Land Suitability Mapping Using Geochemical and Spatial Analysis Methods
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Data Processing and Spatial Analysis
3.3. Land Use
3.4. Soil Sampling and Laboratory Procedures
3.5. Land Evaluation Suitability
4. Results and Discussion
4.1. Land Uses
4.2. Element Content in the Soil of Study Area and Source Apportionment
4.2.1. Cadmium
4.2.2. Cobalt
4.3. Land Evaluation Suitability for Various Types of Use Based on Screening Values
4.3.1. Cadmium
4.3.2. Cobalt
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vingiani, S.; Buonanno, M.; Coraggio, S.; D’Antonio, A.; De Mascellis, R.; Gennaro, A.; Iamarino, M.; Langella, G.; Manna, P.; Moretti, P.; et al. Soils of the Aversa plain (southern Italy). J. Maps 2018, 14, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Langella, G.; Agrillo, A.; Basile, A.; De Mascellis, R.; Manna, P.; Moretti, P.; Mileti, F.A.; Terribile, F.; Vingiani, S. Geography of soil contamination for characterization and precision remediation of potentially contaminated sites. Ital. J. Agron. 2018, 13, 6–15. [Google Scholar]
- Caporale, A.G.; Adamo, P.; Capozzi, F.; Langella, G.; Terribile, F.; Vingiani, S. Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources. Sci. Tot. Environ. 2018, 643, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Vingiani, S.; Di Iorio, E.; Colombo, C.; Terribile, F. Integrated study of Red Mediterranean soils from Southern Italy. Catena 2018, 168, 129–140. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Ferreira da Silva, E.A. Heavy metals of Santiago island (Cape Verde) alluvial deposits: Baseline value maps and human health risk assessment. Int. J. Environ. Res. Public Health 2019, 16, 2. [Google Scholar] [CrossRef] [Green Version]
- Migiros, G.; Bathrellos, G.D.; Skilodimou, H.D.; Karamousalis, T. Pinios (Peneus) River (Central Greece): Hydrological-Geomorphological elements and changes during the Quaternary. Cent. Eur. J. Geosci. 2011, 3, 215–228. [Google Scholar] [CrossRef]
- Kamberis, E.; Bathrellos, G.; Kokinou, E.; Skilodimou, H. Correlation between the structural pattern and the development of the hydrographic network in a portion of the Western Thessaly basin (Greece). Cent. Eur. J. Geosci. 2012, 4, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Skilodimou, H.D.; Bathrellos, G.D.; Maroukian, H.; Gaki-Papanastassiou, K. Late Quaternary evolution of the lower reaches of Ziliana stream in south Mt. Olympus (Greece). Geogr. Fis. Din. Quat. 2014, 37, 43–50. [Google Scholar]
- Kokinou, E.; Skilodimou, H.D.; Bathrellos, G.D.; Antonarakou, A.; Kamberis, E. Morphotectonic analysis, structural evolution/pattern of a contractional ridge: Giouchtas Mt., Central Crete, Greece. J. Earth Syst. Sci. 2015, 124, 587–602. [Google Scholar]
- Bathrellos, G.D.; Skilodimou, H.D.; Maroukian, H. The significance of tectonism in the glaciations of Greece. Geol. Soc. Spec. Publ. 2017, 433, 237–250. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Soukis, K.; Koskeridou, E. Temporal and spatial analysis of flood occurrences in drainage basin of Pinios River (Thessaly, central Greece). Land 2018, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Skilodimou, H.D.; Bathrellos, G.D.; Koskeridou, E.; Soukis, K.; Rozos, D. Physical and anthropogenic factors related to landslide activity in the Northern Peloponnese, Greece. Land 2018, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Skilodimou, H.D.; Bathrellos, G.D.; Alexakis, D.E. Flood Hazard Assessment Mapping in Burned and Urban Areas. Sustainability 2021, 13, 4455. [Google Scholar] [CrossRef]
