Next Article in Journal
Towards the Development of an Integrative, Evidence-Based Suite of Indicators for the Prediction of Outcome Following Mild Traumatic Brain Injury: Results from a Pilot Study
Next Article in Special Issue
Electrophysiological Differentiation of the Effects of Stress and Accent on Lexical Integration in Highly Fluent Bilinguals
Previous Article in Journal
Audiohaptic Feedback Enhances Motor Performance in a Low-Fidelity Simulated Drilling Task
Previous Article in Special Issue
On the Nature of the Word-Reduction Phenomenon: The Contribution of Bilingualism
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Role of Orthotactics in Language Switching: An ERP Investigation Using Masked Language Priming

by
Aina Casaponsa
1,*,
Guillaume Thierry
2 and
Jon Andoni Duñabeitia
3,4
1
Department of Linguistics and English Language, Lancaster University, Lancaster LA1 4YL, UK
2
School of Psychology, Bangor University, Bangor LL57 2AS, UK
3
Centro de Ciencia Cognitiva C3, Universidad Nebrija, 28015 Madrid, Spain
4
Department of Language and Culture, The Arctic University of Norway, 9019 Tromsø, Norway
*
Author to whom correspondence should be addressed.
Brain Sci. 2020, 10(1), 22; https://doi.org/10.3390/brainsci10010022
Submission received: 29 November 2019 / Revised: 20 December 2019 / Accepted: 28 December 2019 / Published: 31 December 2019
(This article belongs to the Special Issue Cognitive Neuroscience of Cross-Language Interaction in Bilinguals)

Abstract

:
It is commonly accepted that bilinguals access lexical representations from their two languages during language comprehension, even when they operate in a single language context. Language detection mechanisms are, thus, hypothesized to operate after the stage of lexical access during visual word recognition. However, recent studies showed reduced cross-language activation when sub-lexical properties of words are specific to one of the bilingual’s two languages, hinting at the fact that language selection may start before the stage of lexical access. Here, we tested highly fluent Spanish–Basque and Spanish–English bilinguals in a masked language priming paradigm in which first language (L1) target words are primed by unconsciously perceived L1 or second language (L2) words. Critically, L2 primes were either orthotactically legal or illegal in L1. Results showed automatic language detection effects only for orthotactically marked L2 primes and within the timeframe of the N250, an index of sub-lexical-to-lexical integration. Marked L2 primes also affected the processing of L1 targets at the stage of conceptual processing, but only in bilinguals whose languages are transparent. We conclude that automatic and unconscious language detection mechanisms can operate at sub-lexical levels of processing. In the absence of sub-lexical language cues, unconsciously perceived primes in the irrelevant language might not automatically trigger post-lexical language identification, thereby resulting in the lack of observable language switching effects.

1. Introduction

Visual word recognition is an interactive, complex, and orchestrated process where different (sub)lexical units compete for selection, modulating the speed and accuracy with which we are able to efficiently access meaning. In bilinguals, the process of recognizing a given word also entails cross-language competition and selection mechanisms [1,2,3] To efficiently map lexical forms onto semantic representations, bilinguals may need to select the language in which the word is written, a process also known as language tagging. For instance, the word pie does not have the same meaning for a native speaker of English and a native speaker of Spanish (pie means “foot” in Spanish). In this case, Spanish–English bilinguals might need to select the language to which the word belongs in order to disambiguate between the two meanings and the correct phonological representations.
Understanding the mechanisms involved in language detection is the key to disentangling whether bilingual word processing is language-selective or not. It is now commonly accepted that, when bilinguals encounter words in an ambiguous language context (e.g., a sign on the street in a bilingual community), word recognition is characterized by parallel access to representations of both their languages, and that language detection mechanisms intervene only at a post-lexical processing stage (see the Bilingual Interactive Activation + model, BIA+, proposed by Dijkstra and van Heuven, [4]). Indeed, there is extensive empirical evidence showing that lexical representations of the two languages compete for selection in the bilingual brain (e.g., References [5,6,7,8,9,10,11,12]), where both languages are co-activated during comprehension, even when bilinguals find themselves in a single language context (e.g., References [1,3,5,13,14,15,16,17,18,19,20,21,22,23,24]), and where language information is accessed after the activation of lexical representations (e.g., References [4,11,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]). It is, therefore, suggested that language identification either relates to top-down modulations from language nodes feeding information back to lexical units [30] or to the operation of a task decision system directly receiving information from the language nodes during word identification [4]. In either case, an English–Spanish bilingual would recognize that the word happy, for instance, is a word of English once its (complete) lexical representation is activated.
However, even in ambiguous language contexts, salient visual characteristics of words can afford language identity information before lexical access takes place. When bilinguals encounter words from different scripts, for example, specific features of letters can already trigger language identity resolution. In same-script bilinguals, language identity information can be visually extracted from single graphemes or sub-lexical orthographic patterns (i.e., orthotactics). The word happy, for instance, cannot be Spanish because the bigram “pp” does not exist in the Spanish vocabulary. Van Kesteren et al. [31] proposed an extension of the BIA+ model enabling the resolution of language identity at pre-lexical stages of processing. According to the authors, language-specific sub-lexical or feature-level information can be read out by sub-lexical language nodes susceptible to feeding information to the task decision system. Thus, the BIA+ extended model predicts that pre-lexical language-specific information can speed up language attribution, without affecting cross-language lexical activation. However, although the BIA+ extended model effectively accounts for the mechanisms by which word forms are associated with a given language at a pre-lexical stage of processing, it does not account for language-selective effects arising within an integrated lexicon (e.g., [31,32,33,34,35,36,37,38]).
Recent studies demonstrated that pre-lexical language-specific cues can trigger language selective access and/or reduce cross-language lexical activation. At the feature level, Dubey et al. [38] showed language-selective access for L2 words only when they were incongruent with first language (L1) script. They tested fluent Hindi–English bilinguals in a masked translation priming paradigm. Hindi words could either be presented in the standard Devangari script or in the Roman alphabet. Whilst script differences did not affect L1-to-second language (L2) masked priming translations effects, they did constrain L2-to-L1 translation priming. Hindi–English bilinguals only showed L2-to-L1 priming when L1 targets and primes were in the same script (i.e., the Roman alphabet). These results suggest that bilinguals are highly sensitive to L1 violations and that language-selective mechanisms at the feature level can reduce cross-language lexical activation. Similarly, Oganian et al. [37] showed language-selective effects for same-script bilinguals based on language-specific sub-lexical information. They tested German–English bilinguals in a forced language decision task on pseudowords. Pseudowords could either be marked (i.e., comprise language-specific bigram combinations) or unmarked (i.e., only comprise language-common bigram combinations) at a sub-lexical level but also lexically biased toward one of the two languages (i.e., have more neighbors in one language than the other). Whilst L1-marked pseudowords showed increased inhibitory effects (i.e., slower reaction times) with an increase in L2 neighbors, L2-marked pseudowords did not show any reliable effect of L1 neighborhood density. Both of the abovementioned studies, thus, suggest that fluent bilinguals are highly sensitive to violations of L1 properties at a pre-lexical level and that this can constrain cross-language lexical activation.
Casaponsa and Duñabeitia [33] further reported language-selective effects in a masked translation priming paradigm with same-script bilinguals. Spanish–Basque balanced bilinguals performing a lexical decision task on Spanish words showed a translation priming effect only for Basque-masked primes that were orthotactically legal in Spanish. In an attempt to better characterize the mechanisms underlaying automatic language identification, Casaponsa et al. [35] tested Spanish–Basque bilinguals and Spanish monolinguals in a masked language priming paradigm in combination with event-related potentials (ERPs). Whilst all groups showed automatic language identification effects for unconsciously perceived marked Basque words and within the time frames of the N250 (an index of sub-lexical-to-lexical mapping; see Grainger and Holcomb, [39]) and the N400 (an index of lexical to semantic integration), the bilingual group was blind to masked language switching effects for unmarked Basque primes. These results suggest that sub-lexical language cues can speed up language selection mechanisms (see also References [34,40,41,42]), and that this in turn might affect cross-language lexical activation [23,32,33,43,44,45].
The present study was set out to further characterize automatic language detection processes guided by language-specific sub-lexical information in two groups of bilinguals with different L2. We tested Spanish–Basque and Spanish–English bilinguals in a go/no-go task using a masked language switching paradigm with visual presentation of words in combination with ERPs. Basque and Spanish are orthographically transparent, meaning that they entail a nearly one-to-one correspondence between letters and sounds. In contrast, English is an opaque language and, thus, efficient semantic access relies more on whole-word recognition and activation of phonological representations at a lexical level. Although previous studies investigated the role of script and sub-lexical information in language identification and cross-language activation, little is known about the role of orthotactics in automatic language detection mechanisms and their impact on subsequent orthographic and/or phonological whole-word representations. To investigate the automaticity of language detection mechanisms, we presented bilingual participants with L1 Spanish target words preceded by unconsciously perceived word primes either in L1 Spanish or in their other language (L2 Basque or English). Critically, L2 primes could either be orthographically marked (i.e., contain illegal bigram combinations in L1) or unmarked (i.e., orthographically legal also in L1). Furthermore, and different from our previous study [35], L1 and L2 primes were translation equivalents so that the conceptual distance between primes and targets was controlled across languages. Participants were asked to detect words referring to an animal (go trials, ~10%, not analyzed) so as to make sure that they processed the meaning of L1 words in the analyzed no-go trials. To minimize effects related to conscious language identification mechanisms, all instructions were given in L1, and none of the bilinguals were aware of the presence of L2 stimuli during the session.
According to the dual-route model of language identification proposed by van Kesteren et al. [31], language information at sub-lexical and lexical levels is picked-up by sub-lexical and lexical language nodes, respectively. Language information can then be read out by the task-decision system, without affecting word identification processes. That is, sub-lexical language-specific information should not affect cross-language sub-lexical-to-lexical integration, nor should language detection at the lexical levels affect cross-language lexical activation or lexical–semantic integration. However, our previous results seem to suggest that, whilst lexical language information fails to affect word identification, sub-lexical language information does have an impact on subsequent word processing [35]. Therefore, according to the theoretical time-course of visual word recognition in masked priming paradigms (see Bi-modal Interactive Activation Model, BIAM, [39]), we expected L2 marked primes to elicit a N250 modulation, reflecting the process of mapping sub-lexical information onto word form representations in both groups of bilinguals, that is, whether their L2 is transparent (Basque) or opaque (English). Hence, L2 marked words should automatically activate sub-lexical language nodes and, in line with our previous results [35], this could modulate sub-lexical-to-lexical integration and affect subsequent lexical–semantic integration indexed by N400 effects. However, considering the bi-modal route to semantics (i.e., orthographic or phonological) posited in the BIA+ [4] and the BIAM [39], if orthographic rules selectively constrain orthographic whole-word representations, then Spanish–English bilinguals might show intact lexical–semantic integration for L2 marked words. Furthermore, consistent with previous studies and the prediction of the BIA+ and BIA+ extended models, we did not expect automatic post-lexical language identification effects to emerge (in the N400 range) in an L1 context when unconsciously perceived L2 primes are unmarked (language-common orthography).

