Biodegradable Nonwoven Materials with Antipathogenic Layer
Abstract
:1. Introduction
2. Technologies of Producing Biodegradable Nonwovens
- Filament extrusion.
- Filament drawing.
- Filament deposition.
3. Nonwoven Materials—Antipathogenic Modifications
- chemical grafting;
- plasma induced vaccination using radiofrequency or microwave plasma;
- radiation induced vaccination that uses high energy radiation (e.g., γ-Co60 rays);
- light induced vaccination using an ultraviolet light source [62].
- damage or inhibition of cell wall synthesis, which is crucial for the life and survival of the bacterial species;
- inhibition of cell membrane function, which can disregulate intra- and extracellular material flow and leak solutes important for cell survival;
- inhibition of protein synthesis, which is the basis of enzymes and cell structures, leading to the death of the organism or inhibition of its growth and multiplication;
4. The Biodegradation Process of Materials
4.1. Selected Research Methods of the Biodegradation Process
4.2. Biodegradation of Nonwovens in Compost Environment—Laboratory Scale
5. Antipathogenic Activity—Activity Evaluation
5.1. Qualitative Methods
5.2. Quantitative Methods
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhat, G.; Parikh, D.V. 3-Biodegradable materials for nonwovens. In Book Applications of Nonwovens in Technical Textiles; Chapman, R.A., Ed.; Woodhead Publishing Limited: Sawston, MA, USA, 2010; pp. 46–62. [Google Scholar]
- Husaina, I.; Alalyanib, M.; Hanga, A.H. Disposable Plastic Food Container and Its Impacts on Health. Energy Environ. Sci. 2015, 130, 618–623. [Google Scholar]
- Salwa, H.N.; Sapuan, S.M.; Mastura, M.T.; Zuhri, M.Y.M. Conceptual Design and Selection of Natural Fibre Reinforced Biopolymer Composite (NFBC) Takeout Food Container. J. Renew. Mater. 2021, 9, 803–827. [Google Scholar] [CrossRef]
- Maraveas, C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef]
- Dziuba, R.; Kucharska, M.; Madej-Kiełbik, L.; Sulak, K.; Wiśniewska-Wrona, M. Biopolymers and Biomaterials for Special Applications within the Context of the Circular Economy. Materials 2021, 14, 7704. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Engineering Fundamentals of Biotechnology. In Comprehensive Biotechnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Dean, R. PPE: Polluting Planet Earth. Br. Dent. J. 2020, 229, 267. [Google Scholar] [CrossRef] [PubMed]
- Klemeš, J.J.; Van Fan, Y.; Tan, R.R.; Jiang, P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew. Sustain. Energy Rev. 2020, 127, 109883. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Karmacharya, M.; Joshi, S.R.; Gulenko, O.; Park, J.; Kim, G.-H.; Cho, Y.-K. Photoactive Antiviral Face Mask with Self-Sterilization and Reusability. Nano Lett. 2020, 21, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, A.; Chen, Y.; Jones, M.M.; Vanyo, S.T.; Li, C.; Visser, M.B.; Mahajan, S.D.; Sharma, R.K.; Swihart, M.T. Copper@ZIF-8 Core-Shell Nanowires for Reusable Antimicrobial Face Masks. Adv. Funct. Mater. 2020, 13, 2008054–2008066. [Google Scholar] [CrossRef]
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Duarte, A.C.; Ouyang, W.; Barcelò, D.; Rocha-Santos, T. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J. 2020, 405, 126683. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Thapa, B.; Yang, X.; Gertsen, H.; Salánki, T.; Geissen, V.; Garbeva, P. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Sci. Total Environ. 2018, 624, 753–757. [Google Scholar] [CrossRef]
