Assessing the Effectiveness of Digital Marketing in Enhancing Tourist Experiences and Satisfaction: A Study of Thailand’s Tourism Services
Abstract
:1. Introduction
2. Rationale of the Study
3. Literature Review
3.1. Effectiveness of Digital Marketing Strategies
3.2. Destination Service Quality (DSQ)
3.3. Destinations’ Sustainability Quality (DSuQ)
3.4. Tourist Satisfaction
3.5. Behavioural Intentions
4. Hypotheses and Conceptual Framework
4.1. Causal Relationship between the Effectiveness of Digital Marketing Strategies, Destination Service Quality, Tourist Satisfaction, and Behavioural Intentions
4.2. Causal Relationship between the Effectiveness of Digital Marketing Strategies, Destination Sustainability Quality, Tourist Satisfaction, and Behavioural Intentions
4.3. Tourist Satisfaction and Behavioural Intention
5. Research Gap
6. Methodology
6.1. Research Design and Approach
6.2. Questionnaire and Content Validity
7. Results
7.1. Lower-Order Model
7.1.1. Lower-Order Reliability
7.1.2. Composite Reliability and Convergent Validity
7.1.3. Discriminant Validity
Fornell–Larcker Criterion
Cross Loadings
HTMT Ratio
7.1.4. Collinearity Analysis
7.2. Higher-Order Model
7.2.1. Higher-Order Composite Reliability and Convergent Validity (AVE)
7.2.2. Higher-Order Discriminant Validity
Fornell–Larcker Criterion
HTMT Ratio
7.2.3. Indicator Collinearity (VIF)
7.3. Bootstrapping Results
Direct Effects
Indirect Effects
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdulla, Saad Ali Musallam, Gamal S. A. Khalifa, Abuelhassan E. Abuelhassan, and Abhijit Ghosh. 2019. Antecedents of Dubai revisit intention: The role of destination service quality and tourist satisfaction. Restaurant Business 118: 307–16. [Google Scholar] [CrossRef]
- Abdullah, Dahlan, Krishnaswamy Jayaraman, D. Norhayati Shariff, Khairil Anuar Bahari, and Norfezah Md Nor. 2017. The effects of perceived interactivity, perceived ease of use and perceived usefulness on online hotel booking intention: A conceptual framework. International Academic Research Journal of Social Science 3: 16–23. [Google Scholar]
- Ajanapanya, Nongluck. 2023. Thailand’s Digital Tourism Platform Racks Up 100,000 Businesses in First Year. Nationthailand. Available online: https://www.nationthailand.com/thailand/tourism/40032260 (accessed on 29 September 2024).
- Almeida, Fernando, João Almeida, and Miguel Mota. 2019. Perceptions and trends of booking online payments in tourism. Journal of Tourism and Services 10: 1–15. [Google Scholar] [CrossRef]
- An, Sohyun, Youngjoon Choi, and Choong-Ki Lee. 2021. Virtual travel experience and destination marketing: Effects of sense and information quality on flow and visit intention. Journal of Destination Marketing & Management 19: 100492. [Google Scholar] [CrossRef]
- Ansel, Daryl, and Chris Dyer. 1999. A framework for restaurant information technology. Cornell Hotel & Restaurant Administration Quarterly 40: 74–75. [Google Scholar]
- Armutcu, Barış, Ahmet Tan, Mary Amponsah, Subhadarsini Parida, and Haywantee Ramkissoon. 2023. Tourist behaviour: The role of digital marketing and social media. Acta Psychologica 240: 104025. [Google Scholar] [CrossRef] [PubMed]
- Baber, Ruturaj, and Prerana Baber. 2023. Influence of Social Media Marketing Efforts, e-Reputation and Destination Image on Intention to Visit among Tourists: Application of SOR Model. Journal of Hospitality and Tourism Insights 6: 2298–316. [Google Scholar] [CrossRef]
- Chung, Minjee, Eunju Ko, Heerim Joung, and Sang Jin Kim. 2020. Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research 117: 587–95. [Google Scholar] [CrossRef]
- Deb, Santus Kumar, Shohel Md. Nafi, and Marco Valeri. 2022. Promoting tourism business through digital marketing in the new normal era: A sustainable approach. European Journal of Innovation Management. ahead-of-print. [Google Scholar] [CrossRef]
- Dick, Alan S., and Kunal Basu. 1994. Customer Loyalty: Toward an Integrated Conceptual Framework. Journal of the Academy of Marketing Science 22: 99–113. [Google Scholar] [CrossRef]
- Dredge, Dianne, Giang Phi, Renuka Mahadevan, Eóin Meehan, and Elena Silvia Popescu. 2018. Digitalisation in Tourism: In-Depth Analysis of Challenges and Opportunities. Low Value Procedure GRO-SME-17-C-091-A for Executive Agency for Small and Medium-sized Enterprises (EASME) Virtual Tourism Observatory. Copenhagen: Aalborg University. Available online: https://ec.europa.eu/docsroom/documents/33163/attachments/1/translations/en/renditions/native (accessed on 29 September 2024).