2. Experiment 1

2.1. Materials and Methods

2.1.1. Participants

Eighteen right-handed highly proficient Spanish–Basque bilinguals from the Basque Country participated in this experiment (11 women; mean age = 22.2, SD = 4.1). All participants were native Spanish speakers fluent in Basque (Table 1). None of the participants reported neurological or psychiatric disorders, all participants had normal or corrected-to-normal vision, and they participated voluntarily in this experiment in exchange for monetary compensation. Prior to the experimental session, all participants gave their written informed consent in accordance with guidelines approved by the Ethics and Research Committees of the Basque Center on Cognition, Brain, and Language. The study was also performed in accordance with the ethical standards set in the Declaration of Helsinki.

2.1.2. Stimuli

We selected 280 Spanish (L1) words to serve as targets (e.g., casa—“house”), from the Spanish B-Pal database [46]. Primes were either unrelated Basque (L2) words (280 items) or their translations in Spanish (280 items), selected from the E-Hitz database [47] and B-Pal, respectively. None of the prime or target words were cognates in order to avoid confusion between languages. Mean length-corrected Levenshtein distance (cLD) (calculated from the number of deletions, substitutions, and additions between pairs of words divided by the length of the longest word; 1 indicates full overlap between pairs of words, and 0 indicates no orthographic overlap) for marked translation equivalents was 0.13 (SD = 0.11), and mean cLD for unmarked translation equivalents was 0.14 (SD = 0.10). Prime–target combinations were created avoiding semantic and orthographic overlap (i.e., all prime–target word pairs were unrelated), and primes and target were either in the same language (both in L1) or in a different language (primes in L2 and targets in L1). Critically, the L2 Basque prime words were split into two groups: 140 contained bigrams illegal in Spanish, and the other 140 contained bigrams valid in Spanish. Thus, half of the Spanish targets were preceded by either (1) an unrelated Basque word containing bigrams illegal in the L1 (e.g., txakur—“dog”, with the bigram “tx” being an illegal bigram in Spanish), or by (2) the translation equivalent in Spanish of the Basque prime (e.g., perro—“dog”). The other half of the Spanish targets were preceded by either (1) an unrelated Basque word orthographically legal in Spanish (e.g., mendi—“hill”), or by (2) the translation in Spanish of the Basque prime (e.g., monte—“hill”). Stimuli were matched across conditions for word frequency, number of letters, number of orthographic neighbors, age of acquisition, and concreteness (Table 2). Furthermore, we also matched primes and targets for cLD (L1 marked control: mean = 0.14, SD = 0.11; L2 marked: mean = 0.12, SD = 0.10; L1 unmarked control: mean = 0.13, SD = 0.11; L2 unmarked: mean = 0.13, SD = 0.10). Note that the idiosyncratic distributional properties of individual letters and their combinations do not match across languages. Hence, Basque primes had overall lower mean bigram frequency in Spanish than Spanish primes. Importantly, we matched mean bigram frequency across the two critical conditions (marked vs. unmarked). Using a counterbalanced (Latin square) design, we created two lists so that each target word appeared only once in each list, but every time in a different priming condition. This resulted in 70 trials per condition in each list, which served as no-go trials in the semantic categorization task. Participants were randomly assigned to each list. An additional set of 35 animal names in Spanish were selected as go trials (10%), all preceded by unrelated masked primes. We also included a prime visibility test in order to provide an estimate of the level of visibility of the prime stimuli. The same set of animal names was used as masked primes followed by unrelated Spanish targets for the prime visibility test. See Table A1 (Appendix A) for the full set of stimuli used in this experiment.

2.1.3. Procedure

Participants were tested individually in a quiet room. Visual stimuli were presented using Presentation software (Version 4.6, Neurobehavioral systems, Inc., Albany, OR, USA) on a 15” cathode-ray tube (CRT) monitor set to a refresh rate of 60 Hz (which allows for 16.67 ms vertical retraces). Stimuli were displayed at high contrast in white letters on a black background. In each trial, a forward mask consisting of a row of hashmarks (#’s) was presented for 500 ms. Next, the prime was presented in 25 pt lowercase Courier New and stayed on the screen for ~50 ms (three refresh rate cycles). The prime was immediately followed by the presentation of the target stimulus in 25 pt uppercase Courier New. The target remained on the screen for 500 ms. The inter-trial interval varied randomly between 900 and 1100 ms. After this interval, an asterisk was presented for 1000 ms in order to allow for participants’ blinks. Masks, primes, and targets were presented in the center of the screen. In order to ensure participants’ attention whilst passively reading the critical words, a go/no-go semantic categorization task was imposed where the critical stimuli did not require an overt response. Participants were instructed to press the space bar of a keyboard whenever they detected an animal name on the screen. They were not informed of the presence of the primes. Trial presentation order was randomized across participants. Each participant received a total of 20 practice trials (representative of the conditions in the critical trials) prior to the 280 experimental trials. Task instructions (and interactions with the participants) were given in their L1 (Spanish). The experimental session lasted for approximately 20 min (excluding participants’ preparation).

2.1.4. Electroencephalogram (EEG) Recording Procedure

The electroencephalogram was recorded from 27 electrodes (plus ground) held in place on the scalp by an elastic cap (ElectroCap International, Eaton, USA, 10-10 system). Eye movements and blinks were monitored with four further electrodes providing bipolar recordings of the horizontal (Heog−, Heog+) and vertical (Veog−, Veog+) electrooculogram (EOG). Another two electrodes were attached over the right mastoid bone (online reference) and over the left mastoid bone. All EEG electrode impedances were maintained below 5 kΩ (impedance for eye electrodes was less than 10 kΩ). The EEG signal was sampled continuously throughout the experiment at 250 Hz and digitally offline re-referenced to linked mastoids.

