Changes in Countermovement Jump Height in Elite Volleyball Players in Two Competitive Seasons: Consideration on the Technique of Execution of the Jump
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Warm-Up
2.4. Testing Sessions
2.5. Jumping Measurements
2.6. Subjective Monitoring
2.7. Statistical Analysis
3. Results
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saw, A.E.; Main, L.C.; Gastin, P.B. Monitoring the athlete training response:subjective self-reported measures trump commonly used objective measures: A systematic review. Br. J. Sports Med. 2016, 50, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Alba-Jiménez, C.; Moreno-Doutres, D.; Peña, J. Trends Assessing Neuromuscular Fatigue in Team Sports: A Narrative Review. Sports 2022, 10, 33. [Google Scholar] [CrossRef]
- Jones, C.M.; Griffiths, P.C.; Mellalieu, S.D. Training Load and Fatigue Marker Associations with Injury and Illness: A Systematic Review of Longitudinal Studies. Sports Med. 2017, 47, 943–974. [Google Scholar] [CrossRef] [PubMed]
- McLelan, C.P.; Lovell, D.I.; Gass, G.C. Creatine kinase and endocrine responses of elite players pre, during, and post rugby league match play. J. Strength Cond. Res. 2010, 24, 2908–2919. [Google Scholar] [CrossRef] [PubMed]
- McLean, B.D.; Coutts, A.J.; Kelly, V.; McGuigan, M.R.; Cormack, S.J. Neuromuscular, Endocrine, and Perceptual Fatigue Responses During Different Length Between-Match Microcycles in Professional Rugby League Players. Int. J. Sports Physiol. Perform. 2010, 5, 367–383. [Google Scholar] [CrossRef]
- Marcora, S.M.; Staiano, W.; Manning, V. Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 2009, 106, 857–864. [Google Scholar] [CrossRef]
- Nässi, A.; Ferrauti, A.; Meyer, T.; Pfeiffer, M.; Kellmann, M. Psychological tools used for monitoring training responses for athletes. Perform. Enhanc. Health 2017, 5, 125–133. [Google Scholar] [CrossRef]
- Thorpe, R.T.; Atkinson, G.; Drust, B.; Gregson, W. Monitoring Fatigue Status in Elite Team-Sport Athletes: Implications for Practice. Int. J. Sports Physiol. Perform. 2017, 12, 227–234. [Google Scholar] [CrossRef]
- Hägglund, M.; Waldén, M.; Magnusson, H.; Kristenson, K.; Bengtsson, H.; Ekstrand, J. Injuries affect team performance negatively in professional football: An 11-year follow-up of the UEFA Champions Leaguinjury study. Br. J. Sports Med. 2013, 47, 738–742. [Google Scholar] [CrossRef]
- Thornton, H.R.; Delaney, J.A.; Duthie, G.M.; Dascombe, B.J. Developing Athlete Monitoring Systems in Team Sports: Data Analysis and Visualization. Int. J. Sports Physiol. Perform. 2019, 14, 698–705. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring Athlete Training Loads: Consensus Statement. Int. J. Sports Physiol. Perform. 2017, 12, 2161–2170. [Google Scholar] [CrossRef] [PubMed]
