Assessment of Handler Exposure to Pesticides from Stretcher-Type Power Sprayers in Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Field Trial
2.3. Potential Dermal and Inhalation Exposure Monitoring
2.3.1. Potential Dermal Exposure Monitoring
2.3.2. Potential Inhalation Exposure Monitoring
2.4. Handler Sampling
2.5. Chromatographic Conditions
2.6. Linear Range
2.7. Extraction and Recovery of SYP-9625
2.8. Statistical Analysis
3. Results and Discussion
3.1. Validation of the Analytical Method
3.2. Dermal and Inhalation Exposure during Application
3.2.1. Dermal Unit Exposure during Application
3.2.2. Inhalation Exposure during Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Damalas, C.; Koutroubas, S. Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baharuddin, M.R.B.; Sahid, I.B.; Noor, M.A.B.M.; Sulaiman, N.; Othman, F. Pesticide risk assessment: A study on inhalation and dermal exposure to 2,4-D and paraquat among Malaysian paddy farmers. J. Environ. Sci. Health Part B 2011, 46, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Verger, P.J.P.; Boobis, A.R. Reevaluate pesticides for food security and safety. Science 2013, 341, 717–718. [Google Scholar] [CrossRef] [PubMed]
- Blanco, L.E.; Aragn, A.; Lundberg, I.; Lidn, C.; Wesseling, C.; Nise, G. Determinants of dermal exposure among Nicaraguan subsistence farmers during pesticide applications with backpack sprayers. Ann. Occup. Hyg. 2005, 49, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Tao, C.; Song, W.; Qu, M. Pesticide risk assessment and its status quo and countermeasures. Qual. Saf. Agro-Prod. 2010, 41–45. [Google Scholar] [CrossRef]
- National Bureau of Statistics. Communiqué on Major Data of the Third National Agricultural Census (No. 5). 2017. Available online: http://www.stats.gov.cn/tjsj/tjgb/nypcgb/qgnypcgb/201712/t20171215_1563599.html (accessed on 17 November 2020).
- Großkopf, C.; Mielke, H.; Westphal, D.; Erdtmann-Vourliotis, M.; Hamey, P.; Bouneb, F.; Rautmann, D.; Stauber, F.; Wicke, H.; Maasfeld, W.; et al. A new model for the prediction of agricultural operator exposure during professional application of plant protection products in outdoor crops. J. Verbrauch. Lebensm. 2013, 8, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Abukari, W. Pesticides applicator exposure assessment: A comparison between modeling and actual measurement. J. Environ. Earth Sci. 2015, 5, 101–115. [Google Scholar]
- Yang, F.; Kai, W.; Zhang, W.; Liu, F. Using the protective clothing to simulate the body dermal to measure the exposure of the operators in corn field. J. Agro-Environ. Sci. 2013, 32, 1979–1983. [Google Scholar] [CrossRef]
- Gao, B.; Tao, C.; Ye, J.; Ning, J.; Mei, X.; Jiang, Z.; Chen, S.; She, D. Measurement of operator exposure to chlorpyrifos. Pest Manag. Sci. 2013, 70, 636–641. [Google Scholar] [CrossRef]
- Cao, L.; Chen, B.; Zheng, L.; Wang, D.; Liu, F.; Huang, Q. Assessment of potential dermal and inhalation exposure of workers to the insecticide imidacloprid using whole-body dosimetry in China. J. Environ. Sci. 2015, 27, 139–146. [Google Scholar] [CrossRef]
- Chen, B. Preliminary Evaluation of Pesticide Exposure of Pesticides in Wheat Field and Peanut Field Spray Operations; Shandong Agricultural University: Taian, China, 2012. [Google Scholar] [CrossRef]
- National Bureau of Statistics. Available online: https://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 17 November 2020).