2.1.5. Data Analysis

Ocular artefacts were corrected using independent component analysis (ICA). Based on previous literature, the ICA algorithm used was Infomax (gradient) restricted biased. A high-pass filter of 0.01 Hz was applied before the ICA procedure, and a low-pass filter of 30 Hz was applied after ICA. Averaged ERPs time-locked to target onset were computed offline from trials free of ocular and muscular artefacts (85% of the data; rejected trials were equally distributed across conditions). Baseline correction was performed using the averaged EEG activity in the 100 ms preceding the onset of the target stimuli.
ERPs were quantified by taking the mean amplitude of each participant and electrode in three temporal epochs corresponding to two key components: The N250 (covering a time-window between 200 and 300 ms post-target onset) and the N400, represented by an early time-window between 350 and 500 ms (N400s which indexes lexical-semantic integration; see Reference [39]) and a late time-window between 500 and 600 (N400c, which indexes concept-to-concept mapping). These two components of interest correspond with those reported in earlier studies on the same topic using a similar procedure [11,25,26,48,49,50]. ERP mean amplitudes in each time-window were analyzed separately using repeated measures analyses of variance (ANOVAs). Out of the 27 electrodes, 21 were used for the analysis, distinguishing three levels of region comprising seven adjacent electrodes each: anterior (Fp1|Fp2|F7|F3|Fz|F4|F8), central (FC5|FC1|FC2|FC6|C3|Cz|C4|), and posterior (CP5|CP1|CP2|CP6|P3|Pz|P4). Two other factors associated with the design were included in the analyses: language (switch, non-switch) and markedness (marked, unmarked). Greenhouse–Geisser correction was applied for departure from sphericity [51]. Greenhouse–Geisser epsilon value (ε) is provided only when different from 1, indicating a violation of the assumption of sphericity, and the corrected p-value is, therefore, reported. Effect sizes were estimated using the partial eta-squared coefficient η2p [52,53].

2.2. Results

2.2.1. Behavioral Results

Bilingual participants correctly categorized 92.18% (SD = 4.01) of the animal names in Spanish when these words were presented as targets (percentage of false alarms: 0.59%, SD = 0.45; percentage of accuracy in the prime visibility test: 0.47%, SD = 2.18). None of the participants reported consciously perceiving the animal names (or any other word) when presented as primes, confirming that participants were unaware of the existence and nature of the masked primes.

2.2.2. ERPs Results

N250. Results revealed a main effect of language (F(1,17) = 14.11, p < 0.01, η2p = 0.45), showing that switch trials elicited more negative-going waveforms than non-switch trials. The main effect of markedness was significant (F(1,17) = 5.73, p = 0.028, η2p = 0.25), showing that marked primes produced greater negativities than unmarked primes. Critically, the interaction between language and markedness was significant (F(1,17) = 10.67 p ≤ 0.01, η2p = 0.38). Planned comparisons showed significant masked language switching effects for L2 marked primes (F(1,17) = 16.71, p = 0.001, η2p = 0.50), but not for L2 unmarked primes (F(1,17) = 0.52, p = 0.48, η2p = 0.03; see Figure 1). Language and markedness interacted with region ((F(2,34) = 4.29, p = 0.05, η2p = 0.20, ε = 0.59) and (F(2,34) = 7.08, p = 0.01, η2p = 0.29, ε = 0.62), respectively), and a three-way interaction between these factors was also found (F(2,34) = 5.50, p = 0.02, η2p = 0.24, ε = 0.61). Post hoc comparisons showed that the magnitude of the switching effect increased at central–posterior regions for marked primes (anterior–central: t(17) = 3.72, p < 0.01; central–posterior: t(11) = 1.40, p = 0.18), whilst it was constantly distributed for unmarked primes (all p > 0.72).
N400s. No relevant main effects or interactions were found significant in this time-window (p > 0.53).
N400c. We found an interaction between language and markedness (F(1,17) = 10.26, p < 0.01, η2p = 0.38). Planned comparisons showed significant language switching effects only for L2 marked primes (L2 marked: F(1,17) = 4.98, p = 0.04, η2p = 0.23; L2 unmarked: F(1,17) = 2.59, p = 0.13, η2p = 0.13). The remaining relevant main effects and interactions did not approach significance (all p > 0.21).

3. Experiment 2

3.1. Materials and Methods

3.1.1. Participants

Eighteen right-handed fluent Spanish–English bilinguals (11 women; mean age: 20.94, SD = 0.87) with normal or corrected-to-normal vision participated in this experiment in exchange for monetary compensation. All of them were proficient in English according to their self-rated proficiency (Table 3). None of the participants reported neurological or psychiatric disorders. Prior to the experimental session, all participants gave their written informed consent in accordance with guidelines approved by the Ethics and Research Committees of the Basque Center on Cognition, Brain, and Language. The study was also performed in accordance with the ethical standards set in the Declaration of Helsinki.

3.1.2. Materials

We selected 304 Spanish (L1) words to serve as targets (e.g., cuento—“tale”), from the Spanish B-Pal database [46]. Primes were either unrelated English (L2) words (304 items) or unrelated Spanish (L1) words (304 items) selected from the N-Watch database [54] and B-Pal, respectively. As in Experiment 1, unrelated English and Spanish words (i.e., L1 and L2 primes) were non-cognate translation equivalents (cLD for marked set: mean = 0.20, SD = 0.16; unmarked set: mean = 0.19, SD = 0.16). Experimental conditions and manipulations were exactly the same as in Experiment 1. The 304 Spanish targets were split into two sets matched for word frequency, word length, number of orthographic neighbors, and mean bigram frequency (see Table 4). In one of the sets, targets could be preceded by (1) an unrelated English word containing bigrams illegal in the L1 (e.g., black, with the bigram “ck” not being legal in Spanish), or (2) the Spanish translation of the English prime word (e.g., negro). As for the other set of Spanish words, targets could be preceded by (1) an unrelated English word containing bigrams legal in Spanish (e.g., brain), or (2) the Spanish translation of the English word (e.g., cerebro). Prime–target overlap was also controlled (cLD for marked sets: L1–L1—mean = 0.12, SD = 0.10; L2–L1—mean = 0.11, SD = 0.09; cLD for unmarked sets: L1–L1—mean = 0.11, SD = 0.11; L2–L1—mean = 0.10, SD = 0.09). Two lists were created and counterbalanced across participants, so that each target word appeared only once in each list, but in a different prime condition every time. Participants were randomly assigned to each list, and priming conditions were evenly distributed across and within lists (304 critical prime–target pair words in each list, with 76 word pairs per condition). All pairs were used as no-go trials in a semantic categorization task, with an additional set of 38 animal names in Spanish serving as targets (12.5%) or go trials. As in Experiment 1, a prime visibility test was embedded in Experiment 2. The full list of stimuli is provided in Table A2 (Appendix A). Procedure, EEG recording, and data analysis were the same as in Experiment 1.

3.2. Results

3.2.1. Behavioral Results

Bilingual participants correctly categorized 93.22% (SD = 3.51) of the animal names when these were presented as targets (percentage of false alarms: 0.59%, SD = 0.45; percentage in the prime visibility test 0.47%, SD = 2.18). None of the participants reported having consciously perceived any animal name (or any other word) presented as a prime, confirming that participants were unaware of the existence and nature of the masked primes.

3.2.2. ERP Results

N250. There was a significant main effect of language on N250 mean amplitude (F(1,17) = 6.58, p = 0.02, η2p = 0.28), such that switch trials elicited more negative-going waveforms than non-switch trials. This effect was modulated by markedness (F(1,17) = 4.28, p = 0.05, η2p = 0.20). Planned comparison showed that only marked conditions elicited significant masked language switch effects (marked: F(1,17) = 10.30, p = 0.005, η2p = 0.38; unmarked: F(1,17) = 0.34, p = 0.59, η2p = 0.02). A marginal interaction was also found between markedness and region (F(2,34) = 3.65, p = 0.07, η2p = 0.18, ε = 0.59), showing that an effect of markedness was only found at posterior electrodes (anterior: F(1,17) = 0.01, p = 0.95, η2p < 0.001; central: F(1,17) = 1.32, p = 0.27, η2p = 0.07; posterior: F(1,17) = 4.38, p = 0.05, η2p = 0.21). Other main effects and interactions did not approach significance (p > 0.21)
N400w. The main effect of markedness on N440w mean amplitude was significant (F(1,17) = 7.69, p = 0.01., η2p = 0.31), showing that unmarked conditions elicited more negative-going waveforms than marked conditions. Other relevant main effects and interactions did not approach significance (p > 0.13).
N400c. No relevant main effects or interactions were found in this time-window (all p > 0.13).