- Coyne, J.O.C.; Haff, G.G.; Coutts, A.J.; Newton, R.U.; Nimphius, S. The Current State of Subjective Training Load Monitoring—A Practical Perspective and Call to Action. Sports Med. Open 2018, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Montull, L.; Slapšinskaitė-Dackevičienė, A.; Kiely, J.; Hristovski, R.; Balagué, N. Integrative Proposals of Sports Monitoring: Subjective Outperforms Objective Monitoring. Sports Med. Open 2022, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, L.; Gouveia, E.R.; Sarmento, H.; Ihle, A.; Ribeiro, T.D.; Henriques, J.; Martins, F.; França, C.; Ferreira, R.M.; Fernandes, L.; et al. Relationship between Objective and Subjective Fatigue Monitoring Tests in Professional Soccer. Int. J. Environ. Res. Public Health 2023, 20, 1539. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.L.; Chapman, D.W.; Cronin, J.; Newton, M.J.; Gill, N.D. Fatigue Monitoring in High Performance Sport: A Survey of Current Trends. J. Aust. Strength Cond. 2012, 20, 12–23. [Google Scholar]
- Beere, M.; Jeffreys, I. Physical testing and monitoring practices in elite male football. Prof. Strength Cond. 2021, 62, 29–42. [Google Scholar]
- Asimakidis, N.D.; Bishop, C.J.; Beato, M.; Mukandi, I.N.; Kelly, A.L.; Weldon, A.; Turner, A.N. A survey into the current fitness testing practices of elite male soccer practitioners: From assessment to communicating results. Front. Physiol. 2024, 15, 1376047. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and Factorial Validity of Squat and Countermovement Jump Tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Gathercole, R.J.; Sporer, B.C.; Stellingwerff, T.; Sleivert, G.G. Comparison of the Capacity of Different Jump and Sprint Field Tests to Detect Neuromuscular Fatigue. J. Strength Cond. Res. 2015, 29, 2522–2531. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.; Spiteri, T.; Piggott, B.; Bonhotal, J.; Haff, G.G.; Joyce, C. Monitoring and Managing Fatigue in Basketball. Sports 2018, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Garrett, J.; Graham, S.R.; Eston, R.G.; Burgess, D.J.; Garrett, L.J.; Jakeman, J.; Norton, K. A Novel Method of Assessment for Monitoring Neuromuscular Fatigue within Australian Rules Football Players. Int. J. Sports Physiol. Perform. 2019, 14, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pinillos, F.; Ramirez-Campillo, R.; Boullosa, D.; Jiménez-Reyes, P.; Latorre-Román, P.A. Vertical Jumping as a Monitoring Tool in Endurance Runners: A Brief Review. J. Hum. Kinet. 2021, 80, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Tomasevich, C.L.; Woldstad, J.C.; Jones, D.D. Risk of injury analysis in depth jump and squat jump. J. Hum. Sport Exerc. 2022, 17, 761–781. [Google Scholar] [CrossRef]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Current Testing Procedures. Front. Physiol. 2019, 10, 450076. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.R.; Cormack, S.J.; Gill, N.D. Strength and Power Profiling of Athletes: Selecting Tests and How to Use the Information for Program Design. Strength Cond. J. 2013, 35, 7–14. [Google Scholar] [CrossRef]