- Kwak, J.I.; An, Y.-J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. J. Hazard. Mater. 2020, 402, 124034. [Google Scholar] [CrossRef] [PubMed]
- Quan, F.-S.; Rubino, I.; Lee, S.-H.; Koch, B.; Choi, H.-J. Universal and reusable virus deactivation system for respiratory protection. Sci. Rep. 2017, 7, 39956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubino, I.; Oh, E.; Han, S.; Kaleem, S.; Hornig, A.; Lee, S.-H.; Kang, H.-J.; Lee, D.-H.; Chu, K.-B.; Kumaran, S.; et al. Salt coatings functionalize inert membranes into high-performing filters against infectious respiratory diseases. Sci. Rep. 2020, 10, 13875–13884. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Xiao, H.; Seidi, F.; Jin, Y. Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules 2020, 21, 2983–3006. [Google Scholar] [CrossRef]
- Zhong, H.; Zhu, Z.; Lin, J.; Cheung, C.; Lu, V.L.; Yan, F.; Chan, C.-Y.; Li, G. Reusable and Recyclable Graphene Masks with Outstanding Superhydrophobic and Photothermal Performances. ACS Nano 2020, 14, 6213–6221. [Google Scholar] [CrossRef]
- Zhong, H.; Zhu, Z.; You, P.; Lin, J.; Cheung, C.F.; Lu, V.L.; Yan, F.; Chan, C.-Y.; Li, G. Plasmonic and Superhydrophobic Self-Decontaminating N95 Respirators. ACS Nano 2020, 14, 8846–8854. [Google Scholar] [CrossRef]
- Midya, L.; Patra, A.S.; Banerjee, C.; Panda, A.B.; Pal, S. Novel nanocomposite derived from ZnO/CdS QDs embedded crosslinked chitosan: An efficient photocatalyst and effective antibacterial agent. J. Hazard. Mater. 2019, 369, 398–407. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Liu, Q.; Zhao, Q.; Xiong, X.; Wu, C. Used disposable face masks are significant sources of microplastics to environment. Environ. Pollut. 2021, 285, 117485–117491. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Cao, W.; Wei, D.; Zheng, A.; Guan, Y. Permanent antimicrobial cotton fabrics obtained by surface treatment with modified guanidine. Carbohydr. Polym. 2018, 180, 192–199. [Google Scholar] [CrossRef]
- Li, S.; Donner, E.; Xiao, H.; Thompson, M.; Zhang, Y.; Rempel, C.; Liu, Q. Preparation and characterization of soy protein films with a durable water resistance-adjustable and antimicrobial surface. Mater. Sci. Eng. C 2016, 69, 947–955. [Google Scholar] [CrossRef]
- Pan, Y.; Xia, Q.; Xiao, H. Cationic Polymers with Tailored Structures for Rendering Polysaccharide-Based Materials Antimicrobial: An Overview. Polymers 2019, 11, 1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Leung, P.; Yao, L.; Song, Q.; Newton, E. Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 2006, 62, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Hiragond, C.B.; Kshirsagar, A.; Dhapte, V.V.; Khanna, T.; Joshi, P.; More, P.V. Enhanced anti-microbial response of commercial face mask using colloidal silver nanoparticles. Vacuum 2018, 156, 475–482. [Google Scholar] [CrossRef]
- Tamayo, L.; Azócar, M.; Kogan, M.; Riveros, A.; Páez, M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater. Sci. Eng. C 2016, 69, 1391–1409. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, M.; Ullah, S.; Kim, I.S. Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications. Curr. Res. Biotechnol. 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Horváth, E.; Rossi, L.; Mercier, C.; Lehmann, C.; Sienkiewicz, A.; Forró, L. Photocatalytic Nanowires-Based Air Filter: Towards Reusable Protective Masks. Adv. Funct. Mater. 2020, 30, 2004615–2004622. [Google Scholar] [CrossRef]