4. Discussion

In this study, we sought to determine whether orthotactic cues can trigger unconscious language identification mechanisms in two groups of bilinguals differing in terms of language pairs and context of language learning. As in previous studies (e.g., References [11,25,35,50]), we focused on modulations of the N250 and N400 components. Masked language switching modulated N250 amplitude as a function of the orthographic regularities of L2 words. As expected, this early language switch effect was only found for those L2 primes (in Basque or English) that contained at least one bigram illegal in L1 (Spanish). Note that language switching effects were not observed in either the N250 or the N400 time-window in the case of unmarked sets. Language switching also modulated N400c amplitude in the case of L2 marked words only, and only in fluent bilinguals whose two languages are transparent (i.e., Spanish and Basque). Although they showed early language switching effects triggered by L1 orthotactic violations, Spanish–English bilinguals did not show modulations in later stages of visual word recognition.
When L2 primes were orthographically marked, we showed a modulation of target processing as early as 200 ms post stimulus onset followed by modulations in the window corresponding to conceptual processing (Figure 1C). This result is consistent with the view that orthotactic patterns can trigger automatic language detection mechanisms at a sub-lexical level as implemented in the BIA+ extended model [31]. However, our results also suggest that sub-lexical language nodes can modulate cross-language lexical activation of whole-word orthographic representations, which the BIA+ extended model cannot currently account for. To account for this effect, the model would need to include an inhibitory link between the sub-lexical language node and the orthographic lexicon. Furthermore, it is unlikely that the sub-lexical language node can modulate access to whole-word phonological representations. We contend that this is why switching from L2 marked English primes to L1 targets does not hamper semantic integration more than when both primes and targets are in L1. Thus, we assume the existence of two separate sub-lexical language nodes (Figure 3) in line with the dual-route account of semantic access implemented in the BIA+ model [4]. Note that the lack of an N400 effect for L2 English marked primes cannot be explained by relatively lower proficiency of participants in their L2. If proficiency in L2 plays a role, differences between experiments could be expected in the opposite direction, since Spanish–English bilinguals, contrary to Spanish–Basque bilinguals, learnt L2 in an academic context and were not daily exposed to their L2. Indeed, greater modulation would be expected for L2 English compared to L1 Spanish primes in the time-window related with semantic integration (N400), since such effects were observed in Spanish participants with no knowledge of L2 (see Reference [35]). Since no such effects were found, proficiency and exposure alone cannot account for our results. Another possibility is that the long-lasting effect registered in the N250 time-window masked effects occurring at a later point (see Figure 1C and Figure 2C). However, this would make N400 effects found in Experiment 1 and in previous studies (e.g., Reference [35]) difficult to account for. Instead, we contend that the difference between experiments relates to the degree of transparency of the languages involved and the similarities across language of grapheme-to-phoneme mapping rules. Given that English has a shallow orthography, participants would rely more on the phonological route to access lexical representations (see BIA+ model [4]), leading to non-selective lexical access. Therefore, even though sub-lexical orthographic cues are detected in the N250 window, these cues are not sufficient to constrain lexical access, which can be achieved through the phonological route.
When L2 primes are not orthographically marked, no ERP amplitude modulation is detected in the N250 or N400 time-windows. That is, Spanish–Basque and Spanish–English bilinguals do not show reliable signs of masked language switching effects for those L2 primes that are orthographically similar to L1. Similar effects were also found in the study by Casaponsa et al. [35], where highly proficient Spanish–Basque bilinguals showed no reliable masked language switching effect for unmarked sets. Note that the authors did find a modulation of target processing for both L2 marked and unmarked primes in both the N250 and N400 time-windows in a group of Spanish monolinguals. We conclude that the lack of a masked language switching effect for unmarked L2 primes results from cross-language lexical activation in fluent bilinguals and, therefore, that lexical and semantic access in highly proficient bilinguals is not affected by unconscious language switching when L2 primes comply with L1 orthotactics. These results are consistent with the predictions of the BIA+ [4] and the BIA+ extended [31] models, whereby lexical-level language identification nodes do not feed information back to the lexicon but rather feed information directly to the task decision system. According to this view, lexical language nodes would not affect cross-language lexical activation by inhibiting the irrelevant language, as previously implied by the structure of the BIA [30], and language identification would only impact participants’ responses when the task (or the language context) requires some degree of language discrimination.
It is worth noting that one of the factors that could not be equated across marked and unmarked sets was mean Spanish bigram frequencies across languages. This measure extracted from the B-Pal, N-Watch, and E-Hitz databases is position- and length-dependent. Even though primes were carefully matched for mean Spanish bigram frequency across the two language sets, the mean Spanish bigram frequency of Spanish words was overall slightly higher than that of Basque and English words (p < 0.05). This difference naturally relates to the inherent difference in bigram distributions between languages and the fact that L1 and L2 primes were translations equivalents one each other. Therefore, the Basque and English prime sets were orthographically infrequent in Spanish, but this difference did not lead to any measurable N250 modulation in the case of the unmarked sets. Therefore, automatic language identification seems to rely on violations of L1 orthotactics rather than subtle sub-lexical statistical probabilities (see also Reference [37]).
Since both the BIA+ [4] and the BIA+ extended [31] models cannot account for the current results or results from our previous studies showing reduced cross-language effects stemming from sub-lexical level [33,35], we propose a modification of BIA+ extended as follows: firstly, we propose to implement separate orthographic and phonological sub-lexical language nodes in a revised version of the model tentatively named BIA+s (Figure 3); secondly, we implement inhibitory links between orthographic and phonological sub-lexical language nodes and their corresponding lexical forms to allow language-selective effects to emerge [33,35,37].

4.1. Orthotactic, Phonotactic, and Feature Language Nodes

We propose that the suggested orthographic and phonological language nodes at the sub-lexical level are sensitive to the statistical regularities of their processing route (either orthographic or phonological) and, thus, that orthotactic patterns will be detected by the orthographic sub-lexical node, whilst phonotactic patterns will be detected by the phonological sub-lexical node.
It is worth noting that, whilst orthotactic patterns are visually salient during visual word recognition, phonotactic patterns rely upon the participant’s ability to access L2 phonological representations nonexistent in their L1. For instance, Spanish–English bilinguals might not correctly convert the word “ham” into a phonologically marked English word (i.e., Spanish phonotactics do not include the sound /h/). Instead, they might convert the grapheme “h” (mute/no sound in Spanish) into to the closest phonemical category in Spanish, /x/ (corresponding to the letter “j”). Hence, we suggest that the phonotactic language node might be specifically sensitive to auditory word recognition in non-balanced bilinguals.
The detection of orthotactic patterns is influenced by participants’ sensitivity to statistical regularities within languages. So far, the evidence from previous studies suggests that language detection mechanisms are highly sensitive to violations of sub-lexical orthographic regularities of the native language [33,34,35,37,40,41,55], but not of the second language [37,38,40]. In other words, detecting L1 marked words is more difficult than detecting L2 marked words. This is probably because, to detect L1 marked words, bilinguals not only need to be highly proficient in L2, but they also need to internalize the patterns that distinguish their L1 from their L2 (L1 specific vs. L1 common). Further studies exploring literacy balanced bilinguals, or L1 attrited bilinguals are needed in order to test whether sensitivity to L2 orthotactic violations in L1 words increases with L2 reading exposure. Nonetheless, based on current evidence, orthotactic language nodes appear particularly sensitive to regularities of the most frequent language (L1).

4.2. Sub-Lexical Language Nodes and Lexical Access

In BIA+s, orthotactic patterns can constrain cross-language lexical activation via inhibitory links between orthotactic language nodes and orthographic word forms, whilst access to phonological lexical forms is unaffected. In cases where orthographic-to-phonological conversion is similar between languages (e.g., in the case of Spanish–Basque bilinguals) and predominantly based on one-to-one letter–sound correspondence (i.e., in the case of transparent languages), reduced cross-language activation of orthographic lexical representations should impact semantic and conceptual access. For instance, in an L1 Spanish context, unconsciously perceived L2 Basque marked primes would trigger sub-lexical language detection mechanisms which will, in turn, inhibit L1 orthographic lexical representations. L1 target processing would then require the activation of L1 lexical forms previously inhibited by L2 marked primes, delaying L1 lexical selection and subsequent semantic and conceptual processing. This scenario would explain the N400 modulations observed for L1 targets in Experiment 1, which are likely to be the result delayed access to conceptual representations for L2 marked primes due to reduced cross-language orthographic lexical activation. In cases where one or both of the two languages are opaque (e.g., English), semantic and conceptual access would be predominantly mediated by the phonological route. This is how the BIA+s could lead to the expectation that the inhibition of orthographic lexical representations by the orthotactic language node would have little impact on semantic and conceptual access, since this would be mediated by cross-language lexical activation of phonological word forms. In the case of languages with different scripts, cross-language lexical activation is also thought to derive from phonological lexical representations. For instance, Wu and Thierry [18] showed that Chinese–English bilinguals automatically activate representations form their native language (Chinese) when reading in (or listening to) English. These authors found priming effects for L1 hidden sound repetition, but not for hidden orthographic L1 repetition. Thus, bi-scriptal readers would automatically activate cross-language phonological lexical forms, rather than orthographic word forms. The lack of N400 modulations for L2 English marked sets in Experiment 2 corroborates this view. Furthermore, in an L1 Spanish context, the presence of unconsciously perceived L2 English marked primes would automatically activate the orthotactic language nodes inhibiting L1 Spanish orthographic lexical representations, in turn affecting sub-lexical-to-lexical mapping of whole orthographic word forms indexed by modulations of N250 mean amplitudes (see Figure 2A,B). Phonological lexical access would remain available, allowing successful semantic and conceptual access, and explaining the lack of N400 modulation for L2 marked sets in English.

5. Conclusions

In sum, by studying fluent Spanish–Basque and Spanish–English bilinguals engaged in a semantic categorization task within a masked language switching paradigm, we were able to show that sub-lexical orthographic information plays a significant role in language detection. Based on the markedness effects reported here, we make suggestions regarding improvements of the BIA+ extended model to allow for language-selective effects to emerge within an integrated lexicon.

