Infrastructure and Subjective Well-Being from a Gender Perspective
Abstract
:1. Introduction
2. Literature Review
2.1. Subjective Well-Being, Capability Approach Theories and Urban Policies
2.2. Role, Gender and Urban Policies
3. Materials and Methods
3.1. Measurement Variable and Data Collection
- General Background Information: gender, age, place of living and employment status.
- The perception of these individuals about how accessible they find for them each infrastructure. The infrastructures considered are: nursery schools up to 5 years; centers for elderly; health centers; sidewalks and pedestrians paths; street lighting and parks and green areas.
- The value that different infrastructures have in the main capabilities gathered from the literature of well-being. The capabilities considered are: physical and mental health; personal safety; social relationships; education; care and domestic work; employment; pleasant and healthy environment; mobility; leisure and emotions.
- The grade of satisfaction individuals feel about their lives.
- Other aspects such in/dependent living with the respondents, time use, education and income level, etc.
- The sex of the respondent (Gender).
- The age in years (Age).
- The importance of the access to the infrastructure h is for his/her capability k, (S_hk). As above indicated, the capabilities considered are (k = 1 to 10): (1) physical and mental health; (2) personal safety; (3) social relationships; (4) education; (5) care and domestic work; (6) employment; (7) pleasant and healthy environment; (8) mobility; (9) leisure and (10) emotions. The variable Shk is the score of infrastructure h at capability k. This variable takes its values according to the answer to the question Ph_k, which asked the respondent how he/she considers that the infrastructure h is important for his/her capability k. Question Ph_k states as follows: rate from 1 to 5 how you consider that infrastructure h is important for your well-being k, knowing that 5 = very important and 1 = not important at all.
- The access to infrastructure h (A_h) corresponds to the value obtained in question P6.h, which requires an assessment from 1 to 5 of the satisfaction with respect to the current allocation of the infrastructure h in the place of residence of the respondent. 1 = not all satisfied and 5 = very satisfied.
- The subjective well-being (SWB), this variable is constructed on the basis of the answers of the respondents to Question P68, which states: “Could you please tell me on a scale of 1 to 10 where 1 means that you are not satisfied at all and 10 means that you are very satisfied how satisfied are you with the infrastructure provided by public Administration”. The variable used is a dichotomous variable taking value 0 for the respondents who choose Answer 1, 2, 3, 4 or 5 to this question and 1 if the Answer is 6, 7, 8, 9 or 10.
- Education (Education).
- Labour situation (Lab_sit).
- Income (Income).
3.2. Demographic Information of the Data
3.3. Methodology
3.3.1. The Model of the Index of Well-Being
3.3.2. Mathematical Formulation of the Well-Being and Infrastructure Index from a Gender Perspective
3.4. Data Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables a,b | C1 Physical and Mental Health | C2 Personal Safety | C3 Social Relationships | C4 Education | C5 Care and Domestic Work | C6 Employment | C7 Nice and Healthy Environment | C8 Mobility | C9 Leisure | C10 Emotions |
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | −1.31 * | −1.30 * | −0.02 | 0.27 | 0.69 | 1.03. | −0.59 | −0.683 | 0.01 | −0.379 |
Ck (k = 1 to 10) | 0.176 ** | 0.16 *** | 0.11 *** | 0.08 *** | 0.06 *** | 0.02 | 0.14 *** | 0.13 *** | 0.12 *** | 0.11 *** |
Education_2 | −0.26 | −0.11 | −0.09 | −0.07 | −0.07 | −0.08 | −0.09 | −0.13 | −0.15 | −0.15 |
Education_3 | −0.15 | −0.06 | −0.03 | −0.08 | −0.13 | −0.20 | −0.06 | −0.09 | −0.12 | −0.09 |
Education_4 | 0.20 | 0.33 | 0.39 | 0.28 | 0.24 | 0.11 | 0.32 | 0.29 | 0.28 | 0.30 |
Lab_Sit2 | −0.73 | −0.67 | −0.74 | −0.68 | −0.71 | −0.68 | −0.64 | −0.74 | −0.69 | −0.68 |
Lab_Sit3 | −1.22 ** | −1.16 * | −1.26 ** | −1.29 ** | −1.34 ** | −1.34 ** | −1.20 ** | −1.32 ** | −1.23 ** | −1.26 ** |
Lab_Sit4 | −0.49 | −0.41 | −0.52 | −0.45 | −0.46 | −0.42 | −0.401 | −0.50 | −0.42 | −0.44 |
Lab_Sit5 | −1.27 * | −1.20 * | −1.23 | −1.17 * | −1.17 * | −1.16 * | −1.07 * | −1.23 * | −1.17 | −1.20 * |
Lab_Sit6 | −0.64 | −0.51 | −0.56 | −0.56 | −0.59 | −0.58 | −0.53 | −0.62 | −0.51 | −0.55 |
Income_2 | 0.11 | 0.05 | 0.03 | 0.09 | 0.02 | 0.02 | 0.12 | 0.11 | 0.07 | 0.02 |
Income_3 | 1.14 | 1.23 * | 1.17 * | 1.24 * | 1.26 * | 1.23 * | 1.16 | 1.33 * | 1.25 * | 1.30 * |
