Characterization of Soluble Salts on the Frescoes by Saturnino Gatti in the Church of San Panfilo in Villagrande di Tornimparte (L’Aquila)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Ion Chromatography Analysis
2.3. ATR-FTIR Analysis
3. Results
3.1. Ion Chromatography Analysis
3.2. ATR-FTIR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galli, A.; Alberghina, M.F.; Re, A.; Magrini, D.; Grifa, C.; Ponterio, R.C.; La Russa, M.F. Special Issue: Results of the II National Research project of AIAr: Archaeometric study of the frescoes by Saturnino Gatti and workshop at the church of San Panfilo in Tornimparte (AQ, Italy). Appl. Sci. 2023. to be submitted. [Google Scholar]
- D’Agostino, D.; Congedo, P.M.; Cataldo, R. Computational Fluid Dynamics (CFD) Modeling of Microclimate for Salts Crystallization Control and Artworks Conservation. J. Cult. Herit. 2014, 15, 448–457. [Google Scholar] [CrossRef]
- Flatt, R.J.; Caruso, F.; Sanchez, A.M.A.; Scherer, G.W. Chemo-Mechanics of Salt Damage in Stone. Nat. Commun. 2014, 5, 4823. [Google Scholar] [CrossRef]
- Kotulanova, E.; Schweigstillova, J.; Švarcová, S.; Hradil, D.; Bezdička, P.; Grygar, T. Wall painting damage by salts: Causes and mechanisms. Acta Res. Rep. 2009, 18, 27–31. [Google Scholar]
- D’Altri, A.M.; de Miranda, S.; Beck, K.; De Kock, T.; Derluyn, H. Towards a More Effective and Reliable Salt Crystallisation Test for Porous Building Materials: Predictive Modelling of Sodium Chloride Salt Distribution. Constr. Build. Mater. 2021, 304, 124436. [Google Scholar] [CrossRef]
- Benavente, D.; Cueto, N.; Martinez-Martinez, J.; Garcia del Cura, M.A.; Canaveras, J.C. The influence of petrophyrical properties on the salt weathering of porous building rocks. Environ. Geol. 2007, 52, 215–224. [Google Scholar] [CrossRef]
- Giustetto, R.; Moschella, E.M.; Cristellotti, M.; Costa, E. Deterioration of building materials and artworks in the ‘Santa Maria della Stella’ chuch, Saluzzo (Italy): Causes of decay and possible remedies. Stud. Conserv. 2017, 62, 474–493. [Google Scholar] [CrossRef]
- Yu, W.; Yang, L.; Zhao, J.; Luo, H. Study on the Visualization of Transport and Crystallization of Salt Solution in Simulated Wall Painting. Crystals 2022, 12, 351. [Google Scholar] [CrossRef]
- Prieto-Taboada, N.; Fdez-Ortiz De Vallejuelo, S.; Veneranda, M.; Marcaida, I.; Morillas, H.; Maguregui, M.; Castro, K.; De Carolis, E.; Osanna, M.; Madariaga, J.M. Study of the Soluble Salts Formation in a Recently Restored House of Pompeii by In-Situ Raman Spectroscopy. Sci. Rep. 2018, 8, 1613. [Google Scholar] [CrossRef]
- Bosch-Roig, P.; Lustrato, G.; Zanardini, E.; Ranalli, G. Biocleaning of Cultural Heritage Stone Surfaces and Frescoes: Which Delivery System Can Be the Most Appropriate? Ann. Microbiol. 2015, 65, 1227–1241. [Google Scholar] [CrossRef]
- Kilian, R.; Borgatta, L.; Wendler, E. Investigation of the Deterioration Mechanisms Induced by Moisture and Soluble Salts in the Necropolis of Porta Nocera, Pompeii (Italy). Herit. Sci. 2023, 11, 72. [Google Scholar] [CrossRef]
- Scherer, G.W. Stress from Crystallization of Salt. Cem. Concr. Res. 2004, 34, 1613–1624. [Google Scholar] [CrossRef]
- Maguregui, M.; Knuutinen, U.; Martínez-Arkarazo, I.; Giakoumaki, A.; Castro, K.; Madariaga, J.M. Field Raman Analysis to Diagnose the Conservation State of Excavated Walls and Wall Paintings in the Archaeological Site of Pompeii (Italy). J. Raman Spectrosc. 2012, 43, 1747–1753. [Google Scholar] [CrossRef]