Author Contributions

Conceptualization, A.C. and J.A.D.; data curation, formal analysis, and visualization A.C.; writing—original draft preparation, A.C. and G.T; writing—review and editing, A.C., G.T., and J.A.D. All authors have read and agreed to the published version of the manuscript.

Funding

This research was partially funded by grants number RED2018-102615-T and PGC2018-097145-B-I00 from the Spanish Government, and H2019/HUM-5705 from the Comunidad de Madrid.

Conflicts of Interest

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Appendix A

Table A1. Stimuli used in Experiment 1 using the masked language switching priming paradigm with highly proficient Spanish–Basque bilinguals.
Table A1. Stimuli used in Experiment 1 using the masked language switching priming paradigm with highly proficient Spanish–Basque bilinguals.
Prime WordsTarget Words
BasqueSpanishSpanish
MarkedUnmarkedMarked ControlsUnmarked ControlsMarked SetUnmarked Set
zukuahurjugopalmacamarerovuelo
hozkadaontasunbocadobondadsaludquiebra
kodeamorruclaverabiasueloparado
nazkagaraipenascotriunfoenfermeradespido
txandasorginturnobrujadesiertomembrana
txanoarrazoigorromotivohablaárbol
txartelzaindaritarjetaguardiánproblemarigor
umetokilaburpenúteroresumenvertientecuchillo
altxoraurrerabidetesoroprogresofacilidadconvenio
berokixehetasunabrigodetalleesposalibertad
etsaiapaltasunenemigohumildadjardínalumno
etxolaneurricabañamedidapitohijo
hautsbarealdipolvocalmablasfemiasequía
irritssudurpasiónnarizcabooscuridad
jainkomingostasundiosamarguracandidatoexcusa
kopetaigorlefrenteemisorganadorprudencia
kotoierdialgodónmitadaulaenergía
ostikoitunpatadaalianzadifusiónvuelta
sukarkirolfiebredeportehitoasesinato
txokoisiltasunrincónsilenciovaravenganza
akatsgezurdefectomentiraconcejalintestino
ametsipurdifantasíaculosaludoaltura
arratsaldezabaltasuntardeamplitudsombreroidiota
atseginjauzideleitesaltohuellaprincipio
atsekabeegilepesarautorinfanciaenseñanza
aukeraorrialdeopciónpáginamuchachoumbral
aurrezkizuritasunahorroblancuraabuelarueda
azokaondorengomercadosucesorprometidavalidez
batuketahezursumahuesosabiduríaconsejo
begiratokizorabiomiradormareonietoportavoz
errukiaparpiedadespumaorigenpoblación
gonbidatuhiriburuinvitadocapitalgargantaempuje
kontugorespencautelaexaltaciónmodeloanillo
lanbroonurabrumabeneficiosanciónreino
lokarriiruzurcordónengañoexpresióngestión
lokatzmasailbarromejillaentradavolcán
norakoeramailedestinoportadorhermanataller
oinordekonortasunherederopersonalidadodiosemana
txanpongelditasunmonedaquietudcamisalabio
txantxaiturribromafuenteaficiónduda
txertoabantailavacunaventajasuciedaddiscusión
txostenjostailuinformejuguetesuspiroolor
ukimenbidaiatactoviajeconocedorabandono
aldizkariarautegirevistanormativafrialdadmina
atsedenataridescansoportalpanoramayema
bizkarerraiespaldaentrañalunapesadilla
burrunbagerrizumbidocinturamercancíapalacio
errautszurruntasuncenizarigidezmaderafila
euritakogidariparaguasconductoracciónmunicipio
gerrikobatasuncinturónunidadsaberformación
gonbidapenneguinvitacióninviernoorejacomisión
hildakoetenaldifallecidopausaestacióndenuncia
hizketaleuntasundiscursosuavidadlagorabo
idazkarigarbitasunsecretariolimpiezamimbreasomo
itsasaldeoihalcostatelaregistropalabra
itxuraosagarriaspectocomplementomediodíaocio
jokabideberezitasunprocedersingularidadmargenfibra
kokapenegiatasunubicaciónveracidadlongitudtema
konketaatezainlavaboporteroreprochefuerza
kontalariargibidenarradorexplicaciónpechodicha
kopurutrebetasuncuantíahabilidadmierdarival
korapiloerraldoinudogiganteterremototapa
mutikoaberastasunchiquilloriquezavariantecenso
ordezkariberdintasundelegadoigualdadcompasiónserie
ordokigozotasunllanuradulzuracostumbrechica
otsailargitalpenfebreroediciónhambrecarga
sukaldeezagueracocinaconocimientocarbónburla
txapelketaahultasuncampeonatodebilidadconexióncara
txistuerrusilbidoculpalentitudexplosión
zenbatekoamildegiimporteabismotraductorvelocidad
bukaeraosotasundesenlaceplenitudagujaeducación
danbadaibilbideestruendotrayectoregazopromoción
edukierazailtasuncapacidaddificultadvencedoraversión
edukitzesalbuespenposesiónexcepcióndedovigilante
ekoizpenezintasunproducciónimpotenciacarrerasillón
erauzketaibilaldiextracciónexcursiónnidoosadía
etsipensuziriresignacióncoheteliderazgoquehacer
ezkongailasaitasunsolterotranquilidadapariciónhierba
gainbeheraepaidecadenciaveredictotomamando
hizketaldiondoeztertuliamalestarparadainstinto
hizkuntzagogortasunlenguajedurezamediciónenero
ikastetxegertaeracolegiosucesolistaduración
iragazkiahaleginfiltroesfuerzopantalóninvención
itxaropeniragarpenesperanzaanunciocerebroperegrino
jokaeraadituactuaciónexpertoviolenciamesa
kokotsauzitegibarbillatribunalorinaespina
konponbideateraldisoluciónocurrenciaombligomaraña
korridorearintasunpasilloligerezamolinoentorno
kutxatilahanditasunestuchegrandezaedadhilo
lotsaepaitegivergüenzajuzgadopielnecesidad
marrazkibetebehardibujoobligaciónsacudidapermiso
ordezkonerabezarosustitutoadolescenciacanaltravesía
sukaldarigoraipamencocineroelogioapoyovendedor
txilinjazarpencampanillapersecuciónporquésudor
aukeraketanagusitasunselecciónsuperioridaddesafíoavenida
baliokidehurbiltasunequivalentecercaníaprioridadobstáculo
bereizketaduintasunseparacióndignidadmuertemanzana
bitxilorelapurretamargaritarobotallaapellido
ehunekoezgaitasunporcentajeincapacidadvientremaldad
etxebizitzaegonezinviviendainquietudvenenohallazgo
ezkontzaurruntasunmatrimoniolejaníajuegopastor
ezkortasunurduritasunpesimismonerviosismocostadosala
gatazkabegiruneconflictorespetoasientosemanario
harrokeriahondamenvanidadruinabulliciocarnaval
hiruhilekojarraipentrimestrecontinuaciónmurallacomarca
iruzkinirudicomentarioimagensobrinovapor
itsustasunurteurrenfealdadaniversariocalorzona
jainkotasunipuindivinidadcuentopropiedadaccidente
jatetxejarraitasunrestaurantecontinuidadcompañíacortina
matxinadaemarirebelióncaudalsorpresapoeta
orrazketaiparpeinadonortellavefalda
trukeneurritasunintercambiomoderaciónguanteconfesor
aurrekontuafaripresupuestocenahombroobispo
bizkortasunugaritasunagilidadabundanciacercobolsillo
hautsontzibateratasunceniceroconvergenciajaulacliente
iradokizunezabapensugerenciaeliminacióncorredordesayuno
konponketaargitasunarregloclaridadcariciainventor
ordezkapenheldutasunsustituciónmadurezamantesusto
sakontasunorgaprofundidadcarrosalidaviento
suntsidurazubidestrucciónpuenterecursolectura
bitartekotzahilobimediacióntumbaretrasosede
elkarrizketaisuriconversaciónflujocoleccióngana
bazkalondoelursobremesanieveoccidentehuida
hotsbeldurruidomiedomenciónalba
isatsauzicolapleitohuertolocura
lekukoizatetestigoentebaileextensión
bazkidegauerdisociomedianochecunalana
ezkorzatipesimistapedazorecuerdohielo
kezkaeuripreocupaciónlluvialectorexamen
konkormihibultolenguamezclasubida
sokaaldicuerdatemporadaopresióncuero
borrokagoiburupelealemaramocerveza
txinpartabeirachispavidriocosechajuez
barrunbezauricavidadheridaescuchaplomo
zoritxarzorudesdichapisocaminohelada