- Fornell, Claes, and David F. Larcker. 1981. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research 18: 39–50. [Google Scholar] [CrossRef]
- Hair, Joseph F., G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt, Nicholas P. Danks, and Soumya Ray. 2021. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook. Classroom Companion: Business. Cham: Springer International Publishing. [Google Scholar] [CrossRef]
- Hair, Joseph F., Jr., G. Tomas M. Hult, Christian Ringle, and Marko Sarstedt. 2022. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks: SAGE Publications. [Google Scholar]
- Han, Heesup, and Kisang Ryu. 2009. The Roles of the Physical Environment, Price Perception, and Customer Satisfaction in Determining Customer Loyalty in the Restaurant Industry. Journal of Hospitality & Tourism Research 33: 487–510. [Google Scholar] [CrossRef]
- Henseler, Jörg, Christian M. Ringle, and Marko Sarstedt. 2015. A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science 43: 115–35. [Google Scholar] [CrossRef]
- Hwang, Jooyoung, Sangwon Park, and Mina Woo. 2018. Understanding user experiences of online travel review websites for hotel booking behaviours: An investigation of a dual motivation theory. Asia Pacific Journal of Tourism Research 23: 359–72. [Google Scholar] [CrossRef]
- Jaya, I. Putu Gede Iwan Trisna, and Ida Bagus Teddy Prianthara. 2020. Role of social media influencers in tourism destination image: How does digital marketing affect purchase intention? Paper present at the 3rd International Conference on Vocational Higher Education (ICVHE 2018), Batam, Indonesia, August 2–4; pp. 9–20. Available online: https://www.atlantis-press.com/proceedings/icvhe-18/125938316 (accessed on 29 September 2024).
- Jorge, Filipa, Mário Sérgio Teixeira, Ricardo Jorge Correia, Ramiro Gonçalves, José Martins, and Maximino Bessa. 2018. A Conceptual Research Model Proposal of Digital Marketing Adoption and Impact on Low Density Tourism Regions. In Trends and Advances in Information Systems and Technologies. Edited by Álvaro Rocha, Hojjat Adeli, Luís Paulo Reis and Sandra Costanzo. Berlin and Heidelberg: Springer International Publishing, vol. 745, pp. 528–37. [Google Scholar] [CrossRef]
- Jung, Timothy H., and Richard Butler. 2000. The Measurement of the Marketing Effectiveness of the Internet in the Tourism and Hospitality Industry. In Information and Communication Technologies in Tourism 2000. Edited by Daniel R. Fesenmaier, Stefan Klein and Dimitrios Buhalis. Vienna: Springer, pp. 460–72. [Google Scholar] [CrossRef]
- Kandampully, Jay, and Dwi Suhartanto. 2000. Customer loyalty in the hotel industry: The role of customer satisfaction and image. International Journal of Contemporary Hospitality Management 12: 346–51. [Google Scholar] [CrossRef]
- Kazmi, Syed Hasnain Alam, Mohsin Raza, and Junaid Ahmed. 2020. Impact of destination service quality on revisit intention in tourism. Journal of Organisational Studies and Innovation 7: 26–45. [Google Scholar]
- Khasawneh, Mohammad Shabeeb, Khalil Saleh Aladwan, Samer Fand Ababneh, Issam M. Al-Makhadmah, and Mohammad Issa Alzoubi. 2023. Factors influencing the decision of tourist businesses to adopt digital marketing. Geo Journal of Tourism and Geosites 47: 415–23. [Google Scholar] [CrossRef]
- Kitsios, Fotis, Eleftheria Mitsopoulou, Eleni Moustaka, and Maria Kamariotou. 2022. User-Generated Content behavior and digital tourism services: A SEM-neural network model for information trust in social networking sites. International Journal of Information Management Data Insights 2: 100056. [Google Scholar] [CrossRef]
- Kock, Ned, and Pierre Hadaya. 2018. Minimum Sample Size Estimation in PLS-SEM: The Inverse Square Root and Gamma-exponential Methods. Information Systems Journal 28: 227–61. [Google Scholar] [CrossRef]
- Kucukusta, Deniz, Rob Law, Alia Besbes, and Patrick Legohérel. 2015. Re-examining perceived usefulness and ease of use in online booking: The case of Hong Kong online users. International Journal of Contemporary Hospitality Management 27: 185–98. [Google Scholar] [CrossRef]
- Kushwaha, Bijay Prasad. 2020. Personalised Digital Marketing Perspectives and Practices in Tourism Industry. PalArch’s Journal of Archaeology of Egypt/Egyptology 17: 2029–41. [Google Scholar]
- Lai, Yi-Hsuan, Hsiu-Chin Huang, Ruey-Shan Lu, and Chia-Ming Chang. 2013. The effects of website trust, perceived ease of use, and perceived usefulness on consumers’ online booking intention: Evidence from Taiwan B&B sector. Life Science Journal 10: 1516–23. [Google Scholar]