- Huang, L.; Xu, S.; Wang, Z.; Xue, K.; Su, J.; Song, Y.; Chen, S.; Zhu, C.; Tang, B.Z.; Ye, R. Self-Reporting and Photothermal Enhanced Rapid Bacterial Killing on Laser-Induced Graphene Mask. ACS Nano 2020, 14, 12045–12053. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef]
- Patel, B.M.; Bhrambhatt, D. Nonwoven Technology for Unconventional Fabrics; Bloomsbury Publishing: London, UK, 2008; pp. 1–54. [Google Scholar]
- Subhankar, M. Natural Fibre Nonwovens. In Nonwoven Fabric: Manufacturing and Applications; Chapter 1; Rembrandt, E., Ed.; Materials Science and Technologies Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2020. [Google Scholar]
- Karthik, T.; Rathinamoorthy, R.; Karan, C.P. Non-Woven: Process, Structure, Properties and Applications, ProQuest; Woodhead Publishing India Pvt. Ltd.: Delhi, India, 2016. [Google Scholar]
- Szuman, K.; Krucińska, I.; Boguń, M.; Draczyński, Z. PLA/PHA-Biodegradable Blends for Pneumothermic Fabrication of Nonwovens. Autex Res. J. 2016, 16, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Van de Voorde, K.M.; Korley, L.T.J.; Pokorski, J.K. Confinement and Composition Effects on the Degradation Profile of Extruded PLA/PCL Nonwoven Fiber Blends. ACS Appl. Polym. Mater. 2021, 3, 3878–3890. [Google Scholar] [CrossRef]
- Erben, J.; Pilarova, K.; Sanetrnik, F.; Chvojka, J.; Jencova, V.; Blazkova, L.; Havlicek, J.; Novak, O.; Mikes, P.; Prosecka, E.; et al. The combination of meltblown and electrospinning for bone tissue engineering. Mater. Lett. 2015, 143, 172–176. [Google Scholar] [CrossRef]
- Li, T.-T.; Zhang, H.; Gao, B.; Shiu, B.-C.; Ren, H.-T.; Peng, H.-K.; Lou, C.-W.; Lin, J.-H. Daylight-driven photosensitive antibacterial melt-blown membranes for medical use. J. Clean. Prod. 2021, 296, 126395. [Google Scholar] [CrossRef]
- Prakash, M.; Sattiraju, M.S.; Mohan, P.D.; Lalith, C.S.; Anand, M.V.; Tidk, S. Biodegradable Masks, A Path Towards Sus-tainability: A Review. Int. J. Adv. Res. Sci. Eng. Technol. 2021, 8, 18520–18529. [Google Scholar]
- Naser, A.Z.; Deiab, I.; Darras, B.M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Adv. 2021, 11, 17151–17196. [Google Scholar] [CrossRef] [PubMed]
- Mao, N. Nonwoven fabric filters. In Advances in Technical Nonwovens; Kellie, G., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 273–310. [Google Scholar] [CrossRef]
- Hutte, I.M. Handbook of Nonwoven Filter Media; Elsevier: New York, NY, USA, 2007; pp. 14–27. [Google Scholar]
- Brochocka, A.; Nowak, A.; Majchrzycka, K.; Puchalski, M.; Sztajnowski, S. Multifunctional Polymer Composites Produced by Melt-Blown Technique to Use in Filtering Respiratory Protective Devices. Materials 2020, 13, 712. [Google Scholar] [CrossRef] [Green Version]
- Eryuruk, S.H.; Kayaoglu, B.K.; Altay, P. Thermal comfort properties of nonwoven fabrics used in surgical gowns. IOP Conf. Series: Mater. Sci. Eng. 2018, 459, 012039. [Google Scholar] [CrossRef]
- Available online: www.ppnonwoven.com/nonwoven-fabric/sms-nonwoven/high-anti-static-waterproof-smms-non-woven.html (accessed on 18 April 2022).