- Rozos, D.; Bathrellos, G.D.; Skilodimou, H.D. Comparison of the implementation of Rock Engineering System (RES) and Analytic Hierarchy Process (AHP) methods, based on landslide susceptibility maps, compiled in GIS environment. A case study from the Eastern Achaia County of Peloponnesus, Greece. Environ. Earth Sci. 2011, 63, 49–63. [Google Scholar] [CrossRef]
- Papadopoulou-Vrynioti, K.; Bathrellos, G.D.; Skilodimou, H.D.; Kaviris, G.; Makropoulos, K. Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Eng. Geol. 2013, 158, 77–88. [Google Scholar] [CrossRef]
- Rozos, D.; Skilodimou, H.D.; Loupasakis, C.; Bathrellos, G.D. Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environ. Earth Sci. 2013, 70, 3255–3266. [Google Scholar] [CrossRef]
- Chousianitis, K.; Del Gaudio, V.; Sabatakakis, N.; Kavoura, K.; Drakatos, G.; Bathrellos, G.D.; Skilodimou, H.D. Assessment of Earthquake-Induced Landslide Hazard in Greece: From Arias Intensity to Spatial Distribution of Slope Resistance Demand. B. Seismol. Soc. Am. 2016, 106, 174–188. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Karymbalis, E.; Skilodimou, H.D.; Gaki-Papanastassiou, K.; Baltas, E.A. Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece. Environ. Earth Sci. 2016, 75, 319. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Kalivas, D.P.; Skilodimou, H.D. Landslide Susceptibility Assessment Mapping: A Case Study in Central Greece. In Remote Sensing of Hydrometeorological Hazards; Petropoulos, G.P., Islam, T., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK, 2017; pp. 493–512, ISBN-13: 978-1498777582. [Google Scholar]
- Panagopoulos, G.P.; Bathrellos, G.D.; Skilodimou, H.D.; Martsouka, F.A. Mapping urban water demands using multi-criteria analysis and GIS. Water Resour. Manag. 2012, 26, 1347–1363. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Gaki-Papanastassiou, K.; Skilodimou, H.D.; Papanastassiou, D.; Chousianitis, K.G. Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters. Environ. Earth Sci. 2012, 66, 537–548. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Gaki-Papanastassiou, K.; Skilodimou, H.D.; Skianis, G.A.; Chousianitis, K.G. Assessment of rural community and agricultural development using geomorphological-geological factors and GIS in the Trikala prefecture (Central Greece). Stoch. Environ. Res. Risk A 2013, 27, 573–588. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef]
- Τsolaki-Fiaka, S.; Bathrellos, G.D.; Skilodimou, H.D. Multi-criteria decision analysis for abandoned quarry restoration in Evros Region (NE Greece). Land 2018, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Skilodimou, H.D.; Bathrellos, G.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Multi-hazard assessment modeling via multi-criteria analysis and GIS: A case study. Environ. Earth Sci. 2019, 78, 47. [Google Scholar] [CrossRef]
- Papadopoulou-Vrynioti, K.; Alexakis, D.; Bathrellos, G.; Skilodimou, H.; Vryniotis, D.; Vassiliades, E. Environmental research and evaluation of agricultural soil of the Arta plain, western Hellas. J. Geochem. Explor. 2014, 136, 84–92. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Kelepertsis, A.; Alexakis, D.; Chrisanthaki, I.; Archonti, D. Environmental research of groundwater in the urban and suburban areas of Attica region, Greece. Environ. Geol. 2008, 56, 11–18. [Google Scholar] [CrossRef]