- Lexhagen, Maria. 2009. Customer perceived value of travel and tourism web sites. International Journal of Information Systems in the Service Sector (IJISSS) 1: 35–53. [Google Scholar] [CrossRef]
- Lima Santos, Luís, Lucília Cardoso, Noelia Araújo-Vila, and Jose A. Fraiz-Brea. 2020. Sustainability perceptions in tourism and hospitality: A mixed-method bibliometric approach. Sustainability 12: 8852. [Google Scholar] [CrossRef]
- Litvin, Stephen, Ronald Goldsmith, and Bing Pan. 2008. Electronic Word-of-Mouth in Hospitality and Tourism Management. Tourism Management 29: 458–68. [Google Scholar] [CrossRef]
- Madhavan, Meena, Mohammed Ali Sharafuddin, and Sutee Wangtueai. 2024. Measuring the Industry 5.0-Readiness Level of SMEs Using Industry 1.0–5.0 Practices: The Case of the Seafood Processing Industry. Sustainability 16: 2205. [Google Scholar] [CrossRef]
- Maurer, Christian. 2021. Digital Marketing in Tourism. In Handbook of e-Tourism. Edited by Z. Xiang, M. Fuchs, U. Gretzel and W. Höpken. Berlin/Heidelberg: Springer International Publishing, pp. 1–24. [Google Scholar] [CrossRef]
- Mitova, Radenka, Bilyana Borisova, and Boian Koulov. 2021. Digital Marketing of Bulgarian Natural Heritage for Tourism and Recreation. Sustainability 13: 3071. [Google Scholar] [CrossRef]
- Mkwizu, Kezia Herman. 2019. Digital marketing and tourism: Opportunities for Africa. International Hospitality Review 34: 5–12. [Google Scholar] [CrossRef]
- Modica, Patrizia Daniela, Levent Altinay, Anna Farmaki, Dogan Gursoy, and Mariangela Zenga. 2020. Consumer perceptions towards sustainable supply chain practices in the hospitality industry. Current Issues in Tourism 23: 358–75. [Google Scholar] [CrossRef]
- Mohamad, Mahadzirah, Nur Izzati Ab Ghani, and MN Muhamad Nasir. 2019. The impact of perceived value, destination service quality and tourist satisfaction on destination loyalty among international tourists visiting Malaysia. Journal of Tourism, Hospitality and Environment Management 4: 10–26. [Google Scholar] [CrossRef]
- Munanura, Ian E., Kenneth F. Backman, Jeffrey C. Hallo, and Robert B. Powell. 2016. Perceptions of tourism revenue sharing impacts on Volcanoes National Park, Rwanda: A Sustainable Livelihoods framework. Journal of Sustainable Tourism 24: 1709–26. [Google Scholar] [CrossRef]
- Neuhofer, Barbara, Dimitrios Buhalis, and Adele Ladkin. 2015. Smart technologies for personalised experiences: A case study in the hospitality domain. Electronic Markets 25: 243–54. [Google Scholar] [CrossRef]
- Nicholas, Lorraine, and Brijesh Thapa. 2010. Visitor perspectives on sustainable tourism development in the pitons management area world heritage site, St. Lucia. Environment, Development and Sustainability 12: 839–57. [Google Scholar] [CrossRef]
- Noviana, I. Putu Teddy, and Gede Sri Darma. 2020. Exploring Digital Marketing Strategies during the New Normal Era in Enhancing the Use of Digital Payment. Jurnal Mantik 4: 2257–62. [Google Scholar]
- Oliver, Richard L. 1980. A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. Journal of Marketing Research 17: 460–69. [Google Scholar] [CrossRef]
- Oliver, Richard L. 2000. Customer satisfaction with service. Handbook of Services Marketing and Management 247254: 339–54. [Google Scholar]
- Ong, Yi Xuan, and Naoya Ito. 2019. “I want to go there too!” Evaluating social media influencer marketing effectiveness: A case study of Hokkaido’s DMO. In Information and Communication Technologies in Tourism 2019: Proceedings of the International Conference in Nicosia, Cyprus, January 30–February 1, 2019. Edited by Juho Pesonen and Julia Neidhardt. Cham: Springer International Publishing, pp. 132–44. [Google Scholar]
- Parasuraman, Ananthanarayanan, Valarie A. Zeithaml, and Leonard L. Berry. 1988. SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality. Journal of Retailing 64: 12–40. [Google Scholar]
- Ponnapureddy, Sindhuri, Julianna Priskin, Timo Ohnmacht, Friederike Vinzenz, and Werner Wirth. 2017. The influence of trust perceptions on German tourists’ intention to book a sustainable hotel: A new approach to analysing marketing information. Journal of Sustainable Tourism 25: 970–88. [Google Scholar] [CrossRef]
- R Core Team. 2024. R: A Language and Environment for Statistical Computing Manual. Vienna: R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 29 September 2024).