- Weakley, J.; Black, G.; Mclaren, S.; Scantlebury, S.; Suchomel, T.J.; McHanon, E.; Watts, D.; Read, D. Testing and Profiling Athletes: Recommendations for Test Selection, Implementation, and Maximizing Information. Strength Cond. J. 2024, 46, 159–172. [Google Scholar] [CrossRef]
- Hopkins, W. How to interpret changes in an athletic performance test. Sportscience 2004, 8, 1–7. [Google Scholar]
- Linthorne, N.P. Analysis of Standing Vertical Jumps Using a Force Platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef]
- Anicic, Z.; Janicijevic, D.; Knezevic, O.M.; Garcia-Ramos, A.; Petrovic, M.R.; Cabarkapa, D.; Mirkov, D.M. Assessment of Countermovement Jump: What Should We Report? Life 2023, 13, 190. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impelizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Borges, N.G., Jr.; Borges, L.; Dias, J.A.; Wentz, M.D.; Mattos, D.; Petry, R.; Domenech, S.C. Validity of a new contact mat system for evaluating vertical jump. Mot. Rev. Educ. Física 2011, 17, 26–32. [Google Scholar] [CrossRef]
- Ortega, J.P.; Garcia, J.; Ibáñez, S.J. Validity and reliability of the WIMU inertial device for the assessment of the vertical jump. PeerJ. 2018, 6, e4709. [Google Scholar] [CrossRef] [PubMed]
- Gençoğlu, C.; Ulupınar, S.; Özbay, S.; Turan, M.; Savaş, B.C.; Asan, S.; İnce, I. Validity and reliability of “My Jump app” to assess vertical jump performance: A meta-analytic review. Sci. Rep. 2023, 13, 20137. [Google Scholar] [CrossRef] [PubMed]
- Soler-Lopéz, A.; Garcia-de-Alcaraz, A.; Moreno-Villanueva, A.; Pino-Ortega, J. Concurrent Validity and Reliability of Devices to Measure Jump Height in Men’s Handball Players. Sensors 2022, 22, 9070. [Google Scholar] [CrossRef] [PubMed]
- Debien, P.; Mancini, M.; Coimbra, D.R.; de Freitas, D.G.S.; Miranda, R.; Filho, M.G.B. Monitoring Training Load, Recovery, and Performance of Brazilian Professional Volleyball Players During a Season. Int. J. Sports Physiol. Perform. 2018, 13, 1182–1189. [Google Scholar] [CrossRef]
- de Pedro-Muñez, A.; Álvarez-Yates, T.; Serrano-Gómez, V.; Garcia-Garcia, O. Intraseason Changes in Vertical Jumps of Male Professional Basketball Players. Int. J. Environ. Res. Public Health. 2023, 20, 5030. [Google Scholar] [CrossRef]
- Murr, S.; Aldred, M.; Games, J. Monitoring Countermovement Jump Performance for Division I Basketball Players over the Competitive Season. Am. J. Sports. Sci. 2023, 11, 33–40. [Google Scholar] [CrossRef]
- Pueo, B.; Jimenez-Olmedo, J.M.; Lipińska, P.; Buśko, K.; Penichet-Tomas, A. Concurrent validity and reliability of proprietary and open-source jump mat systems for the assessment of vertical jumps in sport sciences. Acta Bioeng. Biomech. 2018, 20, 51–57. [Google Scholar] [CrossRef]
- Pueo, B.; Penichet-Tomas, A.; Jimenez-Olmedo, J.M. Reliability and validity of the Chronojump open-source jump mat system. Biol. Sport 2020, 37, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Villalon, L.; Jimenez-Olmedo, J.M.; Aparicio-Aparicio, I.; Sanchis-Sanchis, R. Reliability of countermovement jump estimation using the Chronojump jump mat: Intra-session and within-session. J. Physic. Educ. Sport 2024, 24, 133–140. [Google Scholar] [CrossRef]