- Arnold, A.; Zehnder, K. Monitoring Wall Paintings Affected by Soluble Salts. In The Conservation of Wall Paintings; Proceedings of a Symposium Organized by the Courtauld Institute of Art and the Getty Conservation Institute, London, July 13–16 1987; Getty Conservation Institute: Los Angeles, CA, USA, 1991; pp. 103–135. ISBN 0-89236-162-X. [Google Scholar]
- Correns, C.W. Growth and diffusion of crystals under linear pressure. Faraday Discuss. 1949, 5, 267. [Google Scholar] [CrossRef]
- Winkler, E.M.; Wilhelm, E.J. Salt burst by hydration pressures in architectural stone in urban atmosphere. GSA Bull. 1970, 81, 567–572. [Google Scholar] [CrossRef]
- Everett, D.H. The thermodynamics of frost damage to porous solids. Trans. Faraday Soc. 1961, 57, 1541. [Google Scholar] [CrossRef]
- Vahur, S.; Teearu, A.; Peets, P.; Joosu, L.; Leito, I. ATR-FT-IR Spectral Collection of Conservation Materials in the Extended Region of 4000–80 °C m–1. Anal. Bioanal. Chem. 2016, 408, 3373–3379. [Google Scholar] [CrossRef]
- Rovella, N.; Aly, N.; Comite, V.; Ruffolo, S.A.; Ricca, M.; Fermo, P.; de Buergo, M.A.; Russa, M.F. La A Methodological Approach to Define the State of Conservation of the Stone Materials Used in the Cairo Historical Heritage (Egypt). Archaeol. Anthr. Sci. 2020, 12, 178. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Chervonnyi, A.D. Infrared Spectroscopy of Minerals and Related Compounds; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Modestou, S.; Theodoridou, M.; Ioannou, I. Micro-Destructive Mapping of the Salt Crystallization Front in Limestone. Eng. Geol. 2015, 193, 337–347. [Google Scholar] [CrossRef]
- Charola, A.E.; Wendler, E. An Overview of the Water-Porous Building Materials Interactions. Restor. Build. Monum. 2016, 21, 55–65. [Google Scholar] [CrossRef]
- Charola, A.E.; Pühringer, J.; Steiger, M. Gypsum: A Review of Its Role in the Deterioration of Building Materials. Environ. Geol. 2007, 52, 339–352. [Google Scholar] [CrossRef]
- Chwast, J.; Todorović, J.; Janssen, H.; Elsen, J. Gypsum Efflorescence on Clay Brick Masonry: Field Survey and Literature Study. Constr. Build. Mater. 2015, 85, 57–64. [Google Scholar] [CrossRef]
- Ju, X.; Feng, W.; Zhang, Y.; Zhao, H. Stress from Crystllization in Ideal Pores. Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock. Mech. Eng. 2016, 35, 2787–2794. [Google Scholar] [CrossRef]
- Steiger, M. Distribution of salt mixtures in a sandstone monument: Sources, transport and crystallization properties. In European Commission Research Workshop: Origin, Mechanisms and Effects of Salts on Degradation of Monuments in Marine and Continental Environments. Protection and Conservation of the European Cultural Heritage. Research Report n° 4; European Commission Research Workshop: Bari, Italy, 1996; pp. 241–246. [Google Scholar]
Sampling Area | Sample ID | Description | Type of Sample |
---|---|---|---|
A | SG_6 | Original area (pictorial layer and plaster) affected by detachments and fractures, with efflorescence. | Powders and fragments |
SG_7 | Integration area affected by partial detachment of the pictorial film. Exfoliations can be observed due to the presence of saline efflorescence. | Powders | |
SG_8 | Original area (dark yellow pictorial layer and plaster), detached, affected by saline efflorescence, not cohesive, and fragile. | Powders and fragments | |
C | SG_4 | Integration area with yellow-brown pictorial finishing, affected by detachments and exfoliations—presence of salt efflorescence. | Powders and fragments |
SG_5 | Original area (pictorial layer and plaster) affected by detachments and fractures. | Fragments of various dimensions | |
SG_29 | Saline efflorescence selectively retrieved from the surface. | Powders and plaster residues | |