- Franklin, C.A.; Fenske, R.A.; Greenhalgh, R.; Mathieu, L.; Denley, H.V.; Leffingwell, J.T.; Spear, R.C. Correlation of urinary pesticide metabolite excretion with estimated dermal contact in the course of occupational exposure to Guthion. J. Toxicol. Environ. Health 1981, 7, 715–731. [Google Scholar] [CrossRef]
- Kim, E.; Moon, J.K.; Choi, H.; Hong, S.M.; Lee, D.H.; Lee, H.; Kim, J.H. Exposure and risk assessment of insecticide methomyl for applicator during treatment on apple orchard. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 123. [Google Scholar] [CrossRef] [Green Version]
- Thouvenin, I.; Bouneb, F.; Mercier, T. Operator dermal exposure and protection provided by personal protective equipment and working coveralls during mixing/loading, application and sprayer cleaning in vineyards. Int. J. Occup. Saf. Ergon. 2017, 23, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, X.; Ma, W.; Liu, X. Transactions of the Chinese society of agricultural machinery. J. Agric. Mech. Res. 2010, 32, 246–248. [Google Scholar] [CrossRef]
- National Agro-Tech Center Pesticide and Medicine Division. Overview of Pest Control in 2017 and Analysis of Pesticide Equipment Market in 2018. 2017, Volume 30, pp. 30–31. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=NYSC201730023&uid=WEEvREcwSlJHSldSdmVqM1BLUWh5QjR4OTZGL0xpdFM5dHNLRHh5SmJNWT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4IQMovwHtwkF4VYPoHbKxJw!!&v=MDM0MzFQcjQ5SFo0UjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSN3FlWmVac0ZDbm5WTHJMS3pUWWJiRzRIOWI= (accessed on 17 November 2020).
- Zhou, Q. The use and maintenance of stretcher-type power sprayer and duster. J. Rural Best Knowl. 2016, 601, 49–50. [Google Scholar]
- Research and Application of the Implementation of Zero Growth Strategy of Pesticide Use-Six Projects. Available online: http://www.chinapesticide.org.cn/ddswny/1078.jhtml (accessed on 17 November 2020).
- Ouyang, J.; Tian, Y.; Jiang, C.; Yang, Q.; Wang, H.; Li, Q.; Gao, Y. Laboratory assays on the effects of a novel acaricide, SYP-9625 on Tetranychus cinnabarinus(Boisduval) and its natural enemy, Neoseiulus californicus(McGregor). PLoS ONE 2018, 13, e0199269. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Pesticide Assessment Guidelines, Subdivision U, Applicator Exposure. 1987. Available online: http://www.cdpr.ca.gov/docs/whs/memo/hsm98014 (accessed on 17 November 2020).
- Ren, J.; Tao, C.; Zhang, L.; Ning, J.; Mei, X.; She, D. Potential exposure to clothianidin and risk assessment of manual users of treated soil. Pest. Manag. Sci. 2017, 73, 1798–1803. [Google Scholar] [CrossRef]
- OECD. Test No 506: Stability of Pesticide Residues in Stored Commodities; OECD Publishing: Paris, France, 2007. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.A.; Yu, A.; Zhu, Y.Z.; Kim, J.H. Potential dermal exposure to flonicamid and risk assessment of applicators during treatment in apple orchards. J. Occup. Environ. Hyg. 2015, 12, D147–D152. [Google Scholar] [CrossRef]