- Ravich, Timothy M. 2004. Deregulation of the Airline Computer Reservation Systems (CRS) Industry. Journal of Air Law and Commerce 69: 387–412. [Google Scholar]
- Ray, Soumya, Nicholas Patrick Danks, and André Calero Valdez. 2022. Seminr: Building and Estimating Structural Equation Models. Available online: https://CRAN.R-project.org/package=seminr (accessed on 29 September 2024).
- Ritchie, J. R. Brent, and Geoffrey Ian Crouch. 2003. The Competitive Destination: A Sustainable Tourism Perspective. Wallingford: CABI. [Google Scholar]
- Romero Montero, Andrés, Ricardo Sellers Rubio, and Adriana Cely Álvarez. 2023. Inbound Marketing in the Hospitality Industry: A Systematic Review of the Last 12 Years. Available online: https://rua.ua.es/dspace/handle/10045/137398 (accessed on 29 September 2024).
- Sánchez, Mónica Pérez, Javier Casanoves Boix, and Agustín Ruiz Lanuza. 2023. El inbound marketing en el reposicionamiento de la identidad cultural de las ciudades patrimoniales. Journal of Tourism and Heritage Research: JTHR 6: 100–15. [Google Scholar]
- Sánchez-Teba, Eva M., Josefa García-Mestanza, and Mercedes Rodríguez-Fernández. 2020. The application of the inbound marketing strategy on costa del sol planning & tourism board. Lessons for post-covid-19 revival. Sustainability 12: 9926. [Google Scholar]
- Sekaran, Uma, and Roger Bougie. 2016. Research Methods for Business: A Skill-Building Approach. New York: Wiley. [Google Scholar]
- Sharafuddin, Mohamed Ali. 2015. Types of Tourism in Thailand. E-Review of Tourism Research 12: 210–219. [Google Scholar]
- Sharafuddin, Mohammed Ali, and Meena Madhavan. 2020a. Measurement model for assessing community based wellness tourism needs. E-Review of Tourism Research 18: 311–36. [Google Scholar]
- Sharafuddin, Mohammed Ali, and Meena Madhavan. 2020b. Thematic Evolution of Blue Tourism: A Scientometric Analysis and Systematic Review. Global Business Review 25: 533–54. [Google Scholar] [CrossRef]
- Sharafuddin, Mohammed Ali, Meena Madhavan, and Sutee Wangtueai. 2021. Expanding themes of destination e-image and service quality: A qualitative study using conversational interview. Service Quality 20: 4. [Google Scholar]
- Sharafuddin, Mohammed Ali, Meena Madhavan, and Sutee Wangtueai. 2022. Assessing Island Destination Service Quality—An Integrated Model through Co-creation of Destination E-image. Global Business Review. [Google Scholar] [CrossRef]
- Sheather, Simon. 2009. A Modern Approach to Regression with R. New York: Springer Science & Business Media. [Google Scholar] [CrossRef]
- Sthapit, Erose, Peter Björk, and S. Mostafa Rasoolimanesh. 2024. Toward a Better Understanding of Memorable Souvenir Shopping Experiences. International Journal of Hospitality & Tourism Administration 25: 59–91. [Google Scholar] [CrossRef]
- Tajeddini, Kayhan, Vanessa Ratten, and Thorsten Merkle, eds. 2019. Tourism, Hospitality and Digital Transformation: Strategic Management Aspects, 1st ed. London and New York: Routledge. [Google Scholar]
- TAT Intelligence Center. 2024. Tourism Authority of Thailand. Available online: https://intelligencecenter.tat.or.th/?lang=en_us (accessed on 29 September 2024).