Income_4 | 0.24 | 0.24 | −0.03 | 0.09 | 0.15 | 0.23 | −0.05 | 0.11 | 0.22 | 0.25 |
McFadden’s R2 | 0.13 | 0.12 | 0.08 | 0.06 | 0.05 | 0.04 | 0.1 | 0.09 | 0.08 | 0.08 |
Sensitivity | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Specificity | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
misClass Error | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 |
Variables a,b | C1 Physical and Mental Health | C2 Personal Safety | C3 Social Relationships | C4 Education | C5 Care and Domestic Work | C6 Employment | C7 Nice and Healthy Environment | C8 Mobility | C9 Leisure | C10 Emotions |
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | −0.23 | −0.40 | −0.08 | 0.37 | 0.439 | 0.67 | −0.40 | −0.10 | −0.00 | 0.14 |
Ck (k = 1 to 10) | 0.14 *** | 0.15 *** | 0.12 *** | 0.07 *** | 0.06 *** | 0.02 | 0.14 *** | 0.12 *** | 0.12 *** | 0.10 *** |
Education_2 | −0.01 | 0.03 | 0.14 | 0.26 | 0.33 | 0.39 | 0.04 | 0.06 | 0.05 | 0.16 |
Education_3 | −0.15 | −0.06 | 0.07 | 0.16 | 0.26 | 0.29 | −0.05 | −0.01 | −0.02 | 0.097 |
Education_4 | 0.12 | 0.15 | 0.30 | 0.41 | 0.51 | 0.51 | 0.16 | 0.24 | 0.23 | 0.313 |
Lab_Sit2 | −1.28 * | −1.32 * | −1.16 | −0.98 | −1.04 | −0.82 | −1.27 * | −1.24 | −1.19 | −1.280 |
Lab_Sit3 | −1.33 ** | −1.28 ** | −1.28 ** | −1.22 ** | −1.21 ** | −1.14 * | −1.16 * | −1.20 ** | −1.284 | −1.293 |
Lab_Sit4 | −1.06 * | −0.98 ** | −0.89 * | −0.73 | −0.73 | −0.62 | −0.80. | −0.86. | −0.913 * | −0.861 |
Lab_Sit5 | −1.75 *** | −1.65 ** | −1.65 ** | −1.60 ** | −1.64 *** | −1.58 ** | −1.55 ** | −1.62 ** | −1.634 ** | −1.663 *** |
Lab_Sit6 | −1.25 ** | −1.21 ** | −1.17 ** | −1.13 ** | −1.10 ** | −1.04 * | −1.11 * | −1.10 * | −1.155 ** | −1.185 ** |
Income_2 | 0.30 | 0.37 | 0.33 | 0.34 | 0.31 | 0.30 | 0.35 | 0.31 | 0.312 | 0.352 |
Income_3 | 0.48 | 0.49 | 0.51 | 0.51 | 0.46 | 0.41 | 0.39 | 0.49 | 0.497 | 0.604 |
Income_4 | 0.17 | 0.32 | 0.29 | 0.16 | 0.13 | 0.12 | 0.34 | 0.25 | 0.27 | 0.22 |
McFadden’s R2 | 0.10 | 0.10 | 0.08 | 0.05 | 0.05 | 0.03 | 0.10 | 0.09 | 0.09 | 0.07 |
Sensitivity | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Specificity | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
misClass Error | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 |
Variables a,b | C1 Physical and Mental Health | C2 Personal Safety | C3 Social Relationships | C4 Education | C5 Care and Domestic Work | C6 Employment | C7 Nice and Healthy Environment | C8 Mobility | C9 Leisure | C10 Emotions |
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | 12.65 | 13.85 | 14.34 | 14.72 | 15.45 | 16.28 | 13.68 | 14.68 | 14.18 | 14.38 |
Ck (k = 1 to 10) | 0.24 *** | 0.21 *** | 0.17 *** | 0.13 *** | 0.10 ** | 0.08 ** | 0.19 *** | 0.17 *** | 0.18 *** | 0.17 *** |
Education_2 | −15.16 | −15.96 | −15.69 | −15.54 | −15.68 | −15.61 | −15.46 | −16.02 | −15.65 | −15.77 |
Education_3 | −14.82 | −15.77 | −15.42 | −15.34 | −15.63 | −15.52 | −15.30 | −15.83 | −15.52 | −15.49 |
Education_4 | −14.49 | −15.38 | −14.99 | −15.00 | −15.19 | −15.16 | −14.89 | −15.50 | −15.15 | −15.06 |
Lab_Sit2 | −0.23 | −0.19 | −0.27 | −0.22 | −0.31 | −0.33 | −0.19 | −0.32 | −0.14 | −0.13 |
Lab_Sit3 | −0.86 | −0.79 | −0.83 | −0.90 | −1.04 | −1.06 | −0.91 | −1.01 | −0.92 | −0.99 |
Lab_Sit4 | 16.20 | 16.07 | 15.95 | 16.57 | 15.60 | 16.17 | 16.06 | 15.94 | 16.20 | 16.22 |
Lab_Sit5 | −1.00 | −0.82 | −1.01 | −0.89 | −1.02 | −1.03 | −0.77 | −0.94 | −0.95 | −1.03 |
Lab_Sit6 | −0.37 | −0.21 | −0.16 | −0.21 | −0.24 | −0.31 | −0.22 | −0.25 | −0.08 | −0.11 |
Income_2 | 0.23 | 0.27 | 0.29 | 0.45 | 0.32 | 0.33 | 0.32 | 0.26 | 0.25 | 0.06 |
Income_3 | 1.54 | 1.46 | 1.58 | 1.51 | 1.79 | 1.85 | 1.61 | 1.73 | 1.94 | 1.91 |
Income_4 | 16.79 | 17.16 | 16.02 | 16.21 | 16.45 | 16.63 | 16.29 | 16.39 | 17.06 | 17.35 |
McFadden’s R2 | 0.11 | 0.19 | 0.15 | 0.13 | 0.11 | 0.10 | 0.16 | 0.15 | 0.16 | 0.16 |
Sensitivity | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Specificity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
misClass Error | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
Variables a,b | C1 Physical and Mental Health | C2 Personal Safety | C3 Social Relationships | C4 Education | C5 Care and Domestic Work | C6 Employment | C7 Nice and Healthy Environment | C8 Mobility | C9 Leisure | C10 Emotions |
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | −1.53 | −1.48 | −0.39 | −0.02 | 0.45 | 0.93 | −0.95 | −0.86 | −0.26 | −0.15 |
Ck (k = 1 to 10) | 0.14 *** | 0.15 *** | 0.09 ** | 0.07 * | 0.04 | 0.00 | 0.11 *** | 0.11 *** | 0.09 ** | 0.07 ** |
Education_2 | −0.07 | −0.18 | −0.15 | −0.04 | −0.03 | −0.04 | −0.14 | −0.04 | −0.22 | −0.24 |