- Moon, J.; Lee, J.; Maasfeld, W.; Kim, J.; Kim, E.; Lee, J.; Shin, Y.; Lee, J.; Choi, H. Whole body dosimetry and risk assessment of agricultural operator exposure to the fungicide kresoxim-methyl in apple orchards. Ecotoxicol. Environ. Saf. 2018, 155, 94–100. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Wu, C.; She, D. Effect of spraying direction on the exposure to handlers with hand-pumped knapsack sprayer in maize field. Ecotoxicol. Environ. Saf. 2019, 170, 107–111. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, H.; Li, F.; Zhou, Z.; Wang, W.; Ma, D.; Yang, L.; Zhou, P.; Huang, Q. Potential dermal and inhalation exposure to imidacloprid and risk assessment among applicators during treatment in cotton field in China. Sci. Total Environ. 2018, 624, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Landers, A. Protecting the operator-are we making an impact? Asp. Appl. Biol. 2004, 71, 357–364. [Google Scholar]
- Hughes, E.A.; Zalts, A.; Ojeda, J.J.; Flores, A.P.; Glass, R.C.; Montserrat, J.M. Analytical method for assessing potential dermal exposure to captan, using whole body dosimetry, in small vegetable production units in Argentina. Pest. Manag. Sci. 2006, 62, 811–818. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Ji, X.; Jiang, J.; Wang, Y.; Wu, C.; Zhao, X. Potential dermal exposure and risk assessment for applicators of chlorothalonil and chlorpyrifos in cucumber greenhouses in China. Hum. Ecol. Risk Assess. 2015, 21, 972–985. [Google Scholar] [CrossRef]
- Noh, H.H.; Lee, J.Y.; Park, H.K.; Lee, J.W.; Jo, S.H.; Kim, J.H.; Kwon, H.; Kyung, K.S. Risk of dermal and inhalation exposure to chlorantraniliprole assessed by using whole-body dosimetry in Korea. Pest. Manag. Sci. 2019, 75, 1159–1165. [Google Scholar] [CrossRef]
- Ren, J.; Li, Z.; Tao, C.; Zhang, L.; Zhao, H.; Wu, C.; She, D. Exposure assessment of operators to clothianidin when using knapsack electric sprayers in greenhouses. Int. J. Environ. Sci. Technol. 2019, 16, 1471–1478. [Google Scholar] [CrossRef]
- An, X.; Wu, S.; Guan, W.; Lv, L.; Liu, X.; Zhang, W.; Zhao, X.; Cai, L. Effects of different protective clothing for reducing body exposure to chlorothalonil during application in cucumber greenhouses. Hum. Ecol. Risk Assess. 2018, 24, 14–25. [Google Scholar] [CrossRef]
- Lee, J.Y.; Noh, H.H.; Park, H.K.; Jeong, H.R.; Jin, M.J.; Park, K.H.; Kim, J.H.; Kyung, K.S. Exposure Assessment of Apple Orchard Workers to the Insecticide Imidacloprid Using Whole Body Dosimetry During Mixing/Loading and Application. Korean J. Pestic. Sci. 2016, 20, 271–279. [Google Scholar] [CrossRef] [Green Version]
Material | Fortification Concentration (mg·kg−1) | Recovery (%) | RSD (%) |
---|---|---|---|
0.1 | 97.28 | 2.8 | |
Cotton clothing | 0.2 | 91.02 | 3.1 |
1 | 102.35 | 3.4 | |
0.01 | 101.00 | 2.0 | |
Gauze | 0.02 | 103.45 | 2.6 |
0.1 | 97.34 | 1.8 | |
0.05 | 95.33 | 4.7 | |
Outside gloves | 0.1 | 107.26 | 3.6 |
0.2 | 105.15 | 5.3 | |
0.01 | 94.84 | 3.2 | |
XAD-2 | 0.02 | 97.65 | 1.9 |
0.04 | 93.28 | 2.8 | |
0.025 | 110.37 | 2.2 | |
0.01% Aerosol OT | 0.05 | 106.00 | 1.6 |
0.1 | 103.25 | 3.8 |
Part of Garment | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Mean | SD |
---|---|---|---|---|---|---|---|---|---|
a1 | 0.10 | 0.18 | 0.32 | 0.07 | 0.09 | 0.16 | 0.12 | 0.15 | 0.08 |
