3 | TEMP | NO3 | H2PO4− | TEMP | SPC | K |
6.8 | 3.9 | 3.7 | 6.6 | 5.9 | 5.1 | 18.0 | 15.8 | 15.2 | |
BC | K | CHL | Ca2+ | FDOM | NO3 | CDOM | FDOM | K | NO3 |
8.1 | 8.0 | 3.7 | 7.6 | 7.4 | 6.8 | 21.7 | 17.5 | 14.3 | |
ABC | CHL | K | Mg2+ | FDOM | H2PO4− | NO3 | TEMP | SPC | K |
5.3 | 5.1 | 2.9 | 4.7 | 4.4 | 4.1 | 12.0 | 11.8 | 11.5 | |
2017 + 2018 | |||||||||
A | TEMP | pH | SPC | TEMP | SPC | DO | SPC | TEMP | NTU |
14.8 | 13.3 | 11.3 | 33.4 | 31.8 | 23.5 | 69.8 | 43.5 | 41.3 | |
B | CHL | FDOM | Phyco | FDOM | Phyco | CHL | CHL | FDOM | Phyco |
33.5 | 14.0 | 6.6 | 42.4 | 40.6 | 38.9 | 81.3 | 79.8 | 58.4 | |
AB | CHL | FDOM | TEMP | TEMP | SPC | DO | SPC | CHL | DO |
16.9 | 8.1 | 6.8 | 23.1 | 21.0 | 16.5 | 47.7 | 34.5 | 28.1 |
Green Algae | Diatoms | Cyanobacteria | |||||||
---|---|---|---|---|---|---|---|---|---|
Input Group | Imp Var 1 | Imp Var 2 | Imp Var 3 | Imp Var 1 | Imp Var 2 | Imp Var 3 | Imp Var 1 | Imp Var 2 | Imp Var 3 |
2017 | |||||||||
A | pH | SPC | TEMP | pH | SPC | DO | SPC | NTU | pH |
22.5 | 19.9 | 6.4 | 24.1 | 13.3 | 11.6 | 88.6 | 49.9 | 16.0 | |
B | FDOM | Phyco | CHL | FDOM | Phyco | CHL | Phyco | CHL | FDOM |
26.3 | 20.4 | 8.3 | 29.9 | 19.1 | 12.3 | 118.2 | 32.4 | 24.3 | |
AB | SPC | pH | TEMP | pH | SPC | DO | SPC | NTU | Phyco |
16.7 | 16.5 | 6.8 | 15.7 | 11.2 | 9.8 | 60.6 | 36.6 | 33.4 | |
2018 | |||||||||
A | TEMP | SPC | NTU | SPC | TEMP | PAR | SPC | TEMP | NTU |
21.9 | 19.2 | 13.6 | 10.6 | 10.2 | 10.1 | 16.7 | 10.9 | 7.9 | |
B | CHL | CDOM | FDOM | CDOM | FDOM | CHL | FDOM | CDOM | CHL |
31.6 | 22.5 | 16.3 | 23.5 | 18.1 | 16.7 | 29.0 | 16.0 | 15.1 | |
C | K | Mg2+ | NH4+ | Mg2+ | Ca2+ | H2PO4− | Mg2+ | K | H2PO4− |
26.0 | 18.3 | 12.3 | 15.9 | 13.5 | 13.0 | 15.3 | 13.9 | 12.7 | |
AB | TEMP | SPC | CHL | SPC | TEMP | CDOM | SPC | FDOM | TEMP |
15.4 | 12.7 | 10.3 | 8.1 | 7.5 | 7.3 | 11.3 | 10.0 | 7.8 | |
AC | K | TEMP | Mg2+ | Mg2+ | H2PO4− | Ca2+ | SPC | Mg2+ | TEMP |
13.5 | 10.2 | 9.9 | 7.8 | 6.2 | 5.9 | 10.3 | 7.3 | 6.6 | |
BC | K | Mg2+ | NH4+ | Mg2+ | H2PO4− | Ca2+ | FDOM | Mg2+ | CHL |
19.8 | 13.9 | 11.4 | 11.5 | 8.8 | 8.6 | 11.7 | 11.5 | 7.8 | |
ABC | K | NH4+ | NO3 | Mg2+ | Ca2+ | H2PO4− | SPC | FDOM | Mg2+ |
10.2 | 9.2 | 8.8 | 7.1 | 5.3 | 4.8 | 8.1 | 6.9 | 6.2 | |
2017 + 2018 | |||||||||
A | pH | SPC | TEMP | SPC | DO | TEMP | SPC | NTU | TEMP |
30.7 | 25.7 | 25.6 | 52.6 | 38.8 | 26.6 | 104.5 | 59.3 | 45.3 | |
B | Phyco | CHL | FDOM | FDOM | Phyco | CHL | Phyco | CHL | FDOM |
41.9 | 38.9 | 26.8 | 63.0 | 60.1 | 40.0 | 142.7 | 78.3 | 63.0 | |
AB | pH | TEMP | SPC | SPC | DO | TEMP | SPC | Phyco | NTU |
22.9 | 19.9 | 19.1 | 39.5 | 26.6 | 21.4 | 65.9 | 59.6 | 35.6 |
Nostocales | Chroococcales | |||||
---|---|---|---|---|---|---|