Education_3 | −0.38 | −0.55 | −0.49 | −0.45 | −0.51 | −0.55 | −0.52 | −0.42 | −0.61 | −0.63 |
Education_4 | −0.01 | −0.10 | −0.02 | −0.04 | −0.10 | −0.25 | −0.10 | 0.04 | −0.14 | −0.24 |
Lab_Sit2 | −0.45 | −0.39 | −0.65 | −0.69 | −0.72 | −0.77 | −0.40 | −0.53 | −0.62 | −0.49 |
Lab_Sit3 | −1.01 | −0.93 | −1.32 | −1.40 | −1.45 | −1.47 | −1.01 | −1.14 | −1.24 | −1.16 |
Lab_Sit4 | −0.19 | −0.09 | −0.50 | −0.59 | −0.71 | −0.80 | −0.18 | −0.35 | −0.47 | −0.40 |
Lab_Sit5 | −0.75 | −0.69 | −0.98 | −1.01 | −1.04 | −1.07 | −0.66 | −0.83 | −0.90 | −0.82 |
Lab_Sit6 | −0.04 | 0.08 | −0.34 | −0.39 | −0.48 | −0.50 | −0.08 | −0.21 | −0.28 | −0.21 |
Income_2 | 0.03 | −0.03 | 0.03 | 0.09 | 0.05 | 0.10 | 0.10 | 0.09 | 0.05 | 0.07 |
Income_3 | 0.64 | 0.78 | 0.85 | 0.97 | 0.91 | 0.99 | 0.81 | 1.00 | 0.83 | 0.95 |
Income_4 | −0.93 | −1.24 | −1.10 | −0.91 | −0.86 | −0.62 | −1.17 | −0.95 | −1.03 | −1.02 |
McFadden’s R2 | 0.11 | 0.12 | 0.08 | 0.06 | 0.05 | 0.04 | 0.09 | 0.09 | 0.07 | 0.07 |
Sensitivity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Specificity | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
misClass Error | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 |
Variables a,b | C1 Physical and Mental Health | C2 Personal Safety | C3 Social Relationships | C4 Education | C5 Care and Domestic Work | C6 Employment | C7 Nice and Healthy Environment | C8 Mobility | C9 Leisure | C10 Emotions |
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | −2.44 ** | −2.45 ** | −1.25 | −0.45 | −0.31 | 0.20 | −1.78 * | −1.72 * | −1.36 | −1.47 * |
Ck (k = 1 to 10) | 0.22 *** | 0.21 *** | 0.12 ** | 0.07 | 0.06 | 0.03 | 0.16 *** | 0.16 *** | 0.14 ** | 0.15 *** |
Education_2 | −0.40 | −0.15 | −0.12 | −0.14 | −0.14 | −0.11 | −0.15 | −0.15 | −0.23 | −0.23 |
Education_3 | 0.41 | 0.84 | 0.79 | 0.81 | 0.87 | 0.86 | 0.74 | 0.85 | 0.74 | 0.80 |
Education_4 | −0.46 | 0.00 | 0.05 | 0.06 | 0.05 | −0.04 | −0.14 | −0.02 | 0.04 | 0.04 |
Lab_Sit2 | ||||||||||
Lab_Sit3 | ||||||||||
Lab_Sit4 | −0.14 | −0.13 | −0.03 | 0.00 | 0.06 | −0.01 | −0.05 | −0.04 | 0.04 | −0.01 |
Lab_Sit5 | ||||||||||
Lab_Sit6 | ||||||||||
Income_2 | 1.52 | 1.15 | 0.64 | 0.40 | 0.38 | 0.24 | 0.92 | 0.83 | 0.66 | 0.75 |
Income_3 | 16.32 | 16.25 | 15.77 | 15.78 | 15.84 | 15.65 | 15.72 | 15.97 | 15.90 | 16.05 |
Income_4 | ||||||||||
McFadden’s R2 | 0.16 | 0.15 | 0.09 | 0.06 | 0.06 | 0.04 | 0.12 | 0.12 | 0.11 | 0.12 |
Sensitivity | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Specificity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
misClass Error | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
Variables a,b | C1 Physical and Mental Health | C2 Personal Safety | C3 Social Relationships | C4 Education | C5 Care and Domestic Work | C6 Employment | C7 Nice and Healthy Environment | C8 Mobility | C9 Leisure | C10 Emotions |
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | 16.47 | 16.42 | 16.50 | 17.22 | 17.19 | 16.96 | 16.02 | 17.23 | 16.87 | 17.08 |
Ck (k = 1 to 10) | 0.21 *** | 0.21 *** | 0.16 *** | 0.13 *** | 0.10 ** | 0.07 * | 0.23 *** | 0.18 *** | 0.19 *** | 0.15 *** |
Education_2 | −17.23 | −17.20 | −16.75 | −17.00 | −16.73 | −16.17 | −17.31 | −17.73 | −17.29 | −17.05 |
Education_3 | −17.36 | −17.35 | −16.75 | −17.06 | −16.67 | −16.22 | −17.25 | −17.79 | −17.37 | −17.19 |
Education_4 | −17.34 | −17.36 | −16.78 | −17.07 | −16.73 | −16.28 | −17.25 | −17.76 | −17.29 | −17.25 |
Lab_Sit2 | −19.34 | −18.89 | −17.93 | −18.27 | −18.31 | −18.05 | −19.48 | −18.73 | −18.33 | −18.60 |
Lab_Sit3 | −1.16 * | −1.04 | −1.05 | −1.11 * | −1.02 * | −1.02 * | −0.79 | −0.97 | −1.12 * | −1.21 * |
Lab_Sit4 | −1.02 | −0.92 | −0.76 | −0.80 | −0.62 | −0.39 | −0.64 | −0.81 | −0.87 | −1.01 |
Lab_Sit5 | −1.34 | −1.30 | −1.44 | −1.32 | −1.45 | −1.40 | −1.24 | −1.31 | −1.33 | −1.47 |
Lab_Sit6 | −0.65 | −0.60 | −0.61 | −0.63 | −0.63 | −0.55 | −0.37 | −0.49 | −0.56 | −0.67 |
Income_2 | −0.07 | 0.02 | 0.04 | 0.09 | 0.08 | 0.11 | −0.10 | 0.00 | −0.12 | 0.14 |
Income_3 | 1.03 | 1.00 | 1.53 | 1.60 | 1.62 | 1.67 | 1.06 | 1.59 | 1.52 | 1.61 |
Income_4 | −0.35 | −0.20 | 0.46 | 0.56 | 0.62 | 0.55 | 0.69 | 0.31 | 0.67 | 0.65 |
McFadden’s R | 0.19 | 0.18 | 0.15 | 0.14 | 0.12 | 0.10 | 0.21 | 0.17 | 0.17 | 0.16 |
Sensitivity | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Specificity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
misClass Error | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
Variables a,b | C1 Physical and Mental Health | C2 Personal Safety | C3 Social Relationships | C4 Education | C5 Care and Domestic Work | C6 Employment | C7 Nice and Healthy Environment | C8 Mobility | C9 Leisure | C10 Emotions |