- Tosun, Cevat, Bekir Bora Dedeoğlu, and Alan Fyall. 2015. Destination service quality, affective image and revisit intention: The moderating role of past experience. Journal of Destination Marketing & Management 4: 222–34. [Google Scholar] [CrossRef]
- Tourism Authority of Thailand. 2022. TAT’s Marketing Plan 2023 to Revitalise Thai Tourism towards High Value and Sustainable Growth. TAT Newsroom. July 18. Available online: https://www.tatnews.org/2022/07/tats-marketing-plan-2023-to-revitalise-thai-tourism-towards-high-value-and-sustainable-growth/ (accessed on 29 September 2024).
- UNSDG | 2030 Agenda and the Sustainable Development Goals. 2015. Available online: https://unsdg.un.org/2030-agenda (accessed on 29 September 2024).
- UNWTO. 2024. Tourism for SDGs—Welcome to The Tourism For SDGs Platform! February 28. Available online: https://tourism4sdgs.org/ (accessed on 29 September 2024).
- Wang, Dan, Zheng Xiang, and Daniel R. Fesenmaier. 2014. Adapting to the mobile world: A model of smartphone use. Annals of Tourism Research 48: 11–26. [Google Scholar] [CrossRef]
- World Tourism Organization. 2023. Achieving the Sustainable Development Goals through Tourism—Toolkit of Indicators for Projects (TIPs). Madrid: UNWTO. [Google Scholar] [CrossRef]
DMRE | DMAU | DMEU | DMPV | DSQA | DSQT | DSUQ | TS | BI | |
---|---|---|---|---|---|---|---|---|---|
DMRE1 | 0.815 | ||||||||
DMRE2 | 0.899 | ||||||||
DMRE3 | 0.668 | ||||||||
DMRE4 | 0.838 | ||||||||
DMAU1 | 0.843 | ||||||||
DMAU2 | 0.915 | ||||||||
DMAU3 | 0.920 | ||||||||
DMEU1 | 0.897 | ||||||||
DMEU2 | 0.929 | ||||||||
DMEU3 | 0.932 | ||||||||
DMPV1 | 0.818 | ||||||||
DMPV2 | 0.916 | ||||||||
DMPV3 | 0.900 | ||||||||
DMPV4 | 0.863 | ||||||||
DSQA1 | 0.904 | ||||||||
DSQA2 | 0.920 | ||||||||
DSQA3 | 0.869 | ||||||||
DSQT1 | 0.778 | ||||||||
DSQT2 | 0.883 | ||||||||
DSQT3 | 0.879 | ||||||||
DSQT4 | 0.811 | ||||||||
DSQT5 | 0.713 | ||||||||
DSUQ1 | 0.777 | ||||||||
DSUQ2 | 0.853 | ||||||||
DSUQ3 | 0.844 | ||||||||
DSUQ4 | 0.556 | ||||||||
DSUQ5 | 0.534 | ||||||||
TS1 | 0.913 | ||||||||
TS2 | 0.950 | ||||||||
TS3 | 0.867 | ||||||||
BI1 | 0.937 | ||||||||
BI2 | 0.911 | ||||||||
BI3 | 0.941 |
alpha | rhoC | AVE | rhoA | |
---|---|---|---|---|
DMRE | 0.833 | 0.883 | 0.656 | 0.898 |
DMAU | 0.873 | 0.922 | 0.798 | 0.878 |
DMEU | 0.909 | 0.943 | 0.846 | 0.910 |
DMPV | 0.898 | 0.929 | 0.766 | 0.904 |
DSQA | 0.880 | 0.926 | 0.806 | 0.886 |
DSQT | 0.872 | 0.908 | 0.664 | 0.881 |
DSUQ | 0.769 | 0.843 | 0.528 | 0.815 |
TS | 0.897 | 0.936 | 0.830 | 0.907 |
BI | 0.921 | 0.950 | 0.864 | 0.925 |
DMRE | DMAU | DMEU | DMPV | DSQA | DSQT | DSUQ | TS | BI | |
---|---|---|---|---|---|---|---|---|---|