- Midha, V.K.; Dakuri, A. Spun bonding Technology and Fabric Properties: A Review. J. Text. Eng. Fash. Technol. 2017, 1, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Kudzin, M.H.; Mrozińska, Z. Biofunctionalization of Textile Materials. 2. Antimicrobial Modification of Poly(lactide) (PLA) Nonwoven Fabricsby Fosfomycin. Polymers 2020, 12, 768. [Google Scholar] [CrossRef] [Green Version]
- Sójka-Ledakowicz, J.; Chruściel, J.; Kudzin, M.; Łatwińska, M.; Kiwała, M. Antimicrobial Functionalization of Textile Materials with Copper Silicate. Fibres Text. East. Eur. 2016, 24, 151–156. [Google Scholar] [CrossRef]
- Slepička, P.; Malá, Z.; Rimpelová, S.; Švorčík, V. Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater. Sci. Eng. C 2016, 65, 364–368. [Google Scholar] [CrossRef]
- Cerkez, I.; Worley, S.; Broughton, R.; Huang, T. Rechargeable antimicrobial coatings for poly(lactic acid) nonwoven fabrics. Polymer 2013, 54, 536–541. [Google Scholar] [CrossRef]
- Kudzin, M.H.; Giełdowska, M.; Mrozińska, Z.; Boguń, M. Poly(lactic acid)/Zinc/Alginate Complex Material: Preparation and Antimicrobial Properties. Antibiotics 2021, 10, 1327. [Google Scholar] [CrossRef] [PubMed]
- Pandit, P.; Maity, S.; Singha, K.; Uzun, M.; Shekh, M.; Ahmed, S. Potential biodegradable face mask to counter environmental impact of Covid-19. Clean. Eng. Technol. 2021, 4, 100218. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Zhao, R.; Yang, X.; Chen, F.; Ning, X. Bicomponent PLA Nanofiber Nonwovens as Highly Efficient Filtration Media for Particulate Pollutants and Pathogens. Membranes 2021, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, D.; Kalita, N.K.; Kumar, A.; Katiyar, V. Functionalized poly(lactic acid) based nano-fabric for anti-viral applications. RSC Adv. 2021, 11, 32884–32897. [Google Scholar] [CrossRef] [PubMed]
- Jarach, N.; Dodiuk, H.; Kenig, S. Polymers in the Medical Antiviral Front-Line. Polymers 2020, 12, 1727. [Google Scholar] [CrossRef] [PubMed]
- Owczarek, M.; Szkopiecka, M.; Jagodzińska, S.; Dymel, M.; Kudra, M.; Gzyra-Jagieła, K.; Miros-Kudra, P. Biodegradable Nonwoven of an Aliphfatic-Aromatic Copolyester with an Active Cosmetic Layer. Fibres Text. East. Eur. 2019, 27, 102–109. [Google Scholar] [CrossRef]
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37, 281–339. [Google Scholar] [CrossRef]
- Jain, A.; Duvvuri, L.S.; Farah, S.; Beyth, N.; Domb, A.J.; Khan, W. Antimicrobial Polymers. Adv. Healthc. Mater. 2014, 3, 1969–1985. [Google Scholar] [CrossRef]
- Xue, Y.; Xiao, H.; Zhang, Y. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. Int. J. Mol. Sci. 2015, 16, 3626–3655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, H.; Si, Z.; Luo, Y.; Feng, P.; Wu, X.; Hou, W.; Zhu, Y.; Chan-Park, M.B.; Xu, L.; Huang, D. The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Front. Bioeng. Biotechnol. 2020, 8, 910. [Google Scholar] [CrossRef] [PubMed]
- Riga, E.K.; Vöhringer, M.; Widyaya, V.T.; Lienkamp, K. Polymer-Based Surfaces Designed to Reduce Biofilm Formation: From Antimicrobial Polymers to Strategies for Long-Term Applications. Macromol. Rapid Commun. 2017, 38, 1700216. [Google Scholar] [CrossRef] [PubMed]
- Hasan, J.; Crawford, R.; Ivanova, E.P. Antibacterial surfaces: The quest for a new generation of biomaterials. Trends Biotechnol. 2013, 31, 295–304. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Wang, X.; Hu, J.; Liu, S. Enzyme-Responsive Polymeric Vesicles for Bacterial-Strain-Selective Delivery of Antimicrobial Agents. Angew. Chem. Int. Ed. 2015, 55, 1760–1764. [Google Scholar] [CrossRef]