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | 12.46 | 12.50 | 12.84 | 13.28 | 12.84 | 13.45 | 12.83 | 12.50 | 12.90 | 12.91 |
Ck (k = 1 to 10) | 0.11 *** | 0.11 *** | 0.10 ** | 0.05 * | 0.06 * | 0.02 | 0.10 ** | 0.10 *** | 0.09 ** | 0.08 ** |
Education_2 | −0.10 | −0.19 | −0.06 | 0.12 | 0.21 | 0.33 | −0.08 | −0.13 | −0.02 | 0.04 |
Education_3 | 0.39 | 0.35 | 0.47 | 0.66 | 0.76 | 0.87 | 0.40 | 0.40 | 0.48 | 0.59 |
Education_4 | 0.65 | 0.57 | 0.68 | 0.87 | 1.00 | 1.08 | 0.58 | 0.65 | 0.69 | 0.80 |
Lab_Sit2 | −13.63 | −13.64 | −13.83 | −13.89 | −13.64 | −13.78 | −13.93 | −13.63 | −13.89 | −13.86 |
Lab_Sit3 | −14.05 | −14.08 | −14.29 | −14.35 | −14.08 | −14.28 | −14.32 | −13.98 | −14.23 | −14.20 |
Lab_Sit4 | −13.86 | −13.86 | −14.02 | −14.05 | −13.73 | −14.02 | −14.08 | −13.71 | −13.99 | −13.93 |
Lab_Sit5 | −14.69 | −14.64 | −14.83 | −15.01 | −14.74 | −15.02 | −14.88 | −14.63 | −14.87 | −14.84 |
Lab_Sit6 | −14.30 | −14.30 | −14.46 | −14.62 | −14.28 | −14.59 | −14.56 | −14.20 | −14.46 | −14.46 |
Income_2 | 0.59 | 0.68 | 0.64 | 0.65 | 0.65 | 0.61 | 0.67 | 0.65 | 0.67 | 0.66 |
Income_3 | 0.18 | 0.20 | 0.14 | 0.16 | 0.14 | 0.05 | 0.14 | 0.14 | 0.15 | 0.19 |
Income_4 | 0.37 | 0.49 | 0.42 | 0.30 | 0.30 | 0.26 | 0.46 | 0.43 | 0.42 | 0.34 |
McFadden’s R2 | 0.08 | 0.08 | 0.08 | 0.05 | 0.06 | 0.04 | 0.07 | 0.08 | 0.07 | 0.07 |
Sensitivity | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Specificity | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
misClass Error | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 |
Variables a,b | C1 Physical and Mental Health | C2 Personal Safety | C3 Social Relationships | C4 Education | C5 Care and Domestic Work | C6 Employment | C7 Nice and Healthy Environment | C8 Mobility | C9 Leisure | C10 Emotions |
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | 14.87 | 13.91 | 15.21 | 15.44 | 15.70 | 15.81 | 14.60 | 15.26 | 15.60 | 15.72 |
Ck (k = 1 to 10) | 0.20 ** | 0.23 *** | 0.13 * | 0.04 | 0.00 | −0.02 | 0.18 ** | 0.12 * | 0.15 ** | 0.09 |
Education_2 | 0.83 | 0.86 | 1.03 | 1.19 | 1.22 | 1.24 | 0.95 | 1.00 | 0.92 | 1.09 |
Education_3 | −0.82 | −0.56 | −0.58 | −0.53 | −0.48 | −0.45 | −0.71 | −0.59 | −0.55 | −0.49 |
Education_4 | −0.08 | −0.11 | 0.31 | 0.47 | 0.53 | 0.58 | 0.10 | 0.24 | 0.32 | 0.37 |
Lab_Sit2 | ||||||||||
Lab_Sit3 | ||||||||||
Lab_Sit4 | −17.19 | −16.50 | −16.58 | −15.79 | −15.78 | −15.77 | −16.45 | −16.54 | −17.01 | −16.60 |
Lab_Sit5 | ||||||||||
Lab_Sit6 | ||||||||||
Income_2 | 0.84 | 0.81 | 0.68 | 0.63 | 0.58 | 0.56 | 0.82 | 0.61 | 0.54 | 0.58 |
Income_3 | 2.02 | 2.11 | 1.95 | 1.72 | 1.65 | 1.64 | 1.74 | 1.95 | 1.92 | 2.01 |
Income_4 | ||||||||||
McFadden’s R2 | 0.22 | 0.24 | 0.18 | 0.13 | 0.12 | 0.13 | 0.22 | 0.17 | 0.19 | 0.16 |
Sensitivity | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Specificity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
misClass Error | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 |
1 | This way of understanding development is evidenced by the Human Development Index (HDI). |
2 | The methodological report and the data are also available: Benefits of gender equality through infrastructure provision: An EU-wide survey. Gender statistics database: Gender equality and public infrastructure. |
References
- Agudo, Yolanda, and Inés Sánchez de Madariaga. 2011. Construyendo un lugar en la profesión: Trayectorias de las arquitectas españolas. Feminismo/s 17: 155–81. [Google Scholar] [CrossRef] [Green Version]
- Alarcón, Gloria, and Edgardo Ayala-Gaytán. 2018. Índice de Bienestar e Infraestructura desde una perspectiva de Género. La metodología de construcción del Índice del Observatorio Fiscal: Análisis de las Políticas Públicas, Murcia: Universidad de Murcia. [Google Scholar] [CrossRef]
- Alarcón, Gloria, and José Colino. 2011. La perspectiva de género en los gastos en infraestructuras públicas: Los equipamientos educativos y deportivos en el FEIL. Presupuesto y Gasto Público 64: 155–78. [Google Scholar]
- Alarcón, Gloria, and José Colino. 2013. Infrastructure and Gender: Right and Left, Mayors and Mayoresses. Wulfenia 11: 423–61. [Google Scholar]
- Alarcón, Gloria, Carolina Arias, and José Colino. 2012. Infraestructuras y género. Revista de Investigaciones Feministas 2: 151–74. [Google Scholar]
- Alarcón-García, Gloria, Tindara Addabbo, Edgardo Ayala-Gaytan, Estela Fernandez, María Rubio, Andreu Castellet, Angela O’Hagan, and José Manuel Mayor. 2020a. Benefits of Gender Equality through Infrastructure Provision: An EU-Wide Survey. Available online: https://eige.europa.eu/publications/benefits-gender-equality-through-infrastructure-provision-eu-wide-survey (accessed on 14 December 2021).