- Papadopoulou-Vrynioti, K.; Alexakis, D.; Bathrellos, G.; Skilodimou, H.; Vryniotis, D.; Vassiliades, E.; Gamvroula, D. Distribution of trace elements in stream sediments of Arta plain (western Hellas): The influence of geomorphological parameters. J. Geochem. Explor. 2013, 134, 17–26. [Google Scholar] [CrossRef]
- Makri, P.; Stathopoulou, E.; Hermides, D.; Kontakiotis, G.; Zarkogiannis, S.D.; Skilodimou, H.D.; Bathrellos, G.D.; Antonarakou, A.; Scoullos, M. The Environmental Impact of a Complex Hydrogeological System on Hydrocarbon-Pollutants’ Natural Attenuation: The Case of the Coastal Aquifers in Eleusis, West Attica, Greece. J. Mar. Sci. Eng. 2020, 8, 1018. [Google Scholar] [CrossRef]
- Golfinopoulos, S.; Varnavas, S.; Alexakis, D. The status of arsenic pollution on the Greek and Cyprus environment: An Overview. Water 2021, 13, 224. [Google Scholar] [CrossRef]
- Alexakis, D. Multielement contamination of land in the margin of highways. Land 2021, 10, 230. [Google Scholar] [CrossRef]
- Alexakis, D. Diagnosis of stream sediment quality and assessment of toxic element contamination sources in East Attica, Greece. Environ. Earth Sci. 2011, 63, 1369–1383. [Google Scholar] [CrossRef]
- Alexakis, D. Human health risk assessment associated with Co, Cr, Mn, Ni and V contents in agricultural soils from a Mediterranean site. Arch. Agron. Soil Sci. 2016, 62, 359–373. [Google Scholar] [CrossRef]
- Alexakis, D. Suburban areas in flames: Dispersion of potentially toxic elements from burned vegetation and buildings. Estimation of the associated ecological and human health risk. Environ. Res. 2020, 183, 109153. [Google Scholar] [CrossRef] [PubMed]
- Alexakis, D. Contaminated land by wildfire effect on ultramafic soil and associated human health and ecological risk. Land 2020, 9, 409. [Google Scholar] [CrossRef]
- Alexakis, D.; Gotsis, D.; Giakoumakis, S. Assessment of drainage water quality in pre- and post-irrigation seasons for supplemental irrigation use. Environ. Monit. Assess. 2012, 184, 5051–5063. [Google Scholar] [CrossRef] [PubMed]
- Alexakis, D.; Gotsis, D.; Giakoumakis, S. Evaluation of soil salinization in a Mediterranean site (Agoulinitsa district—West Greece). Arab. J. Geosci. 2015, 8, 1373–1383. [Google Scholar] [CrossRef]
- Kelepertsis, A.; Alexakis, D.; Kita, I. Environmental geochemistry of soils and waters of Susaki area, Korinthos, Greece. Environ. Geochem. Health 2001, 23, 117–135. [Google Scholar] [CrossRef]
- Kelepertsis, A.; Alexakis, D. The impact of mining and metallurgical activity of the Lavrion sulfide deposits on the geochemistry of bottom sea sediments East of the Lavreotiki Peninsula, Greece. Res. J. Chem. Environ. 2004, 8, 40–46. [Google Scholar]
- Gamvroula, D.; Alexakis, D.; Stamatis, G. Diagnosis of groundwater quality and assessment of contamination sources in the Megara basin (Attica, Greece). Arab. J. Geosci. 2013, 6, 2367–2381. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Verdoodt, A.; Tran, V.Y.; Delbecque, N.; Tran, T.C.; Van Ranst, E. Design of a GIS and multi-criteria based land evaluation procedure for sustainable land-use planning at the regional level. Agric. Ecosyst. Environ. 2015, 200, 1–11. [Google Scholar] [CrossRef]
- Safari, Y.; Delavar, M.-A. The influence of soil pollution by heavy metals on the land suitability for irrigated wheat farming in Zanjan region, northwest Iran. Arab. J. Geosc. 2019, 12, 21. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Rasoli, L.; Kerry, R.; Scholten, T. Land suitability assessment and agricultural production sustainability using machine learning models. Agronomy 2020, 10, 573. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, J.; Chatterjee, C. Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ. Pollut. 2000, 109, 69–74. [Google Scholar] [CrossRef]