- Russell, A.D.; Furr, R.; Maillard, J.-Y. Microbial susceptibility and resistance to biocides. ASM News 1997, 63, 481–487. [Google Scholar]
- Allmyr, M.; Adolfsson-Erici, M.; McLachlan, M.; Englund, G.S. Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci. Total Environ. 2006, 372, 87–93. [Google Scholar] [CrossRef]
- Shahidi, S.; Rashidi, A.; Ghoranneviss, M.; Anvari, A.; Rahimi, M.K.; Moghaddam, M.B.; Wiener, J. Investigation of metal absorption and antibacterial activity on cotton fabric modified by low temperature plasma. Cellulose 2010, 17, 627–634. [Google Scholar] [CrossRef]
- Windler, L.; Height, M.; Nowack, B. Comparative evaluation of antimicrobials for textile applications. Environ. Int. 2013, 53, 62–73. [Google Scholar] [CrossRef]
- Dumitrascu, M.; Grigorescu, I.; Kucsicsa, G.; Dragota, C.S.; Nastase, M. Non-Native and Native Invasive Terrestrial Plant Species in Comana Natural Park. Case-Studies: Amorpha Fruticosa and Crataegus Monogyna. Rev. Roum. Géogr./Rom. J. Geogr. 2011, 55, 81–89. [Google Scholar]
- Kozuharova, E.; Matkowski, A.; Woźniak, D.; Simeonova, R.; Naychov, Z.; Malainer, C.; Mocan, A.; Nabavi, S.M.; Atanasov, A.G. Amorpha fruticosa–A Noxious Invasive Alien Plant in Europe or a Medicinal Plant against Metabolic Disease? Front. Pharmacol. 2017, 8, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savoia, D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol. 2012, 7, 979–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simoncic, B.; Tomsic, B. Structures of Novel Antimicrobial Agents for Textiles—A Review. Text. Res. J. 2010, 80, 1721–1737. [Google Scholar] [CrossRef]
- Kim, J.-S.; Shin, D.-H. Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restor. Dent. Endod. 2013, 38, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helander, I.; Nurmiaho-Lassila, E.-L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol. 2001, 71, 235–244. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Hassabo, A.G.; Mohamed, A.L. Multiamine Modified Chitosan for Removal Metal Ions from Their Aqueous Solution. Bio-Technol. Indian J. 2016, 12, 59–69. [Google Scholar]
- Wang, X.; Du, Y.; Fan, L.; Liu, H.; Hu, Y. Chitosan- metal complexes as antimicrobial agent: Synthesis, characterization and Structure-activity study. Polym. Bull. 2005, 55, 105–113. [Google Scholar] [CrossRef]
- Albertsson, A.-C.; Karlsson, S. Chemistry and Biochemistry of Polymer Biodegradation. Chemistry and Technology of Biode-Gradable Polymers; Griffin, G.J.L., Ed.; Blackie Academic & Professional: London, UK, 1994; pp. 7–17. [Google Scholar]
- Ali, S.A.M.; Doherty, P.J.; Williams, D.F. The mechanisms of oxidative degradation of biomedical polymers by free radicals. J. Appl. Polym. Sci. 1994, 51, 1389–1398. [Google Scholar] [CrossRef]
- Glossary of Environment Statistics. Studies in Methods; Series F, No. 67; United Nations: New York, NY, USA, 1997. [Google Scholar]
- OECD. Glossary of Statistical Terms. Available online: https://stats.oecd.org/glossary/detail.asp?ID=203 (accessed on 17 February 2021).
- Poznyak, T.I.; Oria, I.C.; Poznyak, A.S. Biodegradation. In Ozonation and Biodegradation in Environmental Engineering, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 353–388. [Google Scholar] [CrossRef]
- SAPEA. Biodegradability of Plastics in the Open Environment. 2020. Available online: https://sapea.info/topic/biodegradability-of-plastics/ (accessed on 23 April 2022).