a2 | 0.23 | 0.18 | 0.08 | 0.08 | 0.06 | 0.08 | 0.06 | 0.11 | 0.07 |
a3 | 0.07 | 0.07 | 0.02 | 0.11 | 0.66 | 0.02 | 0.01 | 0.14 | 0.23 |
a4 | 0.02 | 0.57 | 0.05 | 0.05 | 0.03 | 0.05 | 0.09 | 0.12 | 0.20 |
a5 | 0.18 | 0.23 | 0.14 | 0.05 | 0.25 | 0.08 | 0.13 | 0.15 | 0.07 |
a6 | 0.15 | 0.92 | 0.12 | 0.30 | 0.10 | 0.02 | 0.16 | 0.25 | 0.31 |
a7 | 0.78 | 0.26 | 0.13 | 0.14 | 1.23 | 2.58 | 4.03 | 1.31 | 1.48 |
a8 | 0.98 | 99.48 | 7.43 | 0.22 | 0.17 | 2.35 | 53.78 | 23.49 | 38.71 |
a9 | 0.31 | 124.26 | 9.27 | 0.25 | 0.02 | 2.63 | 40.19 | 25.28 | 45.97 |
b1 | 44.18 | 31.01 | 4.92 | 6.76 | 3.75 | 17.83 | 18.46 | 18.13 | 15.03 |
b2 | 7.07 | 5.54 | 4.56 | 4.64 | 4.28 | 42.70 | 16.04 | 12.12 | 14.11 |
b3 | 4.87 | 14.36 | 2.50 | 3.71 | 4.85 | 21.38 | 15.53 | 9.60 | 7.38 |
b4 | 4.12 | 47.16 | 5.02 | 6.59 | 4.57 | 14.92 | 33.84 | 16.60 | 17.17 |
b5 | 11.41 | 20.11 | 11.32 | 0.04 | 3.95 | 22.07 | 28.13 | 13.86 | 10.10 |
b6 | 66.30 | 98.75 | 135.68 | 0.08 | 7.81 | 42.49 | 106.29 | 65.34 | 51.37 |
b7 | 2.52 | 9.39 | 0.58 | 0.26 | 4.96 | 10.91 | 16.13 | 6.39 | 5.95 |
b8 | 35.95 | 253.94 | 59.09 | 17.15 | 32.62 | 86.76 | 128.87 | 87.77 | 82.50 |
b9 | 16.12 | 234.01 | 23.58 | 31.48 | 9.82 | 91.44 | 72.15 | 68.37 | 79.07 |
10 | 1.33 | 0.26 | 0.21 | 0.12 | 0.29 | 0.38 | 2.33 | 0.70 | 0.83 |
11 | 0.16 | 0.05 | 0.01 | 0.02 | 0.02 | 0.19 | 0.64 | 0.16 | 0.23 |
12 | 0.31 | 0.06 | 0.15 | 0.02 | 0.02 | 0.20 | 0.59 | 0.19 | 0.20 |
13 | 0.03 | 0.14 | 0.02 | 0.01 | 0.02 | 0.02 | 0.11 | 0.05 | 0.05 |
14 | 0.009 | 0.005 | 0.01 | 0.004 | 0.048 | 0.02 | 0.04 | 0.02 | 0.02 |
Exposure Levels of ADE | Total Exposure Levels of PDE | |
---|---|---|
Front torso | 0.15 ± 0.08b | 18.13 ± 15.03a |
Rear torso | 0.11 ± 0.07b | 12.12 ± 14.11a |
Upper arms | 0.14 ± 0.23b | 9.60 ± 7.38a |
Forearms | 0.12 ± 0.20b | 16.60 ± 17.17a |
Thighs | 0.15 ± 0.07b | 13.86 ± 10.10a |
Shins | 0.25 ± 0.31b | 65.34 ± 51.37a |
Hands | 48.82 ± 84.21a | 204.96 ± 241.57a |
Head | 1.31 ± 1.48b | 8.75 ± 8.17a |
Total | 51.05 ± 84.70b | 350.28 ± 306.97a |
ADE of Hands | PDE of Hands | |
---|---|---|
Left hands | 23.49 ± 38.71a | 111.26 ± 120.23a |
Right hands | 25.28 ± 45.97a | 93.61 ± 123.10a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Meng, Y.; Mei, X.; Ning, J.; Ma, X.; She, D. Assessment of Handler Exposure to Pesticides from Stretcher-Type Power Sprayers in Orchards. Appl. Sci. 2020, 10, 8684. https://doi.org/10.3390/app10238684
Wang Z, Meng Y, Mei X, Ning J, Ma X, She D. Assessment of Handler Exposure to Pesticides from Stretcher-Type Power Sprayers in Orchards. Applied Sciences. 2020; 10(23):8684. https://doi.org/10.3390/app10238684
Chicago/Turabian StyleWang, Zhinan, Yuxi Meng, Xiangdong Mei, Jun Ning, Xiaodong Ma, and Dongmei She. 2020. "Assessment of Handler Exposure to Pesticides from Stretcher-Type Power Sprayers in Orchards" Applied Sciences 10, no. 23: 8684. https://doi.org/10.3390/app10238684
APA StyleWang, Z., Meng, Y., Mei, X., Ning, J., Ma, X., & She, D. (2020). Assessment of Handler Exposure to Pesticides from Stretcher-Type Power Sprayers in Orchards. Applied Sciences, 10(23), 8684. https://doi.org/10.3390/app10238684