- Gough, L.P.; Shacklette, H.T.; Case, A.A. Element concentrations toxic to plants, animals, and man. Geol. Surv. Bull. 1979, 1466. [Google Scholar] [CrossRef]
- Berglund, M.; Larsson, K.; Grandér, M.; Casteleyn, L.; Kolossa-Gehring, M.; Schwedler, G.; Castano, A.; Esteban, M.; Angerer, J.; Koch, H.M.; et al. Exposure determinants of cadmium in European mothers and their children. Environ. Res. 2015, 141, 64–76. [Google Scholar] [CrossRef]
- Papadopoulou-Vrynioti, K.; Mertzanis, A.; Vryniotis, D.; Vassiliades, E.; Karakitsios, V. The contribution of karstic rocks to soil quality, Ioannina plain (Epirus, Hellas). J. Geochem. Explor. 2015, 154, 224–237. [Google Scholar] [CrossRef]
- Hellenic Civil Aviation Authority (HCAA). Statistical Data of Ioannina Airport for the Period 1994–2018. 2021. Available online: http://www.hcaa.gr/en/our-airports/kratikos-aerolimenas-iwanninwn-basileys-pyrros-kaiwp (accessed on 20 March 2021).
- IGME (Institute of Geology and Mineral Exploration). Geological Maps of Greece, Sheet Ioannina, scale 1:50,000. 1967. Available online: https://shop.geospatial.com/product/03-GRAC-Greece-50000-Geological-Maps (accessed on 20 March 2021).
- Karakitsios, V. The influence of preexisting structure and halokinesis on organic matter preservation and thrust system evolution in the Ionian basin, northwest Greece. AAPG Bull. 1995, 79, 960–980. [Google Scholar]
- Karakitsios, V. Western Greece and Ionian Sea petroleum systems. AAPG Bull. 2013, 97, 1567–1595. [Google Scholar] [CrossRef] [Green Version]
- Gentzis, T.; Goodarzi, F.; Foscolos, A. Geochemistry and mineralogy of Greek lignites from the Ioannina basin. Energ. Source 1997, 19, 111–128. [Google Scholar] [CrossRef]
- Roucoux, K.H.; Tzedakis, P.C.; Lawson, I.T.; Margari, V. Vegetation history of the penultimate glacial period (MIS 6) at Ioannina, northwest Greece. J. Quat. Sci. 2011, 26, 616–626. [Google Scholar] [CrossRef]
- Vryniotis, D. Soil Geochemical- Environmental Survey of the N.W. Part of the Ioannina Basin; Open File Report, I.G.M.E.: Athens, Greece, 2010; p. 95. (In Greek) [Google Scholar]
- Soil Atlas of Europe, European Soil Bureau Network European Commission. 128 pp Office for Official Publications of the European Communities, L-2995 Luxembourg. 2005. Available online: https://esdac.jrc.ec.europa.eu/content/soil-atlas-europe (accessed on 2 June 2021).
- Copernicus. Urban Atlas 2018. Copernicus Land Monitoring Service. 2021. Available online: https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018 (accessed on 20 March 2021).
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, M.; Gilucis, A.; Gregorauskiene, V.; Halamić, J.; et al. Geochemical Atlas of Europe. Part 1—Background Information, Methodology and Maps. 2005. Available online: http://weppi.gtk.fi/publ/foregsatlas (accessed on 20 March 2021).
- EPA (Environmental Protection Agency). Cleanup Regulations and Standards. Available online: http://www.epa.gov/cleanup/regs.htm (accessed on 20 March 2021).
- CCME (Canadian Council of Ministers of the Environment). Available online: http://st-ts.ccme.ca (accessed on 20 March 2021).
- DEC (Department of Environment and Conservation). Contaminated Sites Management Series: Assessment Levels for Soil, Sediment and Water. 2010. Available online: http://www.dec.wa.gov.au/contaminatedsites (accessed on 20 March 2021).