- Kirwan, K.; Wood, B.M. Recycling of materials in automotive engineeringin. In Advanced Materials in Automotive Engineering; Woodhead Publishing: Cambridge, UK, 2012; pp. 299–314. [Google Scholar]
- Rana, S.; Pichandi, S.; Parveen, S.; Fangueiro, R. Biodegradation Studies of Textiles and Clothing Products. In Roadmap to Sustainable Textiles and Clothing. Textile Science and Clothing Technology; Muthu, S., Ed.; Springer: Singapore, 2014; pp. 83–123. [Google Scholar] [CrossRef]
- Urbanek, A.K.; Rymowicz, W.; Mirończuk, A.M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678. [Google Scholar] [CrossRef] [Green Version]
- Wypych, G. Handbook of Material Weathering, 6th ed.; ChemTec Publishing: Toronto, ON, Canada, 2018. [Google Scholar]
- Li, L.; Frey, M.; Browning, K.J. Biodegradability Study on Cotton and Polyester Fabrics. J. Eng. Fibers Fabr. 2010, 5. [Google Scholar] [CrossRef]
- Song, J.-H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2127–2139. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2018, 138, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.Z.; Watts, A.J.; Winslow, B.O.; Galloway, T.S.; Barrows, A.P. Mountains to the sea: River study of plastic and non-plastic microfiber pollution in the northeast USA. Mar. Pollut. Bull. 2017, 124, 245–251. [Google Scholar] [CrossRef]
- Smith, S.; Ozturk, M.; Frey, M. Soil biodegradation of cotton fabrics treated with common finishes. Cellulose 2021, 28, 4485–4494. [Google Scholar] [CrossRef]
- Zambrano, M.C.; Pawlak, J.J.; Daystar, J.; Ankeny, M.; Goller, C.; Venditti, R. Aerobic biodegradation in freshwater and marine environments of textile microfibers generated in clothes laundering: Effects of cellulose and polyester-based microfibers on the microbiome. Mar. Pollut. Bull. 2020, 151, 110826. [Google Scholar] [CrossRef]
- Kim, S.; Cho, Y.; Park, C.H. Effect of cotton fabric properties on fiber release and marine biodegradation. Text. Res. J. 2022, 92, 2121–2137. [Google Scholar] [CrossRef]
- Bajpai, V.; Dey, A.; Ghosh, S.; Bajpai, S.; Jha, M. Quantification of bacterial adherence on different textile fabrics. Int. Biodeterior. Biodegrad. 2011, 65, 1169–1174. [Google Scholar] [CrossRef]
- Fuzek, J.F. Absorption and desorption of water by some common fibers. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24, 140–144. [Google Scholar] [CrossRef]
- Deng, C.; Seidi, F.; Yong, Q.; Jin, X.; Li, C.; Zhang, X.; Han, J.; Liu, Y.; Huang, Y.; Wang, Y.; et al. Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. J. Hazard. Mater. 2021, 424, 127391. [Google Scholar] [CrossRef]
- Mclauchlin, A.R.; Thomas, N.L. Biodegradable polymer nanocomposites. In Woodhead Publishing Series in Composites Science and Engineering, Advances in Polymer Nanocomposites; Woodhead Publishing: Cambridge, UK, 2012; pp. 398–430. [Google Scholar]
- Krawczyk-Walach, M.; Gzyra-Jagieła, K.; Milczarek, A.; Jóźwik-Pruska, J. Characterization of Potential Pollutants from Poly(lactic acid) after the Degradation Process in Soil under Simulated Environmental Conditions. AppliedChem 2021, 1, 156–172. [Google Scholar] [CrossRef]
- Artham, T.; Doble, M. Biodegradation of Aliphatic and Aromatic Polycarbonates. Macromol. Biosci. 2007, 8, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Fotopoulou, K.N.; Karapanagioti, H.K. Degradation of Various Plastics in the Environment. In Hazardous Chemicals Associated with Plastics in the Marine Environment; Springer: Berlin/Heidelberg, Germany, 2017; pp. 71–92. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, Z.; Ye, H.; Lin, X.; Yan, Y.; Zhang, Y. Accelerated biodegradation of PLA/PHB-blended nonwovens by a microbial community. RSC Adv. 2019, 9, 10386–10394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhacham, E.; Ben-Uri, L.; Grozovski, J.; Bar-On, Y.M.; Milo, R. Global human-made mass exceeds all living biomass. Nature 2020, 588, 442–444. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World-The 2030 Agenda for Sustainable Development. 2015, pp. 1–41. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 22 April 2022).
- COM 2013/123. Green Paper-On ta European Strategy on Plastic Waste in the Environment. 2013, pp. 1–20. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52013DC0123&rid=10 (accessed on 22 April 2022).
- COM 2018/28. Communication from the Commission t the European Parliament, the Council, the European Economic and Social Committee and the Committee of Regions- A European Strategy for Plastics in Circular Economy. 2018, pp. 1–18. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2018:28:FIN (accessed on 21 April 2022).
- Directive 2019/904. Directive of the European Parliament and of the Council of 5 June 2019. Available online: https://eur-lex.europa.eu/eli/dir/2019/904/oj (accessed on 20 April 2022).