DMRE | 0.810 | NA | NA | NA | NA | NA | NA | NA | NA |
DMAU | 0.538 | 0.893 | NA | NA | NA | NA | NA | NA | NA |
DMEU | 0.456 | 0.680 | 0.920 | NA | NA | NA | NA | NA | NA |
DMPV | 0.406 | 0.590 | 0.605 | 0.875 | NA | NA | NA | NA | NA |
DSQA | 0.314 | 0.409 | 0.484 | 0.583 | 0.898 | NA | NA | NA | NA |
DSQT | 0.155 | 0.358 | 0.407 | 0.502 | 0.656 | 0.815 | NA | NA | NA |
DSUQ | 0.166 | 0.316 | 0.356 | 0.374 | 0.491 | 0.594 | 0.726 | NA | NA |
TS | 0.120 | 0.289 | 0.387 | 0.292 | 0.479 | 0.487 | 0.567 | 0.911 | NA |
BI | 0.119 | 0.309 | 0.414 | 0.299 | 0.451 | 0.507 | 0.563 | 0.820 | 0.930 |
DMRE | DMAU | DMEU | DMPV | DSQA | DSQT | DSUQ | TS | BI | |
---|---|---|---|---|---|---|---|---|---|
DMRE1 | 0.815 | 0.462 | 0.487 | 0.374 | 0.232 | 0.112 | 0.093 | 0.156 | 0.124 |
DMRE2 | 0.899 | 0.491 | 0.399 | 0.382 | 0.330 | 0.143 | 0.184 | 0.143 | 0.138 |
DMRE3 | 0.668 | 0.276 | 0.185 | 0.179 | 0.100 | 0.051 | 0.112 | −0.035 | 0.002 |
DMRE4 | 0.838 | 0.451 | 0.330 | 0.310 | 0.263 | 0.158 | 0.135 | 0.041 | 0.062 |
DMAU1 | 0.493 | 0.843 | 0.612 | 0.525 | 0.388 | 0.306 | 0.267 | 0.227 | 0.213 |
DMAU2 | 0.503 | 0.915 | 0.627 | 0.511 | 0.348 | 0.304 | 0.260 | 0.271 | 0.289 |
DMAU3 | 0.451 | 0.920 | 0.587 | 0.543 | 0.363 | 0.347 | 0.315 | 0.276 | 0.320 |
DMEU1 | 0.347 | 0.618 | 0.897 | 0.575 | 0.438 | 0.394 | 0.297 | 0.324 | 0.383 |
DMEU2 | 0.466 | 0.643 | 0.929 | 0.561 | 0.457 | 0.377 | 0.326 | 0.393 | 0.375 |
DMEU3 | 0.444 | 0.615 | 0.932 | 0.534 | 0.441 | 0.353 | 0.358 | 0.348 | 0.385 |
DMPV1 | 0.329 | 0.465 | 0.547 | 0.818 | 0.494 | 0.418 | 0.337 | 0.259 | 0.218 |
DMPV2 | 0.355 | 0.549 | 0.517 | 0.916 | 0.579 | 0.460 | 0.400 | 0.303 | 0.280 |
DMPV3 | 0.344 | 0.534 | 0.518 | 0.900 | 0.503 | 0.427 | 0.291 | 0.209 | 0.252 |
DMPV4 | 0.395 | 0.513 | 0.540 | 0.863 | 0.453 | 0.449 | 0.270 | 0.244 | 0.295 |
DSQA1 | 0.386 | 0.386 | 0.476 | 0.528 | 0.904 | 0.537 | 0.388 | 0.419 | 0.346 |
DSQA2 | 0.246 | 0.407 | 0.474 | 0.536 | 0.920 | 0.622 | 0.481 | 0.491 | 0.447 |
DSQA3 | 0.214 | 0.303 | 0.347 | 0.505 | 0.869 | 0.607 | 0.453 | 0.371 | 0.419 |
DSQT1 | 0.107 | 0.206 | 0.261 | 0.321 | 0.446 | 0.778 | 0.436 | 0.277 | 0.334 |
DSQT2 | 0.142 | 0.357 | 0.371 | 0.446 | 0.586 | 0.883 | 0.479 | 0.462 | 0.487 |
DSQT3 | 0.124 | 0.295 | 0.363 | 0.389 | 0.573 | 0.879 | 0.497 | 0.413 | 0.410 |
DSQT4 | 0.021 | 0.188 | 0.252 | 0.375 | 0.527 | 0.811 | 0.568 | 0.451 | 0.419 |
DSQT5 | 0.232 | 0.389 | 0.393 | 0.490 | 0.516 | 0.713 | 0.434 | 0.346 | 0.392 |
DSUQ1 | 0.096 | 0.190 | 0.283 | 0.263 | 0.391 | 0.481 | 0.777 | 0.406 | 0.390 |
DSUQ2 | 0.120 | 0.303 | 0.289 | 0.357 | 0.444 | 0.528 | 0.853 | 0.478 | 0.492 |