bizkarraldeorrirespaldohojacartallamada
hozkailuostegunneverajueveslunesnuca
lanbideargizariprofesiónceracazaamigo
zaldizkoapaizjinetecuradeseosaliva
herrixkasabaialdeatechoposadasonrisa
Table A2. Stimuli used in Experiment 2 using the masked language switching priming paradigm with highly proficient Spanish–English bilinguals.
Table A2. Stimuli used in Experiment 2 using the masked language switching priming paradigm with highly proficient Spanish–English bilinguals.
Prime WordsTarget Words
EnglishSpanishSpanish
MarkedUnmarkedMarked ControlsUnmarked ControlsMarked SetUnmarked Set
cassockexhaustingsotanaagotadorsabiojersey
knockexchangegolpeintercambiobenditooreja
holyumbrellasantoparaguaspotentepiso
lawyermilestoneabogadohitoverdaderopantalón
assemblyflaxmontajelinoarmainvierno
fodderplentifulpiensoabundantezonamarrón
rubbershirtcauchocamisaritmodiente
blackdumbnegromudoespinatriunfo
mockerystormburlatormentasaludceniza
stickprominencevaraprotagonismopandillareceta
dirtydamagingsucioperjudicialsalvajemojado
trackrecipientcaminoreceptorcirugíaángulo
term pupilplazoalumnofusilesperanza
lengthmagazineduraciónrevistaásperoguerra
kickchapelpatadacapillatroncopedazo
gullyreceptaclebarrancorecipientefundadorhumedad
nephewqualifiedsobrinotituladoespacialregla
footprintfreedomhuellalibertadcantofiebre
sworndisabledjuradoimpedidocasualidadlanza
kneeforecastrodillaprevisiónviviendatarifa
madnessprayerlocuraoraciónespaldajuventud
knotlimitnudotopemediciónminucioso
kindnesschainamabilidadcadenayatejugo
fiancéeexitprometidasalidabocadogracioso
enjoymentunchangingdisfruteinmutableagostomarzo
sweetnessshiveringdulzuratemblorfrailesusto
addressgovernmentdomiciliogobiernopradolana
coldnessfoamfrialdadespumamarineroherrero
racketcheapbulliciobaratomejillablancura
happyunexpectedfelizinesperadopuntalector
dawnuprisingalbarevueltaextranjeromuslo
proximitystreamcercaníaarroyosiglomulta
darknessshitoscuridadmierdaenfermeracampesino
smugglingchestcontrabandopechomartillobailarín
upwardlipascendentelabiobuscacongreso
privacymoonintimidadlunalamentablecreencia
safetysurnameseguridadapellidodiscosombra
knowledgelidsabertapasueldocuento
thresholdbeardumbralbarbavencedorcocina
breakfastschooldesayunoescuelaafortunadopito
suddenpregnantrepentinoembarazadaconyugalcampana
happinessbeginningdichaprincipioromeroregazo
oppositestarcontrarioastromayopelea
thicknessraincoatespesorgabardinamandohueso
everydaydisgustcotidianoascocaballejanía
newspapertreatmentperiódicocuraciónexpedientesuavidad
tirednesschurchcansancioiglesiapalizasuelo
weaknessmixingdebilidadmezclainfiernonieve
pregnancyairportembarazoaeropuertogripecuero
barrackssubjectcuartelasignaturapequeñogorro
notebookdeafcuadernosordocimafantasma
backsideslopeculocuestaosadíausuario
sicknessunitmareounidadchicasorbo
knifebedroomcuchillodormitoriocervezajuzgado
shepherdharvestpastorcosechaprometidomiedo
strengthspeechfuerzahablaautocerro
pocketspringbolsillofuenteescopetaodio
widthstairsamplitudescaleraprecioancho
guiltyhipculpablecaderatrimestrecompuesto
checkingpainfulrevisióndolorososemejantegrande
livelybishopanimadoobisposonorosacudida
threatsalesmanamenazavendedorasesinatoducha
appleedictmanzanabandoretretetela
newslieutenantnoticiatenientecrepúsculovela
weeklyfishingsemanalpescavoluntadtrago
rubbingdischargerocealtatablachorro
navyicearmadahielofichasemana
swordeventespadasucesoalquilercarga
threadfixedhilofijobloqueohallazgo
neckliqueurcuellolicorternurafundamento
ribbonsmellcintaolorparcelacampamento
wickerchallengemimbredesafíoventaheredero
mercygumpiedadgomalavabocostado
cradleprofitcunabeneficiotesoroedad
throwingbaroquelanzamientobarrocolujopoesía
lackshortagefaltaescasezhermanohuevo
clockallegedrelojpresuntopalabracarbón
rawovencrudohornoestanquemillar
sweatstreetsudorcalleconcejalgitano
jokerostrumbromatribunabaloncestomercado
atrocityleadershipbarbaridadliderazgopuebloviuda
abilitysignaturecapacidadfirmaflujosuciedad
deitystonedivinidadpiedramalditocambio
pitydisgustingpenarepugnantetoallacomercio
necklinesloganescoteconsignasiguienteizquierda
brickchangeableladrillocambiantetercioacta
lazyspotvagomanchaayudanteesquema
goodnessdrumbondadtambordesviaciónpuerto
cookportraitcocineroretratoventanapastel
hardnesshomelanddurezapatriaúltimoveloz
officialfrostfuncionarioheladareportajerecurso
povertyadvisablemiseriarecomendablegradollave
qualityglovecalidadguanteútilquehacer
beautyslopingbellezainclinadoladrónportador
paymentbrainpagocerebromensajerosierra
similaritydeceasedsemejanzafallecidoahorrocirujano
appearanceheartaspectocorazónlecturafiesta
bucketexhibitionbaldeexposiciónnecesidadcamarero
spherebeachesferaplayacomarcaedición
allyhusbandaliadomaridodecadenciaorgulloso
spying jumpespionajesaltolimpioteoría
heavyfleetpesadoflotabocasusurro
attackbuildingataqueedificioblandobruja
dailyoniondiariocebollacodotarde
rocketchincohetebarbillabienvenidadecorado
effectiveleafeficazhojaequilibriomolestia
writingdevelopingescriturareveladomargaritabarro
throwstoptiradaparadaincapazcierre
middayadvantagemediodíaventajapuentecorredor
effortironesfuerzohierroterremotoinvitado
throatsmilegargantasonrisacompromisoenseñanza
honestyinvoicehonradezfacturaruedaraza
equalitydepravedigualdadviciosoactualbanda
mummymisfortunemomiadesdichabreveamante
telephonestabletelefónicacuadraresumenlaberinto
approvalrugaprobaciónalfombrasospechosooccidente
suggestionagreementsugerenciaacuerdojinetetema
packagedebtpaquetedeudadamatertulia
loyaltycoinlealtadmonedanubesombrero
robberyfreezingroboheladocuevaaceite
certaintyuteruscertezaúterocopacaza
sufferingunemployedsufrimientoparadomotivovuelo
physiologydoormanfisiologíaporterosuspiromitad
mythacceptancemitoaceptaciónaficionadocinturón
symmetryabruptsimetríabruscooccidentalvuelta
emphasisplayerénfasisjugadorhabitualdiversión
pharmacyfaultfarmaciaculpaéxitonido
copperslimcobredelgadotazacanción
nobilitypilgrimnoblezaperegrinosecocarta
blockscreenbloquepantallasillaético
deputyscalesdiputadobalanzareglamentopesar
offeractivistofertamilitantevelocidadjugada
writerexcitementescritorexcitaciónnacimientoligero
needleshelteragujacobijocomentarioateo
birthdayunloadingcumpleañosdescargamarañabruma
drawingroofdibujotechomolinogratuita
doubtfulerranddudosorecadocarreteraligereza
supportdancingapoyobailehabilidadrecto
midnightamazingmedianocheasombrosoplomosequía
unbearablehorninsoportablecuernomaternidadgramática
workshopmanagementtallergestióncarcajadaanillo
clumsygoaltorpemetadesgastecerradura
armchairbloodsillónsangrellamadaprincipal
unhappystampdesdichadoselloorientalcomandante
discomfortlungmalestarpulmóncalvoasamblea
viewpointforeheadmiradorfrenteaperturaaltura
stiffnessretirementrigidezjubilaciónpiernapila
almseducatedlimosnacultopesadillasindical
cardboardstagecartónfasetratoboina
hierarchysquarejerarquíaplazayemanegocio
philosophyorchardfilosofíahuertotemblorosaautobús
abysscheeseabismoquesoenteinforme