- Alarcón-García, Gloria, Tindara Addabbo, Edgardo Ayala-Gaytan, Estela Fernandez, María Rubio, Andreu Castellet, Angela O’Hagan, and José Manuel Mayor. 2020b. Gender Equality and Care Infrastructure. Available online: https://eige.europa.eu/publications/gender-equality-and-care-infrastructure (accessed on 14 December 2021).
- Alarcón-García, Gloria, Tindara Addabbo, Edgardo Ayala-Gaytan, Estela Fernandez, María Rubio, Andreu Castellet, Angela O’Hagan, and José Manuel Mayor. 2020c. Gender Equality and Health Service Infrastructure. Available online: https://eige.europa.eu/publications/gender-equality-and-health-service-infrastructure (accessed on 14 December 2021).
- Alarcón-García, Gloria, Tindara Addabbo, Edgardo Ayala-Gaytan, Estela Fernandez, María Rubio, Andreu Castellet, Angela O’Hagan, and José Manuel Mayor. 2020d. Gender Equality and Urban Mobility. Available online: https://eige.europa.eu/publications/gender-equality-and-urban-mobility (accessed on 14 December 2021).
- Alarcón-García, Gloria. 2018. The benefits of gender equality by the expenditures on public infrastructure and transport. In Retos en materia de igualdad de género en el siglo XXI. Edited by Alejandra Selma. Madrid: Dykinson, pp. 27–48. [Google Scholar]
- Amoroso, Serafina. 2020. Urbanismo con perspectiva de género. Crítica Urbana. Revista de Estudios Urbanos y Territoriales 11: 8–10, Mujeres y ciudad. A Coruña: Crítica Urbana. [Google Scholar]
- Asadullah, Mohammad Niaz, and Nazmul Chaudhury. 2012. Subjective well-being and relative poverty in rural Bangladesh. Journal of Economic Psychology 33: 940–50. [Google Scholar] [CrossRef] [Green Version]
- Banister, David, and Ann Bowling. 2004. Quality of life for the elderly: The transport dimension. Transport Policy 11: 105–15. [Google Scholar] [CrossRef]
- Bergstad, Cecilia, Amelie Gamble, Tommy Gärling, Olle Hagman, Merrit Polk, Dick Ettema, Margareta Friman, and Lars Olsson. 2011. Subjective well-being related to satisfaction with daily travel. Transportation 38: 1–15. [Google Scholar] [CrossRef]
- Bergstad, Cecilia, Amelie Gamble, Tommy Gärling, Olle Hagman, Merrit Polk, Dick Ettema, Margareta Friman, and Lars Olsson. 2012. Influences of Affect Associated with Routine Out-of-Home Activities on Subjective Well-Being. Applied Research Quality Life 7: 49–62. [Google Scholar] [CrossRef]
- Birch, Eugenie L. 1982. The Grand Domestic Revolution: A History of Feminist De-signs for American Homes, Neighborhoods, and Cities Dolores Hayden. The Journal of the Society of Architectural Historians, 258–88. [Google Scholar] [CrossRef]
- Bofill, Anna. 1998. De la Ciudad Actual a la Ciudad Habitable. Available online: http://www.lamujerconstruye.org/encuentros/es/iiencuentro.htm (accessed on 14 December 2021).
- Bofill, Anna. 2012. Hacia modelos alternativos de ciudad compatibles con una sociedad inclusiva. Estudios urbanos, género y feminismos. In Teorías y experiencias. Edited by Blanca Gutiérrez and Adriana Ciocoletto. Barcelona: Col. lectiu Punt 6, pp. 421–33. [Google Scholar]
- Borderías, Cristina, and Cristina Carrasco. 1994. Las mujeres y el trabajo: Aproximaciones históricas, sociológicas y económicas. In Las mujeres y el trabajo, rupturas conceptuales. Edited by Cristina Borderías, Cristina Carrrasco and Carme Alemany. Barcelona: Economía Critica, pp. 15–110. [Google Scholar]
- Carpio-Pinedo, José, Sonia De Gregorio, and Inés Sánchez De Madariaga. 2019. Gender mainstreaming in urban planning: The potential of geographic information systems and open data sources. Planning Theory & Practice 20: 221–40. [Google Scholar]
- Cuthill, Neil, Mengqiu Cao, Yuqi Liu, Xing Gao, and Yueron Zhang. 2019. The Association between Urban Public Transport Infrastructure and Social Equity and Spatial Accessibility within the Urban Environment: An Investigation of Tramlink in London. Sustainability 11: 1229. [Google Scholar] [CrossRef] [Green Version]
- De Henau, Jerome, and Susan Himmelweit. 2020. The Gendered Employment Gains of Investing in Social vs. Physical Infrastructure: Evidence from Simulations across Seven OECD Countries. IKD Working Paper No. 84. Milton Keynes: Faculty of Arts and Social Sciences, The Open University. [Google Scholar]
- Delbosc, Alexa. 2012. The role of well-being in transport policy. Transport Policy 23: 25–33. [Google Scholar] [CrossRef]
- Delbosc, Alexa, and Graham Currie. 2011. Exploring the relative influences of transport disadvantage and social exclusion on well-being. Transport Policy 18: 555–62. [Google Scholar] [CrossRef]
- Deneulin, Severine. 2009. The Human Development and Capabilities Approach. London: Earthscan. [Google Scholar]
- Diener, Ed, Marisa Diener, and Carol Diener. 2009. Factors Predicting the Subjective Well-Being of Nations. In Culture and Well-Being Social Indicators. Research Series. Edited by Ed Diener. Dordrecht: Springer, vol. 38, pp. 43–70. [Google Scholar]
- Dolan, Paul, Tessa Peasgood, and Mathew White. 2008. Do we really know what makes us happy A review of the economic literature on the factors associated with subjective well-being. Journal of Economic Psychology 29: 94–122. [Google Scholar] [CrossRef]
- Ettema, Dick, Tommy Gärling, Lars E. Olsson, and Margareta Friman. 2010. Out-of-home activities, daily travel, and subjective well-being. Transportation Research Part A: Policy and Practice 44: 723–32. [Google Scholar] [CrossRef]
- Ferguson, Lucy, and Sophie Harman. 2015. Gender and Infrastructure in the World Bank. Development Policy Review 33: 653–71. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Mozo, María Elia, José Parra-Martínez, and Ana Gilsanz-Díaz. 2020. Gestión de infraestructuras con perspectiva de género. Caso: El Campus de la Universidad de Alicante. Ciudad y territorio estudios territoriales LII: 103–20. [Google Scholar]
- Gutiérrez-Mozo, María Elia. 2021. Engendering cities: Designing sustainable urban spaces for all. Journal of Urban Design 26: 260–62. [Google Scholar] [CrossRef]
- Hayden, Dolores. 1981. The Grand Domestic Revolution. Cambridge: MIT Press. [Google Scholar]
- Human Development Report. 2010. The Real Wealth of Nations: Pathways to Human Development, United Nations Development Programme (UNDP). Available online: http://www.undp.org/publications/hdr2010/es/HDR_2010_ES_Complete.pdf (accessed on 14 December 2021).