- AATCC 147-2016 Antibacterial Activity Assessment of Textile Materials: Parallel Streak Method. Available online: https://members.aatcc.org/store/tm147/554/ (accessed on 19 April 2022).
- PN-EN ISO 20645:2006 Płaskie wyroby włókiennicze. Wyznaczanie aktywności antybakteryjnej. Metoda dyfuzji na płytce z agarem (Textile Fabrics-Determination of Antibacterial Activity-Agar Diffusion Plate Test). Available online: https://sklep.pkn.pl/pn-en-iso-20645-2006p.html (accessed on 20 April 2022).
- PN-EN 14119:2005 Badania tekstyliów. Ocena Działania Mikrogrzybów (Testing of Textiles-Evaluation of the Action of Microfungi). Available online: https://sklep.pkn.pl/pn-en-14119-2005p.html (accessed on 20 April 2022).
- ATCC 30-2013 Antifungal Activity, Assessment on Textile Materials: Mildew and Rot Resistance of Textile Materials. Available online: https://standards.globalspec.com/std/590834/aatcc-30 (accessed on 23 April 2022).
- PN-EN ISO 20743:2013-10 Tekstylia-Wyznaczanie Aktywności Antybakteryjnej wyrobów Gotowych z Wykończeniem Antybakteryjnym (Textiles-Determination of Antibacterial Activity of Textile Products). Available online: https://sklep.pkn.pl/pn-en-iso-20743-2013-10e.html (accessed on 20 April 2022).
- ASTM E2149-13a Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents under Dynamic Contact Conditions. Available online: https://www.astm.org/standards/e2149 (accessed on 15 December 2021).
- JIS L 1902:2008 Testing for Antibacterial Activity and Efficacy on Textile Products. Available online: https://infostore.saiglobal.com/en-us/Standards/JIS-L-1902-2008-624835_SAIG_JSA_JSA_1457542/ (accessed on 15 December 2021).
- AATCC 100-2012 Test Method for Antibacterial Finishes on Textile Materials: Assess. Available online: https://global.ihs.com/doc_detail.cfm?item_s_key=00156639 (accessed on 23 March 2022).
- ASTM E 2180-07 Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) in Polymeric or Hydrophobic Materials. Available online: https://www.astm.org/e2180-07r17.html (accessed on 19 March 2022).
- Pinho, E.; Magalhães, L.; Henriques, M.; Oliveira, R. Antimicrobial activity assessment of textiles: Standard methods comparison. Ann. Microbiol. 2010, 61, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Kaźmierczak, D.; Guzińska, K.; Dymel, M. Antibacterial Activity of PLA Fibres Estimated by Quantitative Methods. Fibres Text. East. Eur. 2016, 24, 126–130. [Google Scholar] [CrossRef]
Mechanical bonding | Needle punch |
Spun laced | |
Stitch bonded | |
Thermal bonding | Calendaring |
Through air bonding | |
Sonic bonding | |
Chemical bonding | Impregnating |
Foam coating | |
Spraying | |
Print bonding |
Samples | Microrganisms | Number of Mesophilic Microorganisms [cfu/g] | ||
---|---|---|---|---|
Time of exposure, days | 0 | 3 | 28 | |
Biodegradable nonwoven with plant extract and polysaccharide | Bacteria | 3.3 × 104 | 4.9 × 103 | <1.5 × 101 |
Fungi | 1.5 × 101 | 1.5 × 101 | <1.5 × 101 | |
Biodegradable nonwoven with plant extract, polysaccharide and protein | Bacteria | 1.6 × 104 | 7.3 × 103 | <1.5 × 101 |
Fungi | 1.9 × 101 | 1.5 × 101 | <1.5 × 101 |
Method | Title |
---|---|
ISO 11721-1:2002 | Textiles—Determination of resistance of cellulose-containing textiles to microorganisms—Soil burial test—Part 1: Assessment of rot-retardant finishing |
ISO 11721-2:2005 | Textiles—Determination of the resistance of cellulose-containing textiles to micro-organisms—Soil burial test—Part 2: Identification of long-term resistance of a rot retardant finish |
ISO 14851:2019 | Determination of the ultimate aerobic biodegradability of plastics materials in an aqueous medium—Method: measuring the oxygen demand by respirometer |
ISO 14855–2:2007 | Determination of the ultimate aerobic biodegradability and disintegration of plastics under controlled composting conditions—Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test |