- Liu, K.; Lv, J.; He, W.; Zhang, H.; Cao, Y.; Dai, Y. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxic. Environ. Saf. 2015, 113, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Romic, M.; Romic, D. Heavy metals distribution in agricultural topsoils in urban area. Environ. Geol. 2003, 43, 795–805. [Google Scholar] [CrossRef]
- Jaradat, Q.M.; Masadeh, A.; Zaitoun, M.; Maitah, B. Heavy metal contamination of soil, plant and air of scrapyard of discarded vehicles at Zarqa city, Jordan. Soil Sed. Contam. An. Intern. J. 2005, 14, 449–462. [Google Scholar] [CrossRef]
- Agrawal, H.; Sawanta, A.; Jansen, K.; Miller, J.W.; Cocker, D.R. Characterization of chemical and particulate emissions from aircraft engines. Atmos. Environ. 2008, 42, 4380–4392. [Google Scholar] [CrossRef]
- Nunes, L.M.; Stigter, T.Y.; Teixeira, M.R. Environmental impacts on soil and groundwater at airports: Origin, contaminants of concern and environmental risks. J. Environ. Monit. 2011, 13, 3026–3039. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Zereini, F.; Püttmann, W. Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci. Tot. Environ. 2013, 442, 86–95. [Google Scholar] [CrossRef]
- Abegglen, M.; Brem, B.T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry. Atmos. Environ. 2016, 134, 181–197. [Google Scholar] [CrossRef]
- Amato, F.; Moreno, T.; Pandolfi, M.; Querol, X.; Alastuey, A.; Delgado, A.; Pedrero, M.; Cots, N. Concentrations, sources and geochemistry of airborne particulate matter at a major European airport. J. Environ. Monit. 2010, 12, 854–862. [Google Scholar] [CrossRef] [Green Version]
- Brtnick, M.; Pecina, V.; Galiova, M.V.; Prokes, L.; Zverina, O.; Juricka, D.; Klimanek, M.; Kynicky, J. The impact of tourism on extremely visited volcanic island: Link between environmental pollution and transportation modes. Chemosphere 2020, 249, 126118. [Google Scholar] [CrossRef]
- Lange, C.N.; Figueiredo, A.G.; Enzweiler, J.; Castro, L. Trace elements status in the terrain of an impounded vehicle scrapyard. J. Radioanal. Nucl. Chem. 2017, 311, 1323–1332. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration—A review. Sci. Tot. Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef] [PubMed]
- Yourtchi, M.S.; Bayat, H.R. Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV). Int. J. Agric. Crop. Sci. 2013, 6, 1099–1103. [Google Scholar]
- Hediji, H.; Djebali, W.; Belkadhi, A.; Cabasson, C.; Moing, A.; Rolin, D.; Brouquisse, R.; Gallusci, P.; Chaibi, W. Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: Consequences on fruit production. S. Afr. J. Bot. 2015, 97, 176–181. [Google Scholar] [CrossRef]
- Food Safety Authority of Ireland. Mercury, Lead, Cadmium, Tin and Arsenic in Food; Toxicology Factsheet Series; Food Safety Authority of Ireland: Dublin, Ireland, 2009; pp. 1–13. [Google Scholar]
- Rahman, A.; Kumarathasan, P.; Gomes, J. Infant and mother related outcomes from exposure to metals with endocrine disrupting properties during pregnancy. Sci. Total Environ. 2016, 56, 1022–1031. [Google Scholar] [CrossRef]
- Mahurpawar, M. Effects of heavy metals on human health. Int. J. Res. Granthaalayah 2015, 3, 1–7. [Google Scholar] [CrossRef]
- Goyer, R.; Golub, M.; Choudhury, H.; Hughes, M.; Kenyon, E.; Stifelman, M. Issue Paper on the Human Health Effects of Metals. 2004. Available online: https://www.epa.gov/osa/issue-paper-human-health-effects-metals (accessed on 20 March 2021).