- Kremer, D.E.; Stanford, L.; Lucas, J. The effects of an extrinsic motivator on vertical jump height. Int. J. Exerc. Sci. Conf. Proc. 2022, 16, 323. [Google Scholar]
- Barte, J.C.M.; Nieuwenhuys, A.; Geurts, S.A.E.; Kompier, M.A.J. Motivation counteracts fatigue-induced performance decrements in soccer passing performance. J. Sports Sci. 2019, 37, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength. Cond. Res. 2001, 15, 109–115. [Google Scholar] [CrossRef]
- Comyns, T.; Flanagan, E.P. Applications of the Session Rating of Perceived Exertion System in Professional Rugby Union. Strength Cond. J. 2013, 35, 78–85. [Google Scholar] [CrossRef]
- Sawczuk, T. Training Loads and Player Wellness in Youth Sport: Implications for Illness. Ph.D. Thesis, Leeds Beckett University, Leeds, UK, September 2019. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Elsevier Science: New York, NY, USA, 2013. [Google Scholar]
- Kozinc, Ž.; Pleša, J. Discrepancy among Different Methods for Vertical Jump Height Determination and Its Implications for Field-Based Testing: A Narrative Review. Meas. Phys. Educ. Exerc. Sci. 2022, 27, 248–256. [Google Scholar] [CrossRef]
- Kenny, I.C.; Cairealláin, A.O.; Comyns, T.M. Validation of an Electronic Jump Mat to Assess Stretch-Shortening Cycle Function. J. Strength Cond. Res. 2012, 26, 1601–1608. [Google Scholar] [CrossRef]
- Whitmer, T.D.; Fry, A.C.; Forsythe, C.M.; Andre, M.J.; Lane, M.T.; Hudy, A.; Honnold, D.E. Accuracy of a Vertical Jump Contact Mat for Determining Jump Height and Flight Time. J. Strength Cond. Res. 2015, 29, 877–881. [Google Scholar] [CrossRef]
- Teramoto, M.; Cross, C.L.; Willick, S.E. Predictive value of national football league scouting combine on future performance of running backs and wide receivers. J. Strength Cond. Res. 2016, 30, 1379–1390. [Google Scholar] [CrossRef] [PubMed]
- Savoie, F.-A.; Kenefick, R.W.; Ely, B.R.; Cheuvront, S.N.; Goulet, E.D.B. Effect of Hypohydration on Muscle Endurance, Strength, Anaerobic Power and Capacity and Vertical Jumping Ability: A Meta-Analysis. Sports Med. 2015, 45, 1207–1227. [Google Scholar] [CrossRef] [PubMed]
- Judge, L.W.; Bellar, D.M.; Popp, J.K.; Craig, B.W.; Schoeff, M.A.; Hoover, D.L.; Fox, B.; Kistler, B.M.; Al-Nawaiseh, A.M. Hydration to Maximize Performance and Recovery: Knowledge, Attitudes, and Behaviors among Collegiate Track and Field Throwers. J. Hum. Kinet. 2021, 79, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.D.; Charest, J. Sleep and Performance in Professional Athletes. Curr. Sleep Med. Rep. 2023, 9, 56–81. [Google Scholar] [CrossRef]
- Mah, C.D.; Sparks, A.J.; Samaan, M.A.; Souza, R.B.; Luke, A. Sleep Restriction Impairs Maximal Jump Performance and Alters Lower Extremity Joint Coordination Variability in Elite Athletes. J. Sports Sci. 2019, 37, 1981–1988. [Google Scholar] [CrossRef]
No. | Competitive Season 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