- Irish, Aiden J. 2014. An Ethos of Sustainability: Integrated Sustainability for Urban Development. International Journal of Undergraduate Research and Creative Activities 6: 1. [Google Scholar] [CrossRef]
- Kweon, Byoung-Suk, and Robert W. Marans. 2011. Disaggregating the Measurement of Quality of Urban Life Dimensions Across a Complex Metro Region: The Case of Metro Detroit. In Investigating Quality of Urban Life. Social Indicators Research Series. Edited by Robert Marans and Robert Stimson. Dordrecht: Springer, vol. 45, pp. 369–84. [Google Scholar]
- Levin, Lena, and Charlotta Faith-Ell. 2019. How to Apply Gender Equality Goals in Transport and Infrastructure Planning. In Integrating Gender into Transport Planning. Edited by Christina Lindkvist Scholten and Tanja Joelsson. Cham: Palgrave Macmillan. [Google Scholar]
- Marans, Robert W., and Robert J. Stimson. 2011. Challenges for Quality of Urban Life Research. In Investigating Quality of Urban Life. Edited by Robert W. Marans and Robert J. Stimson. Dordrecht: Springer, vol. 45, pp. 437–44. [Google Scholar]
- McCrea, Rod, John Western, and Robert Stimson. 2011. Modelling Determinants of Subjective Quality of Urban Life at Different Geographic Scales: The Case of the Brisbane-SEQ Region. In Investigating Quality of Urban Life. Edited by Robert W. Marans and Robert J. Stimson. Dordrecht: Springer, vol. 45, pp. 347–67. [Google Scholar]
- Miralles-Guasch, Carme, and Monserrat Martínez. 2012. Las divergencias de género en las pautas de movilidad en Cataluña, según edad y tamaño del municipio. Revista Latino-Americana de Geografía y Género 3: 49–60. [Google Scholar] [CrossRef] [Green Version]
- Miralles-Guasch, Carme, Monserrat Martínez, and Oriol Marquet. 2016. A gender analysis of everyday mobility in urban and rural territories: From challenges to sustainability. Gender, Place & Culture 23: 398–417. [Google Scholar]
- Mollenkopf, Heidrun, Stephan Baas, Fiorella Marcellini, and Frank Oswald. 2005. Mobility and Quality of Life. Amsterdan: IOS Press. [Google Scholar]
- Morgan, G., A. Bajpai, P. Ceppi, A. Al-Hinai, T. Christensen, S. Kumar, S. Crosskey, and N. O’Regan. 2020. Infrastructure for Gender Equality and the Empowerment of Women. Copenhagen: UNOPS. [Google Scholar]
- Muffels, Ruud, and Bruce Headey. 2013. Capabilities and Choices: Do They Make Sen’se for Understanding Objective and Subjective Well-Being? An Empirical Test of Sen’s Capability Framework on German and British Panel Data. Social Indicators Research 110: 1159–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muxí, Zaida, Roser Casano, Adriana Ciocoletto, Marta Fonseca, and Blanca Gutiérrez. 2011. Qué aporta la perspectiva de género al urbanismo? Feminismo/s 17: 105–29. [Google Scholar] [CrossRef]
- Nussbaum, Martha C. 2000. Women and Human Development: The Capabilities Approach. Cambridge: Cambridge University Press. [Google Scholar]
- Nussbaum, Martha C. 2003. Capabilities as Fundamental Entitlements: Sen and Social Justice. Feminist Economics 9: 33–59. [Google Scholar] [CrossRef]
- Nussbaum, Martha C. 2009. Creating capabilities: The human development approach and its implementation. Hypatia, Special Issue: Transgender Studies and Feminism: Theory, Politics, and Gendered Realities 24: 211–15. [Google Scholar] [CrossRef]
- Nussbaum, Martha C. 2011. Creating Capabilities. Cambridge: Harvard University Press. [Google Scholar]
- Parikh, Priti, Kun Fu, Himanshu Parikh, Allan McRobie, and Gerard George. 2014. Infrastructure Provision, Gender, and Poverty in Indian Slums. World Development 66: 468–86. [Google Scholar] [CrossRef] [Green Version]
- Parra-Martínez, José, María Elia Gutiérrez-Mozo, and Ana Gilsanz-Díaz. 2021. Inclusive Higher Education and the Built Environment. A Research and Teaching Agenda for Gender Mainstreaming in Architecture Studies. Sustainability 13: 2565. [Google Scholar] [CrossRef]
- Ravagnan, Chiara, Francesca Rossi, and Masoumeh Amiriaref. 2022. Sustainable Mobility and Resilient Urban Spaces in the United Kingdom. Practices and Proposals. Transportation Research Procedia 60: 164–71. [Google Scholar] [CrossRef]
- Robeyns, Ingrid. 2005. The capability Approach: A theoretical survey. Journal of Human Development 6: 93–114. [Google Scholar] [CrossRef]
- Rodríguez-García, María Jesús, and Francesca Donati. 2021. European Integral Urban Policies from a Gender Perspective. Gender-Sensitive Measures, Transversality and Gender Approaches. Sustainability 13: 9543. [Google Scholar] [CrossRef]
- Rojas, Mariano, and Ruut Veenhoven. 2013. Contentment and affect in the estimation of happiness. Social Indicators Research 110: 415–31. [Google Scholar] [CrossRef] [Green Version]
- Rojas, Mariano. 2008. Experienced Poverty and Income Poverty in Mexico: A Subjective Well-being Approach. World Development 36: 1078–93. [Google Scholar] [CrossRef]
