Bio-Binder—Innovative Asphalt Technology
Funding
Acknowledgments
Conflicts of Interest
References
- OECD. Road Traffic, Vehicles and Networks. 2013 in Environment at a Glance 2013: OECD Indicators; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Vita, L.; Marolda, M.C. Road Infrastructure—the Backbone of Transport System; EU Directorate General for Research and Sustainable Surface Transport: Brussels, Belgium, 2008. [Google Scholar]
- Federation, E.U.R. Roads Statistics: Year Book 2017; European Union Road Federation Place Stéphanie 6/B B-1050: Brussels, Belgium, 2017. [Google Scholar]
- EAPA. The Asphalt Paving Industry, A Global Perspective; EAPA: Brussels, Belgium, 2011.
- EAPA. Key Figures of the European Asphalt Industry in 2014, in Asphalt in Figures; EAPA: Brussels, Belgium, 2016.
- Leggett, J. Big Oil’s Looming Bubble. In New Internationalist; McGowen House: Northampton, UK, 2014; pp. 20–21. [Google Scholar]
- Worth, J. Ending the oil age. In New Internationalist; McGowen House: Northampton, UK, 2014; pp. 12–16. [Google Scholar]
- Tabaković, A.; Braak, D.; Gerwen, M.; Copuroglu, O.; Post, W.; Garcia, S.J.; Schlangen, E. The compartmented alginate fibres optimisation for bitumen rejuvenator encapsulation. J. Traffic Transp. Eng. 2017, 4, 347–359. [Google Scholar] [CrossRef]
- Tabaković, A. Recycled Asphalt (RA) for Pavements. In Handbook of Recycled Concrete and Demolition Waste; Pacheco-Torgal, F., Tam, V.W.Y., Labrincha, J.A., Ding, Y., de Brito, J., Eds.; Woodhead Publishing: Sarston, UK, 2013; pp. 394–423. [Google Scholar]
- Tabakovic, A.; Gibney, A.; McNally, C.; Gilchrist, M.D. The Influence of Recycled Asphalt Pavement on the Fatigue Performance of Asphalt Concrete Base Courses. ASCE J. Mater. Civ. Eng. 2010, 22, 8. [Google Scholar] [CrossRef]
- Brownridge, J. The role of an asphalt rejuvenator in pavement preservation: Use and need for asphalt rejuvenation. In Proceedings of the International Conference on Pavement Preservation, Newport Beach, CA, USA, 13–15 April 2010. [Google Scholar]
- Garcia, A.; Jelfs, J.; Austin, C.J. Internal asphalt mixture rejuvenation using capsules. Constr. Build. Mater. 2015, 101, 309–316. [Google Scholar] [CrossRef]
- Su, J.F.; Qiu, J.; Schlangen, E.; Wang, Y.Y. Investigation the possibility of a new approach of using microcapsules containing waste cooking oil; in-situ rejuvenation. Constr. Build. Mater. 2015, 74, 83–92. [Google Scholar] [CrossRef]
- Trombulack, S.C.; Frissell, C.A. Revbiew of ecological effects of roads on terestrial and aquatic communities. Conserv. Biol. 2000, 14, 13. [Google Scholar]
- Tabaković, A.; Post, W.; Cantero, D.; Copuroglu, O.; Garcia, S.J.; Schlangen, E. The reinforcement and healing of asphalt mastic mixtures by rejuvenator encapsulation in alginate compartmented fibres. Smart Mater. Struct. 2016, 25, 084003. [Google Scholar] [CrossRef] [Green Version]
- Anderson, F.A. Final Report on the Safety Assessment of Melamine/Formaldehyde Resin. J. Am. Coll. Toxicol. 1995, 14, 373–385. [Google Scholar]
- Garcia, A.; Austin, C.J.; Jelfs, J. Mechanical properties of asphalt mixture containing sunflower oil capsules. J. Clean. Prod. 2016, 118, 9. [Google Scholar] [CrossRef]
- Saha, R.; Melaku, R.S.; Karki, B.; Berg, A. Effect of Bio-Oils on Binder and Mix Properties with High RAP Binder Content. J. Mater. Civ. Eng. 2020, 32, 04020007. [Google Scholar] [CrossRef]
- Rodrigues, C.; Capitão, S.; Picado-Santos, L.; Almeida, A. Full Recycling of Asphalt Concrete with Waste Cooking Oil as Rejuvenator and LDPE from Urban Waste as Binder Modifier. Sustainability 2020, 12, 8222. [Google Scholar] [CrossRef]
- Gellerstedt, G.; Henriksson, G. Chapter 9—Lignins: Major Sources, Structure and Properties. In Monomers, Polymers and Composites from Renewable Resources; Belgacem, M.N., Gandini, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 201–224. [Google Scholar]
- Vliet, D.; Slaghek, T.; Giezen, C.; Haaksman, I. Lignin as green alternative for bitumen. In Proceedings of the 6th Euroasphalt and Eurobitumen Congress, E&E Congress 2016, Prague, Czech Republic, 1–3 June 2016. [Google Scholar]
- Murphy, F.; Devlin, G.; Deverell, R.; McDonnell, K. Biofuel Production in Ireland—An Approach to 2020 Targets with a Focus on Algal Biomass. Energies 2013, 6, 6391–6412. [Google Scholar] [CrossRef]
- Audo, M.; Paraschiv, M.; Queffélec, C.; Louvet, I.; Hémez, J.; Fayon, F.; Lépine, O.; Legrand, J.; Tazerout, M.; Chailleux, E.; et al. Subcritical Hydrothermal Liquefaction of Microalgae Residues as a Green Route to Alternative Road Binders. ACS Sustain. Chem. Eng. 2015, 3, 8. [Google Scholar] [CrossRef]
- Umakanta, J.; Das, K.C. Comparative Evaluation of Thermochemical Liquefaction and Pyrolysis for Bio-Oil Production from Microalgae. Energy Fuels 2011, 25, 5472–5482. [Google Scholar]
- French Institute of Science and Technology devoted to Transport, P.a.N.I. BioRePavation. 2020. Available online: http://biorepavation.ifsttar.fr/ (accessed on 20 October 2020).
- Kesaano, M.; Sims, R.C. Algal biofilm based technology for wastewater treatment. Algal Res. 2014, 5, 231–240. [Google Scholar] [CrossRef]
- Craggs, R.; Sutherland, D.; Campbell, H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol. 2012, 24, 329–337. [Google Scholar] [CrossRef]
- Pal, D.; Khozin-Goldberg, I.; Cohen, Z.; Boussiba, S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl. Microbiol. Biotechnol. 2011, 90, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Wiley, P.; Elliott, C.; Thomas, H. Microalgae Cultivation Using Offshore Membrane Enclosures for Growing Algae (OMEGA). J. Sustain. Bioenergy Syst. 2013, 3, 18. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabaković, A. Bio-Binder—Innovative Asphalt Technology. Appl. Sci. 2020, 10, 8655. https://doi.org/10.3390/app10238655
Tabaković A. Bio-Binder—Innovative Asphalt Technology. Applied Sciences. 2020; 10(23):8655. https://doi.org/10.3390/app10238655
Chicago/Turabian StyleTabaković, Amir. 2020. "Bio-Binder—Innovative Asphalt Technology" Applied Sciences 10, no. 23: 8655. https://doi.org/10.3390/app10238655
APA StyleTabaković, A. (2020). Bio-Binder—Innovative Asphalt Technology. Applied Sciences, 10(23), 8655. https://doi.org/10.3390/app10238655