References

  1. Van Assche, E.; Duyck, W.; Hartsuiker, R.J.; Diependaele, K. Does bilingualism change native-language reading? Cognate effects in a sentence context. Psychol. Sci. 2009, 20, 923–927. [Google Scholar] [CrossRef]
  2. Van Hell, J.G.; Dijkstra, T. Foreign language knowledge can influence native language performance in exclusively native contexts. Psychon. Bull. Rev. 2002, 9, 780–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Van Heuven, W.J.; Schriefers, H.; Dijkstra, T.; Hagoort, P. Language conflict in the bilingual brain. Cereb. Cortex 2008, 18, 2706–2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Dijkstra, T.; Van Heuven, W.J. The architecture of the bilingual word recognition system: From identification to decision. Biling. Lang. Cogn. 2002, 5, 175–197. [Google Scholar] [CrossRef] [Green Version]
  5. Dijkstra, T.; Timmermans, M.; Schriefers, H. On being blinded by your other language: effects of task demands on interlingual homograph recognition. J. Mem. Lang. 2000, 42, 445–464. [Google Scholar] [CrossRef]
  6. Zhang, T.; Van Heuven, W.J.B.; Conklin, K. Fast Automatic translation and morphological decomposition in Chinese-English bilinguals. Psychol. Sci. 2011, 22, 1237–1242. [Google Scholar] [CrossRef]
  7. Van Heuven, W.J.; Dijkstra, T.; Grainger, J. Orthographic neighborhood effects in bilingual word recognition. J. Mem. Lang. 1998, 39, 458–483. [Google Scholar] [CrossRef] [Green Version]
  8. Grossi, G.; Savill, N.; Thomas, E.; Thierry, G. Electrophysiological cross-language neighborhood density effects in late and early English-Welsh bilinguals. Front. Psychol. 2012, 3, 408. [Google Scholar] [CrossRef] [Green Version]
  9. Schwartz, A.I.; Kroll, J.F.; Diaz, M. Reading words in Spanish and English: Mapping orthography to phonology in two languages. Lang. Cogn. Process. 2007, 22, 106–129. [Google Scholar] [CrossRef]
  10. Midgley, K.J.; Holcomb, P.J.; Vanheuven, W.J.; Grainger, J. An electrophysiological investigation of cross-language effects of orthographic neighborhood. Brain Res. 2008, 1246, 123–135. [Google Scholar] [CrossRef] [Green Version]
  11. Midgley, K.J.; Holcomb, P.J.; Grainger, J. Masked repetition and translation priming in second language learners: a window on the time-course of form and meaning activation using erps. Psychophysiol. 2009, 46, 551–565. [Google Scholar] [CrossRef] [Green Version]
  12. Meade, G.; Midgley, K.J.; Dijkstra, T.; Holcomb, P.J. Cross-language neighborhood effects in learners indicative of an integrated lexicon. J. Cogn. Neurosci. 2018, 30, 70–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Thierry, G.; Wu, Y.J. Electrophysiological evidence for language interference in late bilinguals. NeuroReport 2004, 15, 1555–1558. [Google Scholar] [CrossRef] [PubMed]
  14. Dimitropoulou, M.; Duñabeitia, J.A.; Carreiras, M. Masked translation priming effects with low proficient bilinguals. Mem. Cognit. 2011, 39, 260–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Thierry, G.; Wu, Y.J. Brain potentials reveal unconscious translation during foreign-language comprehension. Proc. Natl. Acad. Sci. USA 2007, 104, 12530–12535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Duyck, W.; Van Assche, E.; Drieghe, D.; Hartsuiker, R.J. Visual word recognition by bilinguals in a sentence context: Evidence for nonselective lexical access. J. Exp. Psychol. Learn. Mem. Cogn. 2007, 33, 663–679. [Google Scholar] [CrossRef] [Green Version]
  17. Duyck, W.; Warlop, N. Translation priming between the native language and a second language: new evidence from Dutch-French bilinguals. Exp. Psychol. 2009, 56, 173–179. [Google Scholar] [CrossRef] [Green Version]
  18. Wu, Y.J.; Thierry, G. Chinese–English Bilinguals Reading English Hear Chinese. J. Neurosci. 2010, 30, 7646–7651. [Google Scholar] [CrossRef]
  19. Hoshino, N.; Thierry, G. Language selection in bilingual word production: Electrophysiological evidence for cross-language competition. Brain Res. 2011, 1371, 100–109. [Google Scholar] [CrossRef]
  20. Dimitropoulou, M.; Duñabeitia, J.A.; Carreiras, M. Two Words, One meaning: Evidence of automatic co-activation of translation equivalents. Front. Psychol. 2011, 2, 188. [Google Scholar] [CrossRef] [Green Version]
  21. Wu, Y.J.; Cristino, F.; Leek, C.; Thierry, G. Non-selective lexical access in bilinguals is spontaneous and independent of input monitoring: Evidence from eye tracking. Cogn. 2013, 129, 418–425. [Google Scholar] [CrossRef] [PubMed]
  22. Spalek, K.; Hoshino, N.; Wu, Y.J.; Damian, M.; Thierry, G. Speaking two languages at once: Unconscious native word form access in second language production. Cogn. 2014, 133, 226–231. [Google Scholar] [CrossRef] [PubMed]
  23. Ng, S.; Wicha, N.Y.Y. Meaning first: a case for language-independent access to word meaning in the bilingual brain. Neuropsychol. 2013, 51, 850–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Perea, M.; Duñabeitia, J.A.; Carreiras, M. Masked associative/semantic priming effects across languages with highly proficient bilinguals. J. Mem. Lang. 2008, 58, 916–930. [Google Scholar] [CrossRef]
  25. Chauncey, K.; Grainger, J.; Holcomb, P.J. Code-switching effects in bilingual word recognition: a masked priming study with event-related potentials. Brain Lang. 2008, 105, 161–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  26. Chauncey, K.; Grainger, J.; Holcomb, P.J. The role of subjective frequency in language switching: An ERP investigation using masked priming. Mem. Cogniti. 2011, 39, 291–303. [Google Scholar] [CrossRef] [Green Version]
  27. Dijkstra, T.; Grainger, J.; Van Heuven, W.J. Recognition of Cognates and Interlingual Homographs: The Neglected Role of Phonology. J. Mem. Lang. 1999, 41, 496–518. [Google Scholar] [CrossRef] [Green Version]
  28. Midgley, K.J.; Holcomb, P.J.; Grainger, J. Language effects in second language learners and proficient bilinguals investigated with event-related potentials. J. Neurolinguistics 2009, 22, 281–300. [Google Scholar] [CrossRef] [Green Version]
  29. Von Studnitz, R.E.; Green, D.W. Interlingual homograph interference in German–English bilinguals: Its modulation and locus of control. Biling. Lang. Cogn. 2002, 5, 1–23. [Google Scholar] [CrossRef]
  30. Dijkstra, T.; Van Heuven, W.J.; Grainger, J. Simulating cross-language competition with the bilingual interactive activation model. Psycholog. Belg. 1998, 38, 177–196. [Google Scholar]
  31. Van Kesteren, R.; Dijkstra, T.; De Smedt, K. Markedness effects in Norwegian–English bilinguals: Task-dependent use of language-specific letters and bigrams. Q. J. Exp. Psychol. 2012, 65, 2129–2154. [Google Scholar] [CrossRef] [PubMed]
  32. Rodriguez-Fornells, A.; Rotte, M.; Heinze, H.-J.; Nösselt, T.; Münte, T.F. Brain potential and functional MRI evidence for how to handle two languages with one brain. Nat. 2002, 415, 1026–1029. [Google Scholar] [CrossRef] [PubMed]
  33. Casaponsa, A.; Duñabeitia, J.A. Lexical organization of language-ambiguous and language-specific words in bilinguals. Q. J. Exp. Psychol. 2016, 69, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Casaponsa, A.; Carreiras, M.; Duñabeitia, J.A. Discriminating languages in bilingual contexts: the impact of orthographic markedness. Front. Psychol. 2014, 5, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  35. Casaponsa, A.; Carreiras, M.; Duñabeitia, J.A. How do bilinguals identify the language of the words they read? Brain Res. 2015, 1624, 153–166. [Google Scholar] [CrossRef] [Green Version]
  36. Wu, Y.J.; Thierry, G. How reading in a second language protects your heart. J. Neurosci. 2012, 32, 6485–6489. [Google Scholar] [CrossRef] [Green Version]
  37. Oganian, Y.; Conrad, M.; Aryani, A.; Heekeren, H.R.; Spalek, K. Interplay of bigram frequency and orthographic neighborhood statistics in language membership decision. Biling. Lang. Cogn. 2015, 19, 578–596. [Google Scholar] [CrossRef] [Green Version]
  38. Dubey, N.; Witzel, N.; Witzel, J. Script differences and masked translation priming: Evidence from Hindi-English bilinguals. Q. J. Exp. Psychol. 2018, 71, 2421–2438. [Google Scholar] [CrossRef]
  39. Grainger, J.; Holcomb, P.J. Watching the word go by: On the time-course of component processes in visual word recognition. Lang. Linguistics Compass 2009, 3, 128–156. [Google Scholar] [CrossRef] [Green Version]
  40. Vaid, J.; Frenck-Mestre, C. Do orthographic cues aid language recognition? A laterality study with French-English bilinguals. Brain Lang. 2002, 82, 47–53. [Google Scholar] [CrossRef]
  41. Lemhöfer, K.; Koester, D.; Schreuder, R. When bicycle pump is harder to read than bicycle bell: effects of parsing cues in first and second language compound reading. Psychon. Bull. Rev. 2011, 18, 364–370. [Google Scholar] [CrossRef] [Green Version]