- Rojas, Mariano. 2013. Hacia una Sociedad más feliz. In Ranking de felicidad en México 2012: ¿En qué municipios viven con mayor calidad de vida los mexicanos? Edited by Fernando Manzanilla. Mexico: Universidad Popular del Estado de Puebla, pp. 222–38. [Google Scholar]
- Sánchez de Madariaga, Inés, and Inés Novella. 2019. A new generation of gender mainstreaming in spatial and urban planning under the new international framework of policies for sustainable development. In Gendered Approaches to Spatial Development in Europe. Edited by Barbara Zibell, Doris Damyanovic and Ulrike Sturm. Oxon: Routledge, pp. 181–203. [Google Scholar]
- Sánchez de Madariaga, Inés, and Michael Neuman. 2020. Planning the Gendered City. In Engendering Cities Designing Sustainable Urban Spaces for All. Edited by Inés Sánchez de Madariaga and Michael Neuman. Oxon: Routledge, pp. 1–15. [Google Scholar]
- Sánchez de Madariaga, Inés. 2004a. Infraestructuras para la vida cotidiana y la calidad de vida. Ciudades 8: 101–33. [Google Scholar] [CrossRef] [Green Version]
- Sánchez de Madariaga, Inés. 2004b. Urbanismo con perspectiva de género. Sevilla: Instituto Andaluz de la Mujer, Consejería de Economía y Hacienda. [Google Scholar]
- Sen, Amartya. 1980. Equality of What. In Tanner Lectures on Human Values. Edited by Sterling McMurrin. Cambridge: Cambridge University Press, pp. 196–220. [Google Scholar]
- Sen, Amartya. 1985a. Commodities and Capabilities. Amsterdam: North Holland. [Google Scholar]
- Sen, Amartya. 1985b. Well-being, Agency and Freedom: The Dewey Lectures 1984. Journal of Philosophy 82: 169–221. [Google Scholar] [CrossRef]
- Sen, Amartya. 2008. The Idea of Justice. Journal of Human Development 9: 331–42. [Google Scholar] [CrossRef]
- Sen, Amartya. 2009. The Idea of Justice. London: Allen Lane. [Google Scholar]
- Siemiatycki, Matti, Theresa Enright, and Mariana Valverde. 2020. The gendered production of infrastructure. Progress in Human Geography 44: 297–314. [Google Scholar] [CrossRef]
- Spinney, Jamie E., Darren M. Scott, and Bruce Newbold. 2009. Transport mobility benefits and quality of life: A time-use perspective of elderly Canadians. Transport Policy 16: 1–11. [Google Scholar] [CrossRef]
- Stanley, John Kenneth, David A. Hensher, Janet R. Stanley, and Dianne Vella-Brodrick. 2011. Mobility, social exclusion and well-being: Exploring the links. Transport Research Part A 45: 789–801. [Google Scholar] [CrossRef]
- Sultana, Farhana. 2020. Embodied Intersectionalities of Urban Citizenship: Water, Infrastructure, and Gender in the Global South. Annals of the American Association of Geographers 110: 1407–24. [Google Scholar] [CrossRef]
- Tacoli, Cecilia. 2012. Urbanization, gender and urban poverty: Paid work and unpaid carework in the city, International Institute for Environment and Development United Nations Population, Fund Urbanization and Emerging Population. Issues Working Paper 7. New York: United Nations Population Fund (UNFPA). [Google Scholar]
- Truelove, Y., and H. A. Ruszczyk. 2022. Bodies as urban infrastructure: Gender, intimate infrastructures and slow infrastructural violence. Political Geography 92. [Google Scholar] [CrossRef]
- UNFPA. 2007. State of the World Population. In Unleashing the Potential of Urban Growth. New York: United Nations Population Fund. [Google Scholar]
- Veenhoven, Ruut. 1991. Questions on Happiness: Classical Topics, Modern Answers, Blind Spots. In Subjective Well-being. An Inter-Disciplinary Perspective. Edited by Fritz Strack, Michael Argyle and Norbert Schwarz. London: Pergamon Press, pp. 7–26. [Google Scholar]
- Veenhoven, Ruut. 1996. Developments in Satisfaction Research. Social Indicators Research 37: 1–45. [Google Scholar] [CrossRef]
- Vella-Brodrick, Dianne, and Janet Stanley. 2013. The significance of transport mobility in predicting well-being. Transport Policy 29: 236–42. [Google Scholar] [CrossRef]
- Villota, Paloma, Jubeto Yolanda, and Ignacio Ferrari. 2009. Estrategias para la integración de la perspectiva de género en los presupuestos públicos. Madrid: Instituto de la Mujer, Ministerio de Igualdad. [Google Scholar]
- Wang, His-Chuan. 2022. Prioritizing compactness for a better quality of life: The case of U.S. cities. Cities 123: 103566. [Google Scholar] [CrossRef]
Theory | SUBJETIVE WELL-BEING | CAPABILITY APPROACH |
---|---|---|
Well-being Type | Well-being Hedonic | Well-being Eudemonic |
Type | Subjective | Objective |
Measurement | Directly asking people about their well-being experiences | Measuring the development from a list of capabilities |
Instrument | Surveys | Theoretical |
Variable | Interpretation and Meaning | Value |
---|---|---|
Gender | Sex of the respondent: female or male | 0 male 1 female |