D | SG_3 | Integration area without pictorial finishing and affected by detachment and exfoliation—presence of salt efflorescence. | Powders |
E | SG_1 | Black paint layer and plaster layer; area affected by substrate detachment and efflorescence. | Fragments of various dimensions |
SG_2 | Plaster layer; area affected by complete detachment of the pictorial film and efflorescence. | Powders (sampled up to 1 cm from the surface) | |
Vault, summit | SG_37A | Grey pictorial layer on degraded plaster, retrieved from degraded area with detachments of the superficial layers. | Powders and fragments |
Vault, summit | SG_41B | Purple pictorial layer on degraded plaster, retrieved from degraded area with detachments of the superficial layers. | Powders and fragments |
Cations | Anions | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sampling Area | Samples ID | Sodium | Ammonium | Potassium | Magnesium | Calcium | Chloride | Nitrate | Sulphate |
A | SG_6 | 5.98 | n.d. | 1.32 | 2.08 | 326.23 | 7.78 | 65.21 | 730.11 |
SG_7 | 2.01 | 0.17 | 0.35 | 0.93 | 350.20 | 3.13 | 24.84 | 843.13 | |
SG_8 | 3.93 | 0.40 | 2.86 | 1.67 | 58.32 | 7.02 | 23.09 | 16.68 | |
C | SG_4 | 1.05 | 1.09 | n.d. | 0.67 | 369.36 | 1.36 | 14.15 | 922.52 |
SG_5 | 1.83 | n.d. | 0.53 | 2.22 | 97.77 | 2.76 | 16.91 | 123.47 | |
SG_29 | 1.94 | n.d. | 1.01 | n.d. | 121.07 | 1.62 | 10.05 | 284.24 | |
D | SG_3 | 2.54 | n.d. | n.d. | 0.71 | 483.05 | 4.15 | 6.12 | 1256.41 |
E | SG_1 | 9.02 | 0.48 | 6.34 | 6.11 | 601.09 | 9.12 | 198.78 | 1475.08 |
SG_2 | 5.22 | 0.40 | 2.51 | 2.83 | 68.80 | 10.71 | 74.89 | 12.14 | |
Vault summit | SG_37A | 3.13 | 2.20 | 8.90 | n.d. | 3.86 | 4.01 | 14.20 | 27.56 |
SG_41B | 2.37 | 1.11 | 0.44 | 2.58 | 60.84 | 5.06 | 11.86 | 26.72 |
Sampling Area | Samples ID | Silicates | Carbonates | Sulphates (Gypsum) |
---|---|---|---|---|
A | SG_6 | 1412, 872 | 3523, 3400, 1683, 1620, 1109, 667, 598, 420 | |
SG_7 | 3522, 3400, 1683, 1620, 1107, 667, 597, 418 | |||
SG_8 | 1012, 777, 459 | 1405, 872, 712 | ||
C | SG_4 | 1426, 873 | 3525, 3401, 1683, 1620, 1110, 668, 598, 419 | |
SG_5 | 1421, 873 | 3535, 3401, 1683, 1620, 1109, 668, 599, 454 | ||
SG_29 | 1413, 872 | 3235, 1643, 1110, 598 | ||
D | SG_3 | 1429, 874 | 3517, 3400, 1683, 1619, 1105, 667, 597, 418 | |
E | SG_1 | 1410, 872, 712 | 3522, 3400, 1683, 1620, 1108, 667, 597, 418 | |
SG_2 | 1011, 777, 458 | 1407, 872, 711 | ||
Vault summit | SG_37A | 1005, 778, 459 | 1411, 873, 712 | |
SG_41B | 1007, 777, 460 | 1410, 872, 712 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comite, V.; Bergomi, A.; Lombardi, C.A.; Borelli, M.; Fermo, P. Characterization of Soluble Salts on the Frescoes by Saturnino Gatti in the Church of San Panfilo in Villagrande di Tornimparte (L’Aquila). Appl. Sci. 2023, 13, 6623. https://doi.org/10.3390/app13116623
Comite V, Bergomi A, Lombardi CA, Borelli M, Fermo P. Characterization of Soluble Salts on the Frescoes by Saturnino Gatti in the Church of San Panfilo in Villagrande di Tornimparte (L’Aquila). Applied Sciences. 2023; 13(11):6623. https://doi.org/10.3390/app13116623
Chicago/Turabian StyleComite, Valeria, Andrea Bergomi, Chiara Andrea Lombardi, Mattia Borelli, and Paola Fermo. 2023. "Characterization of Soluble Salts on the Frescoes by Saturnino Gatti in the Church of San Panfilo in Villagrande di Tornimparte (L’Aquila)" Applied Sciences 13, no. 11: 6623. https://doi.org/10.3390/app13116623
APA StyleComite, V., Bergomi, A., Lombardi, C. A., Borelli, M., & Fermo, P. (2023). Characterization of Soluble Salts on the Frescoes by Saturnino Gatti in the Church of San Panfilo in Villagrande di Tornimparte (L’Aquila). Applied Sciences, 13(11), 6623. https://doi.org/10.3390/app13116623