- Brooks, R.R. Geobotany and Biogeochemistry in Mineral. Exploration, 1st ed.; Harper & Row: New York, NY, USA, 1972; p. 290. [Google Scholar]
- Alloway, W.H. Agronomic controls over the environmental cycling of trace elements. Adv. Agron. 1968, 20, 235–274. [Google Scholar]
- Khan, M.A.; Khan, S.; Khana, A.; Alam, M. Soil contamination with cadmium, consequences and remediation using organic amendments. Sci. Tot. Environ. 2017, 601–602, 1591–1605. [Google Scholar] [CrossRef]
- Rafati Rahimzadeh, M.; Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar]
- Pandey, N.; Sharma, C.P. Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant. Sci. 2002, 163, 753–758. [Google Scholar] [CrossRef]
- Li, H.F.; Gray, C.; Mico, C.; Zhao, F.J.; McGrath, S.P. Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 2009, 75, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, L.; Kattapagari, K.K.; Chitturi, R.T.; Baddam, V.R.; Prasad, L.K. A review on role of essential trace elements in health and disease. J. NTR Univ. Health Sci. 2015, 4, 75–85. [Google Scholar]
- Valberg, L.S.; Ludwig, J.; Olatunbosun, D. Alteration in cobalt absorption in patients with disorders of iron metabolism. Gastroenterology 1969, 56, 241–251. [Google Scholar] [CrossRef]
Cd | Co | |
---|---|---|
Detection limit | 0.2 | 0.3 |
Agricultural land use (n = 102) | ||
Mean | 1.7 | 30.8 |
Median | 1.5 | 23.5 |
Minimum | 0.3 | 4.0 |
Maximum | 5.1 | 90.0 |
Urban land use (n = 8) | ||
Mean | 2.0 | 37.1 |
Median | 1.7 | 35.5 |
Minimum | 0.3 | 7.0 |
Maximum | 3.6 | 77.0 |
Wetlands (n = 2) | ||
Minimum | 3.2 | 33.0 |
Maximum | 3.7 | 35.0 |
European topsoil [58] | 0.145 | 7.0 |
EPA Residential soil [59] | 7.1 | 2.3 |
EPA Plant-Avian-Mammalian [59] | 0.00222 | 0.14 |
CCME Agricultural land use [60] | 1.4 | 40 |
CCME Residential land use [60] | 10 | 50 |
DEC Ecological Investigation level [61] | 3 | 50 |
Land Uses | Area (km2) | Area (%) |
---|---|---|
Urban areas | 14.8 | 15 |
Agricultural areas | 77.8 | 77 |
Shrub and sparsely vegetation areas | 6.6 | 6 |
Wetlands | 1.6 | 2 |
Total | 100.8 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Land Suitability Mapping Using Geochemical and Spatial Analysis Methods. Appl. Sci. 2021, 11, 5404. https://doi.org/10.3390/app11125404
Alexakis DE, Bathrellos GD, Skilodimou HD, Gamvroula DE. Land Suitability Mapping Using Geochemical and Spatial Analysis Methods. Applied Sciences. 2021; 11(12):5404. https://doi.org/10.3390/app11125404
Chicago/Turabian StyleAlexakis, Dimitrios E., George D. Bathrellos, Hariklia D. Skilodimou, and Dimitra E. Gamvroula. 2021. "Land Suitability Mapping Using Geochemical and Spatial Analysis Methods" Applied Sciences 11, no. 12: 5404. https://doi.org/10.3390/app11125404
APA StyleAlexakis, D. E., Bathrellos, G. D., Skilodimou, H. D., & Gamvroula, D. E. (2021). Land Suitability Mapping Using Geochemical and Spatial Analysis Methods. Applied Sciences, 11(12), 5404. https://doi.org/10.3390/app11125404