DSUQ3 | 0.084 | 0.217 | 0.274 | 0.254 | 0.396 | 0.524 | 0.844 | 0.541 | 0.542 |
DSUQ4 | 0.157 | 0.177 | 0.161 | 0.202 | 0.198 | 0.235 | 0.556 | 0.278 | 0.248 |
DSUQ5 | 0.201 | 0.264 | 0.278 | 0.283 | 0.306 | 0.303 | 0.534 | 0.287 | 0.287 |
TS1 | 0.170 | 0.289 | 0.362 | 0.322 | 0.502 | 0.471 | 0.528 | 0.913 | 0.760 |
TS2 | 0.094 | 0.243 | 0.356 | 0.278 | 0.477 | 0.459 | 0.538 | 0.950 | 0.813 |
TS3 | 0.060 | 0.262 | 0.339 | 0.189 | 0.313 | 0.395 | 0.482 | 0.867 | 0.657 |
BI1 | 0.081 | 0.323 | 0.390 | 0.296 | 0.435 | 0.507 | 0.539 | 0.807 | 0.937 |
BI2 | 0.151 | 0.298 | 0.421 | 0.264 | 0.397 | 0.452 | 0.485 | 0.700 | 0.911 |
BI3 | 0.105 | 0.239 | 0.348 | 0.272 | 0.424 | 0.454 | 0.542 | 0.774 | 0.941 |
DMRE | DMAU | DMEU | DMPV | DSQA | DSQT | DSUQ | TS | BI | |
---|---|---|---|---|---|---|---|---|---|
DMRE | NA | NA | NA | NA | NA | NA | NA | NA | NA |
DMAU | 0.606 | NA | NA | NA | NA | NA | NA | NA | NA |
DMEU | 0.493 | 0.766 | NA | NA | NA | NA | NA | NA | NA |
DMPV | 0.442 | 0.666 | 0.672 | NA | NA | NA | NA | NA | NA |
DSQA | 0.332 | 0.466 | 0.539 | 0.653 | NA | NA | NA | NA | NA |
DSQT | 0.170 | 0.404 | 0.453 | 0.562 | 0.744 | NA | NA | NA | NA |
DSUQ | 0.222 | 0.389 | 0.427 | 0.450 | 0.584 | 0.700 | NA | NA | NA |
TS | 0.135 | 0.327 | 0.428 | 0.320 | 0.529 | 0.540 | 0.664 | NA | NA |
BI | 0.124 | 0.342 | 0.454 | 0.328 | 0.499 | 0.559 | 0.645 | 0.896 | NA |
Construct | Indicator | VIF | Construct | Indicator | VIF |
---|---|---|---|---|---|
DMRE | DMRE1 | 1.764 | DSQT | DSQT1 | 2.224 |
DMRE2 | 2.139 | DSQT2 | 2.879 | ||
DMRE3 | 1.624 | DSQT3 | 2.795 | ||
DMRE4 | 2.065 | DSQT4 | 1.948 | ||
DMAU | DMAU1 | 1.830 | DSQT5 | 1.556 | |
DMAU2 | 3.100 | DSUQ | DSUQ1 | 1.843 | |
DMAU3 | 3.064 | DSUQ2 | 2.473 | ||
DMEU | DMEU1 | 2.519 | DSUQ3 | 2.283 | |
DMEU2 | 3.454 | DSUQ4 | 1.616 | ||
DMEU3 | 3.599 | DSUQ5 | 1.574 | ||
DMPV | DMPV1 | 1.935 | TS | TS1 | 3.126 |
DMPV2 | 3.282 | TS2 | 4.202 | ||
DMPV3 | 3.273 | TS3 | 2.348 | ||
DMPV4 | 2.535 | BI | BI1 | 3.622 | |
DSQA | DSQA1 | 2.662 | BI2 | 2.982 | |
DSQA2 | 2.783 | BI3 | 3.915 | ||
DSQA3 | 2.113 |
Alpha | rhoC | AVE | rhoA | |
---|---|---|---|---|
DME | 0.828 | 0.883 | 0.656 | 0.873 |
DSQ | 0.792 | 0.906 | 0.828 | 0.793 |
DSUQ | 0.769 | 0.843 | 0.528 | 0.813 |
TS | 0.897 | 0.936 | 0.830 | 0.908 |
BI | 0.921 | 0.950 | 0.864 | 0.926 |
DME | DSQ | DSUQ | TS | BI | |
---|---|---|---|---|---|
DME | 0.810 | NA | NA | NA | NA |
DSQ | 0.573 | 0.910 | NA | NA | NA |
DSUQ | 0.394 | 0.595 | 0.726 | NA | NA |
TS | 0.360 | 0.531 | 0.567 | 0.911 | NA |
BI | 0.378 | 0.526 | 0.563 | 0.820 | 0.930 |
DME | DSQ | DSUQ | TS | BI | |
---|---|---|---|---|---|
DME | NA | NA | NA | NA | NA |
DSQ | 0.671 | NA | NA | NA | NA |