August | October | November | December | January | February | March | April | x | |
1 | 79.4 | 81.9 | 82.6 | 83.8 | 82.5 | 81.9 | 83.5 | 82.2 | 82.2 |
2 | 82.2 | 82.7 | 80.4 | 80.2 | 78.2 | 79.8 | 79.8 | 80.5 | 80.5 |
3 | 65.7 | 66.2 | 65.7 | 65.5 | 66.3 | 64.8 | 65.5 | 65.7 | 65.7 |
4 | 82.7 | 83.6 | 83.2 | 82.3 | 82.8 | 83.2 | 83.0 | 83.0 | |
5 | 80.9 | 82 | 82.8 | 81.5 | 81.5 | 82.5 | 80.9 | 81.7 | 81.7 |
6 | 86 | 85 | 86.9 | 86.8 | 87.6 | 85.5 | 86.3 | 86.3 | |
7 | 83.2 | 83.3 | 83.2 | 83.3 | 85.2 | 85.8 | 83.9 | 84.0 | 84.0 |
8 | 95.9 | 95.3 | 94.3 | 97 | 95 | 93.4 | 93.3 | 94.9 | 94.9 |
9 | 90.3 | 90 | 91.4 | 92.8 | 91.3 | 92.9 | 92.8 | 91.6 | 91.6 |
x | 82.9 | 83.1 | 83.2 | 83.7 | 83.3 | 83.6 | 83.2 | 83.3 | 83.3 |
SD | 8.3 | 8.3 | 8.0 | 8.8 | 8.2 | 9.1 | 8.1 | 8.2 | 8.4 |
No. | Competitive Season 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
August | October | November | December | January | February | March | April | x | |
1 | 80.9 | 79.3 | 80.7 | 79.3 | 79 | 80.2 | 80 | 79.9 | 79.9 |
2 | 81.6 | 78.7 | 77.5 | 77 | 76 | 75.7 | 77.6 | 77.7 | 77.7 |
3 | 66 | 66 | 65.2 | 66 | 65.3 | 66 | 65.6 | 65.7 | 65.7 |
4 | 86.1 | 84.6 | 84 | 82 | 82.7 | 84.3 | 86.3 | 84.3 | 84.3 |
5 | 82.8 | 81.2 | 82.6 | 82.7 | 82.7 | 85.5 | 86 | 83.4 | 83.4 |
6 | 86.7 | 87.7 | 89.1 | 88.6 | 87.9 | 88.3 | 88.8 | 88.2 | 88.2 |
7 | 81.3 | 81.5 | 82.3 | 81.5 | 82.9 | 82.5 | 82.0 | 82.0 | |
8 | 92.7 | 92.7 | 92.8 | 90.5 | 91.2 | 90.6 | 92.5 | 91.9 | 91.9 |
9 | 93.9 | 94.7 | 95.3 | 92.2 | 90.9 | 90.7 | 93.3 | 93 | 93.0 |
x | 83.6 | 82.9 | 83.3 | 82.2 | 82.1 | 82.6 | 83.8 | 82.9 | 82.9 |
SD | 8.2 | 8.5 | 8.9 | 8.0 | 8.1 | 7.9 | 9.2 | 8.2 | 8.4 |
Morning Readiness Chart |
---|
3—injured/illness, not able to participate in any type of training |
4—extremely fatigued, serious muscle or joint soreness, not able to fully participate in training, requirement of different type of training or recovery day |
5—very fatigued, moderate muscle or joint soreness, ready to participate in training but some training adjustments may be needed |
6—slightly fatigued, small muscle or joint soreness, ready to fully participate in training |
7—feeling well, possible small muscle or joint soreness, ready to fully participate in training |
8—feeling very well, no sign of muscle or joint soreness, ready to fully participate in training |
9—fully rested, no sign of muscle or joint soreness, ready to fully participate in training |
10—fully recovered, no sign of any fatigue or soreness |
Season | Number of Jumps | JH (cm) Mean ± SD | p | Cohen’s d |
---|---|---|---|---|
All the jumps | ||||
S1 | 540 | 46.7 ± 3.5 | 0.01 | 0.55 |
S2 | 468 | 44.8 ± 3.3 | ||
Daily higher jumps | ||||
S1 | 270 | 47.5 ± 3.6 | 0.01 | 0.6 |
S2 | 234 | 45.4 ± 3.4 |
No. | Number of Jumps in S1 | Number of Jumps in S2 | Mean JH in S1 | Mean JH in S2 | Change in % | SD of JH in S1 | SD of JH in S2 | Change in % |
---|---|---|---|---|---|---|---|---|
1 | 66 | 38 | 42.6 | 40.3 | −5.4 | 2.11 | 1.16 | −45 |
2 | 66 | 52 | 42 | 40.4 | −3.8 | 2.46 | 2.14 | −13 |