DIN EN 13432:2002 | Packaging—Requirements for packaging recoverable through composting and biodegradation—Test scheme and evaluation criteria for the final acceptance of packaging |
DIN EN 14046:2003 | Packaging—Evaluation of the ultimate aerobic biodegradability and disintegration of packaging materials under controlled composting conditions—Method: analysis of released carbon dioxide |
DIN EN 14047:2003 | Packaging of the ultimate aerobic biodegradability of packaging materials in an aqueous medium—Method: analysis of released carbon dioxide |
DIN EN 14048:2003 | Packaging—Determination of the ultimate aerobic biodegradability of packaging materials in an aqueous medium—Method: measuring the oxygen demand in a closed respirometer |
DIN EN 14995:2007 | Plastics—evaluation of compostability—test scheme and specifications |
ASTM D5338-15 | Standard Test Method for Determining Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions |
ASTM D5929-18 | Standard Test Method for Determining Biodegradability of Materials Exposed to Municipal Solid Waste Composting Conditions by Compost Respirometry |
ASTM D6006-17 | Standard Guide for Assessing Biodegradability of Hydraulic Fluids |
ASTM D6400 | Standard Specification for Compostable Plastics |
BS EN ISO 14851:2019 | Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium. Method: measuring the oxygen demand in a closed respirometer |
BS ISO 14852:2021 | Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium. Method: analysis of released carbon dioxide |
Numer Normy | Name of the Standard | Test Organisms |
---|---|---|
AATCC 147 [107] | Antibacterial Activity Assessment of Textile Materials: Parallel Streak Method | Stapyloccocus aureus Klebsiella pneumoniae |
PN-EN ISO 20645 [108] | Textile fabrics-Determination of antibacterial activity-Agar diffusion plate test | Stapyloccocus aureus Klebsiella pneumoniae Escherichia coli |
PN-EN 14119 [109] | Textile fabrics-Determination of antibacterial activity-Agar diffusion plate test | Aspergillus niger Chaetomium globosum Penicillium pinophilum Trichoderma virens Paecilomyces variotii |
ATCC 30 [110] | Antifungal Activity, Assessment on Textile Materials: Mildew and Rot Resistance of Textile Materials | Aspergilus niger Penicillium varians Trichoderma viride |
Number of the Standard | Name of the Standard | Test Microorganisms |
---|---|---|
PN-EN ISO 20743 [111] | Textiles-Determination of antibacterial activity of textile products | Staphylococcus aureus Klebsiella pneumoniae |
ASTM E2149 [112] | Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions | Escherichia coli |
JIS L 1902 [113] | Testing for antibacterial activity and efficacy on textile products | Stapyloccocus aureus Klebsiella pneumoniae Escherichia coli Pseudomonas |
AATCC 100 [114] | Test Method for Antibacterial Finishes on Textile Materials: Assess | Stapyloccocus aureus Klebsiella pneumoniae |
ASTM E 2180 [115] | Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) in Polymeric or Hydrophobic Materials | Stapyloccocus aureus Klebsiella pneumoniae Pseudomonas aeruginosa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madej-Kiełbik, L.; Gzyra-Jagieła, K.; Jóźwik-Pruska, J.; Wiśniewskia-Wrona, M.; Dymel, M. Biodegradable Nonwoven Materials with Antipathogenic Layer. Environments 2022, 9, 79. https://doi.org/10.3390/environments9070079
Madej-Kiełbik L, Gzyra-Jagieła K, Jóźwik-Pruska J, Wiśniewskia-Wrona M, Dymel M. Biodegradable Nonwoven Materials with Antipathogenic Layer. Environments. 2022; 9(7):79. https://doi.org/10.3390/environments9070079
Chicago/Turabian StyleMadej-Kiełbik, Longina, Karolina Gzyra-Jagieła, Jagoda Jóźwik-Pruska, Maria Wiśniewskia-Wrona, and Marzena Dymel. 2022. "Biodegradable Nonwoven Materials with Antipathogenic Layer" Environments 9, no. 7: 79. https://doi.org/10.3390/environments9070079