Input Group | Imp Var 1 | Imp Var 2 | Imp Var 3 | Imp Var 1 | Imp Var 2 | Imp Var 3 |
2017 | ||||||
A | TEMP | SPC | PH | SPC | TEMP | PH |
B | CHL | Phyco | FDOM | CHL | Phyco | FDOM |
AB | TEMP | SPC | CHL | Phyco | CHL | PH |
2018 | ||||||
A | TEMP | SPC | NTU | TEMP | PH | DO |
B | FDOM | CDOM | CHL | CHL | CDOM | FDOM |
C | NO3− | K | H2PO4− | H2PO4− | Mg2+ | K |
AB | FDOM | CDOM | TEMP | CDOM | CHL | FDOM |
AC | TEMP | SPC | NO3− | H2PO4− | TEMP | PH |
BC | FDOM | CDOM | NO3− | FDOM | CDOM | CHL |
ABC | FDOM | TEMP | CDOM | CHL | H2PO4− | FDOM |
2017 + 2018 | ||||||
A | TEMP | SPC | PH | SPC | DO | TEMP |
B | CHL | FDOM | Phyco | Phyco | CHL | FDOM |
AB | SPC | TEMP | CHL | SPC | Phyco | CHL |
Nostocales | Chroococcales | |||||
---|---|---|---|---|---|---|
Input Group | Imp Var 1 | Imp Var 2 | Imp Var 3 | Imp Var 1 | Imp Var 2 | Imp Var 3 |
2017 | ||||||
A | NTU | SPC | TEMP | NTU | TEMP | SPC |
B | Phyco | CHL | FDOM | FDOM | CHL | Phyco |
AB | NTU | SPC | Phyco | TEMP | NTU | CHL |
2018 | ||||||
A | SPC | TEMP | DO | NTU | Light 15 cm | DO |
B | FDOM | CDOM | Phyco | CDOM | Phyco | CHL |
C | Mg2+ | NH4+ | Ca2+ | NH4+ | NO3− | K |
AB | SPC | TEMP | FDOM | NTU | CDOM | CHL |
AC | Mg2+ | SPC | TEMP | NH4+ | NO3− | NTU |
BC | Mg2+ | FDOM | NH4+ | NH4+ | NO3− | K |
ABC | Mg2+ | SPC | FDOM | NTU | K | NO3− |
2017 + 2018 | ||||||
A | SPC | NTU | PH | NTU | TEMP | PH |
B | Phyco | FDOM | CHL | Phyco | CHL | FDOM |
AB | SPC | Phyco | NTU | Phyco | NTU | TEMP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, J.E.; Wolny, J.L.; Hill, R.L.; Stocker, M.D.; Pachepsky, Y. Examining the Relationship between Phytoplankton Community Structure and Water Quality Measurements in Agricultural Waters: A Machine Learning Application. Environments 2022, 9, 142. https://doi.org/10.3390/environments9110142
Smith JE, Wolny JL, Hill RL, Stocker MD, Pachepsky Y. Examining the Relationship between Phytoplankton Community Structure and Water Quality Measurements in Agricultural Waters: A Machine Learning Application. Environments. 2022; 9(11):142. https://doi.org/10.3390/environments9110142
Chicago/Turabian StyleSmith, Jaclyn E., Jennifer L. Wolny, Robert L. Hill, Matthew D. Stocker, and Yakov Pachepsky. 2022. "Examining the Relationship between Phytoplankton Community Structure and Water Quality Measurements in Agricultural Waters: A Machine Learning Application" Environments 9, no. 11: 142. https://doi.org/10.3390/environments9110142
APA StyleSmith, J. E., Wolny, J. L., Hill, R. L., Stocker, M. D., & Pachepsky, Y. (2022). Examining the Relationship between Phytoplankton Community Structure and Water Quality Measurements in Agricultural Waters: A Machine Learning Application. Environments, 9(11), 142. https://doi.org/10.3390/environments9110142