3 | 66 | 58 | 49 | 46 | −6.1 | 2.56 | 1.07 | −58.2 |
4 | 70 | 58 | 51.8 | 49.4 | −4.6 | 1.94 | 1.39 | −28.4 |
5 | 68 | 54 | 45.4 | 43.6 | −4 | 1.77 | 1.58 | −10.7 |
6 | 42 | 56 | 50.8 | 47.8 | −5.9 | 1.75 | 1.08 | −38.3 |
7 | 46 | 54 | 47.5 | 44.7 | −5.9 | 1.61 | 1.43 | −11.2 |
8 | 64 | 48 | 43.6 | 42.5 | −2.5 | 2.1 | 1.11 | −47.1 |
9 | 52 | 50 | 47.6 | 48.2 | 1.3 | 2.15 | 1.88 | −12.6 |
x | 60 | 52.0 | 46.7 | 44.8 | −4.1 | 2.05 | 1.43 | −30.4 |
SD | 10.4 | 6.2 | 3.5 | 3.3 | 0.32 | 0.38 |
No. | Number of Jumps in S1 | Number of Jumps in S2 | Mean JH in S1 | Mean JH in S2 | Change in % | SD of JH in S1 | SD of JH in S2 | Change in % |
---|---|---|---|---|---|---|---|---|
1 | 33 | 19 | 43.6 | 40.8 | −6.4 | 2.24 | 1.4 | −37.5 |
2 | 33 | 26 | 42.5 | 41 | −3.5 | 2.7 | 2.2 | −18.5 |
3 | 33 | 29 | 50.1 | 46.7 | −6.8 | 2.63 | 1.2 | −54.4 |
4 | 35 | 29 | 52.6 | 50.3 | −4.4 | 2.12 | 1.4 | −34 |
5 | 34 | 27 | 45.8 | 44.2 | −3.5 | 2.04 | 1.8 | −11.8 |
6 | 21 | 28 | 51.5 | 48.6 | −5.6 | 1.73 | 1.3 | −24.9 |
7 | 23 | 27 | 48.7 | 45.3 | −7 | 2.16 | 1.6 | −25.9 |
8 | 32 | 24 | 44.5 | 43 | −3.4 | 2.1 | 1.29 | −38.6 |
9 | 26 | 25 | 47.9 | 48.7 | 1.7 | 2.55 | 2 | −21.6 |
x | 30 | 26 | 47.5 | 45.4 | −4.4 | 2.25 | 1.58 | −30 |
SD | 5.2 | 3.1 | 3.6 | 3.4 | 0.32 | 0.35 |
No. | Mean Individual Result of Subjective Monitoring in S1 | Standard Deviation of Individual Result of Subjective Monitoring in S1 | Mean Individual Result of Subjective Monitoring in S2 | Standard Deviation of Individual Result of Subjective Monitoring in S2 |
---|---|---|---|---|
1 | 6.32 | 0.61 | 6.71 | 0.51 |
2 | 6.82 | 0.58 | 6.6 | 0.57 |
3 | 7.11 | 0.68 | 7.07 | 0.68 |
4 | 6.58 | 0.57 | 6.63 | 0.63 |
5 | 6.59 | 0.74 | 6.8 | 0.76 |
6 | 6.44 | 0.69 | 6.65 | 0.6 |
7 | 6.63 | 0.74 | 6.7 | 0.69 |
8 | 6.56 | 0.42 | 6.52 | 0.44 |
9 | 6.38 | 0.49 | 6.56 | 0.64 |
x | 6.60 | 0.61 | 6.69 | 0.61 |
SD | 0.24 | 0.11 | 0.16 | 0.10 |
p | 0.173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masel, S.; Maciejczyk, M. Changes in Countermovement Jump Height in Elite Volleyball Players in Two Competitive Seasons: Consideration on the Technique of Execution of the Jump. Appl. Sci. 2024, 14, 4463. https://doi.org/10.3390/app14114463
Masel S, Maciejczyk M. Changes in Countermovement Jump Height in Elite Volleyball Players in Two Competitive Seasons: Consideration on the Technique of Execution of the Jump. Applied Sciences. 2024; 14(11):4463. https://doi.org/10.3390/app14114463
Chicago/Turabian StyleMasel, Sebastian, and Marcin Maciejczyk. 2024. "Changes in Countermovement Jump Height in Elite Volleyball Players in Two Competitive Seasons: Consideration on the Technique of Execution of the Jump" Applied Sciences 14, no. 11: 4463. https://doi.org/10.3390/app14114463
APA StyleMasel, S., & Maciejczyk, M. (2024). Changes in Countermovement Jump Height in Elite Volleyball Players in Two Competitive Seasons: Consideration on the Technique of Execution of the Jump. Applied Sciences, 14(11), 4463. https://doi.org/10.3390/app14114463