DSUQ | 0.477 | 0.744 | NA | NA | NA |
TS | 0.388 | 0.625 | 0.664 | NA | NA |
BI | 0.403 | 0.615 | 0.645 | 0.896 | NA |
Construct | Indicator | VIF | Construct | Indicator | VIF |
---|---|---|---|---|---|
DME | DMRE | 1.449 | DSUQ3 | 2.283 | |
DMAU | 2.275 | DSUQ4 | 1.616 | ||
DMEU | 2.136 | DSUQ5 | 1.574 | ||
DMPV | 1.752 | TS | TS1 | 3.126 | |
DSQ | DSQA | 1.755 | TS2 | 4.202 | |
DSQT | 1.755 | TS3 | 2.348 | ||
DSUQ | DSUQ1 | 1.843 | BI | BI1 | 3.622 |
DSUQ2 | 2.473 | BI2 | 2.982 | ||
BI3 | 3.915 |
Original Est. | Bootstrap Mean | Bootstrap SD | T Stat. | 5% CI | 95% CI | |
---|---|---|---|---|---|---|
DME → DSQ (H1) | 0.573 | 0.578 | 0.055 | 10.393 | 0.486 | 0.664 |
DME → DSUQ (H2) | 0.394 | 0.406 | 0.078 | 5.028 | 0.274 | 0.532 |
DME → TS (H3) | 0.053 | 0.049 | 0.089 | 0.589 | −0.099 | 0.197 |
DME → BI (H4) | 0.046 | 0.047 | 0.047 | 0.994 | −0.026 | 0.126 |
DSQ → TS (H5) | 0.271 | 0.275 | 0.099 | 2.729 | 0.115 | 0.444 |
DSQ → BI (H6) | 0.059 | 0.057 | 0.066 | 0.897 | −0.053 | 0.165 |
DSUQ → TS (H7) | 0.385 | 0.388 | 0.1 | 3.846 | 0.212 | 0.546 |
DSUQ → BI (H8) | 0.105 | 0.108 | 0.07 | 1.494 | 0.003 | 0.234 |
TS → BI (H9) | 0.713 | 0.711 | 0.069 | 10.35 | 0.592 | 0.821 |
DME → DSQ → TS (H10) | 0.155 | 0.161 | 0.065 | 2.379 | 0.045 | 0.306 |
DME → DSUQ → TS (H11) | 0.152 | 0.157 | 0.051 | 2.988 | 0.066 | 0.261 |
DME → DSQ → TS → BI (H12) | 0.111 | 0.114 | 0.045 | 2.458 | 0.035 | 0.206 |
DME → DSUQ → TS → BI (H13) | 0.108 | 0.112 | 0.038 | 2.824 | 0.045 | 0.195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharafuddin, M.A.; Madhavan, M.; Wangtueai, S. Assessing the Effectiveness of Digital Marketing in Enhancing Tourist Experiences and Satisfaction: A Study of Thailand’s Tourism Services. Adm. Sci. 2024, 14, 273. https://doi.org/10.3390/admsci14110273
Sharafuddin MA, Madhavan M, Wangtueai S. Assessing the Effectiveness of Digital Marketing in Enhancing Tourist Experiences and Satisfaction: A Study of Thailand’s Tourism Services. Administrative Sciences. 2024; 14(11):273. https://doi.org/10.3390/admsci14110273
Chicago/Turabian StyleSharafuddin, Mohammed Ali, Meena Madhavan, and Sutee Wangtueai. 2024. "Assessing the Effectiveness of Digital Marketing in Enhancing Tourist Experiences and Satisfaction: A Study of Thailand’s Tourism Services" Administrative Sciences 14, no. 11: 273. https://doi.org/10.3390/admsci14110273
APA StyleSharafuddin, M. A., Madhavan, M., & Wangtueai, S. (2024). Assessing the Effectiveness of Digital Marketing in Enhancing Tourist Experiences and Satisfaction: A Study of Thailand’s Tourism Services. Administrative Sciences, 14(11), 273. https://doi.org/10.3390/admsci14110273