Age | Age of the respondent | Years |
Shk | Importance of the infrastructure h in the capability k | 1 (little importance) to 5 (much importance) |
Ak | Satisfaction with respect to the current allocation of the infrastructure h in the place of residence of the respondent. | 1 (not all satisfied) to 5 (very satisfied) |
SWB | Subjective Well-being | 0 (low Subjective Well-being), |
1 (high Subjective Well-being). | ||
Education | Level of education of the respondent | |
Education_1 | without studies | 1 without studies (reference category) |
Education_2 | primary education | 2 primary education |
Education_3 | secondary education | 3 secondary education |
Education_4 | tertiary education | 4 tertiary education |
Lab_Sit | Labour situation of the respondent | |
Lab_Sit1 | Student | 1 student (reference category) |
Lab_Sit2 | Housewife/Stay-at-home husband/partner | 2 housewife/Stay-at-home husband/partner |
Lab_Sit3 | unemployed | 3 unemployed |
Lab_Sit4 | Retired or pensioner | 4 retired or pensioner |
Lab_Sit5 | Self-employed/entrepreneurs | 5 Self-employed/entrepreneurs |
Lab_Sit6 | employee | 6 employee |
Income | Level of monthly individual income of the respondent | |
Income_1 | below 1265 euros | 1 below 1265 euros (reference category) |
Income_2 | between 1265 and 2300 euros | 2 between 1265 and 2300 euros |
Income_3 | between 2300 and 3800 euros | 3 between 2300 and 3800 euros |
Income_4 | above 3800 euros | 4 above 3800 euros |
Variable | Mean | Standard Deviation | Minimum | Maximum | #Obs. |
---|---|---|---|---|---|
Gender | 0.52 | 0.50 | 0 | 1 | 1200 |
Age | 50.60 | 18.60 | 18 | 92 | 1200 |
Education | 2.97 | 1.66 | 1 | 4 | 1191 |
Labour situation | 4.2 | 0.92 | 1 | 6 | 1200 |
Income | 1.44 | 0.70 | 1 | 4 | 879 |
Variable | Mean | Standard Deviation | Minimum | Maximum | #Obs. |
---|---|---|---|---|---|
Subjective Well-being | 5.91 | 2.23 | 1 | 10 | 1200 |
Acces to Nursery Schools up to 5 years | 3.1 | 1.3 | 1 | 5 | 988 |
Acces to Centers for Elderly | 3.2 | 1.3 | 1 | 5 | 1041 |
Acces to Health Centers | 3.7 | 1.1 | 1 | 5 | 1183 |
Acces to Sidewalks and pedestrian paths | 3.2 | 1.3 | 1 | 5 | 1192 |
Acces to Street lighting | 3.5 | 1.2 | 1 | 5 | 1189 |
Acces to Parks and green areas | 3.7 | 1.2 | 1 | 5 | 1186 |
Infrastructure | Men | Women | Difference (pp) |
Nursery Schools up to 5 years | 60.97 | 80.28 | 19.31 |
Centers for Elderly | 66.20 | 90.39 | 24.19 |
Health Centers | 105.83 | 121.12 | 15.29 |
Sidewalks and pedestrian paths | 108.62 | 122.75 | 14.13 |
Street lighting | 108.81 | 125.36 | 16.55 |
Parks and green areas | 119.97 | 132.16 | 12.19 |
Average | 95.07 | 112.01 | 16.94 |
Age 18 to 39 | |||
Infrastructure | Men | Women | Difference (pp) |
Nursery Schools up to 5 years | 100.22 | 128.12 | 27.90 |
Centers for Elderly | 92.48 | 114.20 | 21.72 |
Health Centers | 148.91 | 165.54 | 16.63 |
Sidewalks and pedestrian paths | 154.91 | 168.96 | 14.05 |
Street lighting | 150.78 | 173.53 | 22.75 |
Parks and green areas | 173.74 | 186.59 | 12.85 |
Average | 136.84 | 156.16 | 19.32 |
Age 40 to 64 | |||
Infrastructure | Men | Women | Difference (pp) |
Nursery Schools up to 5 years | 45.98 | 63.88 | 17.90 |
Centers for Elderly | 51.71 | 75.45 | 23.74 |
Health Centers | 80.97 | 97.35 | 16.38 |
Sidewalks and pedestrian paths | 82.24 | 99.13 | 16.89 |
Street lighting | 82.34 | 102.93 | 20.59 |
Parks and green areas | 90.85 | 107.77 | 16.92 |
Average | 72.35 | 91.09 | 18.74 |
Age 65 and over | |||
Infrastructure | Men | Women | Difference (pp) |
Nursery Schools up to 5 years | 50.34 | 84.13 | 33.79 |
Centers for Elderly | 72.71 | 117.31 | 44.60 |
Health Centers | 120.28 | 152.13 | 31.85 |
Sidewalks and pedestrian paths | 122.62 | 151.48 | 28.86 |
Street lighting | 129.04 | 149.82 | 20.78 |
Parks and green areas | 130.21 | 156.56 | 26.35 |
Average | 104.20 | 135.24 | 31.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarcón-García, G.; Buendía-Azorín, J.D.; Sánchez-de-la-Vega, M.d.M. Infrastructure and Subjective Well-Being from a Gender Perspective. Adm. Sci. 2022, 12, 32. https://doi.org/10.3390/admsci12010032
Alarcón-García G, Buendía-Azorín JD, Sánchez-de-la-Vega MdM. Infrastructure and Subjective Well-Being from a Gender Perspective. Administrative Sciences. 2022; 12(1):32. https://doi.org/10.3390/admsci12010032
Chicago/Turabian StyleAlarcón-García, Gloria, José Daniel Buendía-Azorín, and María del Mar Sánchez-de-la-Vega. 2022. "Infrastructure and Subjective Well-Being from a Gender Perspective" Administrative Sciences 12, no. 1: 32. https://doi.org/10.3390/admsci12010032
APA StyleAlarcón-García, G., Buendía-Azorín, J. D., & Sánchez-de-la-Vega, M. d. M. (2022). Infrastructure and Subjective Well-Being from a Gender Perspective. Administrative Sciences, 12(1), 32. https://doi.org/10.3390/admsci12010032