  42. Grainger, J.; Beauvillain, C. Language blocking and lexical access in bilinguals. Q. J. Exp. Psychol. Sect. A 1987, 39, 295–319. [Google Scholar] [CrossRef]
  43. Orfanidou, E.; Sumner, P. Language switching and the effects of orthographic specificity and response repetition. Mem. Cogn. 2005, 33, 355–369. [Google Scholar] [CrossRef]
  44. Gonzales, K.; Lotto, A.J. A bafri, un pafri: Bilinguals’ pseudoword identifications support language-specific phonetic systems. Psychol. Sci. 2013, 24, 2135–2142. [Google Scholar] [CrossRef]
  45. Ju, M.; Luce, P.A.; Hugenberg, K.; Bodenhausen, G.V. Falling on sensitive ears. Constraints on bilingual lexical activation. Psychol. Sci. 2004, 15, 314–318. [Google Scholar] [CrossRef]
  46. Davis, C.J.; Perea, M. BuscaPalabras: A program for deriving orthographic and phonological neighborhood statistics and other psycholinguistic indices in Spanish. Behav. Res. Methods 2005, 37, 665–671. [Google Scholar] [CrossRef] [Green Version]
  47. Perea, M.; Urkia, M.; Davis, C.J.; Agirre, A.; Laseka, E.; Carreiras, M. E-Hitz: A word frequency list and a program for deriving psycholinguistic statistics in an agglutinative language (Basque). Behav. Res. Methods 2006, 38, 610–615. [Google Scholar] [CrossRef] [Green Version]
  48. Holcomb, P.J.; Grainger, J. Exploring the temporal dynamics of visual word recognition in the masked repetition priming paradigm using event-related potentials. Brain Res. 2007, 1180, 39–58. [Google Scholar] [CrossRef] [Green Version]
  49. Hoshino, N.; Midgley, K.J.; Holcomb, P.J.; Grainger, J. An ERP investigation of masked cross-script translation priming. Brain Res. 2010, 1344, 159–172. [Google Scholar] [CrossRef] [Green Version]
  50. Duñabeitia, J.A.; Dimitropoulou, M.; Uribe-Etxebarria, O.; Laka, I.; Carreiras, M. Electrophysiological correlates of the masked translation priming effect with highly proficient simultaneous bilinguals. Brain Res. 2010, 1359, 142–154. [Google Scholar] [CrossRef]
  51. Greenhouse, S.W.; Geisser, S. On methods in the analysis of profile data. Psychom. 1959, 24, 95–112. [Google Scholar] [CrossRef]
  52. Cohen, J. Eta-Squared and Partial Eta-Squared in Fixed Factor Anova Designs. Educ. Psychol. Meas. 1973, 33, 107–112. [Google Scholar] [CrossRef]
  53. Haase, R.F. Classical and partial eta square in multifactor ANOVA Designs. Educ. Psychol. Meas. 1983, 43, 35–39. [Google Scholar] [CrossRef]
  54. Davis, C.J. N-Watch: A program for deriving neighborhood size and other psycholinguistic statistics. Behav. Res. Methods 2005, 37, 65–70. [Google Scholar] [CrossRef] [PubMed]
  55. Hoversten, L.J.; Brothers, T.; Swaab, T.Y.; Traxler, M.J. Early processing of orthographic language membership information in bilingual visual word recognition: Evidence from ERPs. Neuropsychol. 2017, 103, 183–190. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Event-related potential (ERP) results in Experiment 1: highly proficient Basque–Spanish bilinguals. (A) ERPs associated with the switch (thick lines) and non-switch conditions (thin lines) in the marked (upper) and unmarked (lower) sets. Time-windows of analysis are marked in gray. (B) Topographical distribution of the language switch effects for marked and unmarked priming conditions in terms of amplitude differences between the unrelated Basque and unrelated Spanish primes. (C) Time-course of p-values for the language switch effect in marked and unmarked sets. The p-values are calculated from individual t-tests for every data point (every 4 ms; 225 comparisons in total) and collapsed across all electrodes. Blue lines indicate p-values >0.05. The Bonferroni correction threshold is marked on the graph (α = 0.05/255; p = 0.0002).
Figure 1. Event-related potential (ERP) results in Experiment 1: highly proficient Basque–Spanish bilinguals. (A) ERPs associated with the switch (thick lines) and non-switch conditions (thin lines) in the marked (upper) and unmarked (lower) sets. Time-windows of analysis are marked in gray. (B) Topographical distribution of the language switch effects for marked and unmarked priming conditions in terms of amplitude differences between the unrelated Basque and unrelated Spanish primes. (C) Time-course of p-values for the language switch effect in marked and unmarked sets. The p-values are calculated from individual t-tests for every data point (every 4 ms; 225 comparisons in total) and collapsed across all electrodes. Blue lines indicate p-values >0.05. The Bonferroni correction threshold is marked on the graph (α = 0.05/255; p = 0.0002).
Brainsci 10 00022 g001
Figure 2. ERP results in Experiment 2: highly proficient Spanish–English bilinguals. (A) ERPs associated with the switch (thick lines) and non-switch conditions (thin lines) in the marked (upper) and unmarked (lower) sets. Time-windows of interest are marked in gray. (B) Topographical distribution of the language switch effects for marked and unmarked priming conditions in terms of amplitude differences between the unrelated Basque and unrelated Spanish primes. (C) Distribution of p-values for the language switch effect in marked and unmarked sets. The p-values are calculated from individual t-tests for every data point (every 4 ms, 225 comparisons in total) and collapsed across all electrodes. Blue lines indicate p-values < 0.05. Red lines indicate p-values < 0.0002 (Bonferroni corrected significance level; α = 0.05/255; p = 0.0002).
Figure 2. ERP results in Experiment 2: highly proficient Spanish–English bilinguals. (A) ERPs associated with the switch (thick lines) and non-switch conditions (thin lines) in the marked (upper) and unmarked (lower) sets. Time-windows of interest are marked in gray. (B) Topographical distribution of the language switch effects for marked and unmarked priming conditions in terms of amplitude differences between the unrelated Basque and unrelated Spanish primes. (C) Distribution of p-values for the language switch effect in marked and unmarked sets. The p-values are calculated from individual t-tests for every data point (every 4 ms, 225 comparisons in total) and collapsed across all electrodes. Blue lines indicate p-values < 0.05. Red lines indicate p-values < 0.0002 (Bonferroni corrected significance level; α = 0.05/255; p = 0.0002).
Brainsci 10 00022 g002
Figure 3. Proposed modification of the Bilingual Interactive Activation + (BIA+) extended model to account for language-selective effects emerging within an integrated lexicon, tentatively labeled BIA+s. We implement the separation of the sub-lexical language node into two different nodes: orthotactic language nodes for the orthographic route to semantics, and phonotactic language node for the phonological route. Each node can receive information from their corresponding sub-lexical units and feed-forward inhibitory links to the lexical orthography (orthotactic language node) or the lexical phonology (phonotactic language node). Dashed lines represent inhibitory connections.
Figure 3. Proposed modification of the Bilingual Interactive Activation + (BIA+) extended model to account for language-selective effects emerging within an integrated lexicon, tentatively labeled BIA+s. We implement the separation of the sub-lexical language node into two different nodes: orthotactic language nodes for the orthographic route to semantics, and phonotactic language node for the phonological route. Each node can receive information from their corresponding sub-lexical units and feed-forward inhibitory links to the lexical orthography (orthotactic language node) or the lexical phonology (phonotactic language node). Dashed lines represent inhibitory connections.
Brainsci 10 00022 g003
Table 1. Experiment 1: Mean levels of first language (L1; Spanish) and second language (L2; Basque) language proficiency derived from participants’ self-ratings (range: 0 = none, 10 = native-like). Standard deviations are provided within parentheses.
Table 1. Experiment 1: Mean levels of first language (L1; Spanish) and second language (L2; Basque) language proficiency derived from participants’ self-ratings (range: 0 = none, 10 = native-like). Standard deviations are provided within parentheses.
Language ProficiencySpanishBasque
Speaking9.78 (0.43)7.88 (1.36)
Understand9.78 (0.43)8.50 (1.20)
Writing9.78 (0.54)7.22 (1.53)
Reading9.83 (0.38)8.50 (1.24)
General self-perception9.61 (0.61)7.66 (0.97)
Table 2. Experiment 1: Mean values for each sub-lexical, lexical, and semantic factor in L1 (Spanish) and L2 (Basque) split by condition. Standard deviations are provided within parentheses.
Table 2. Experiment 1: Mean values for each sub-lexical, lexical, and semantic factor in L1 (Spanish) and L2 (Basque) split by condition. Standard deviations are provided within parentheses.
Prime WordsTarget Words
BasqueSpanishSpanish
MarkedUnmarkedMarked ControlUnmarked ControlMarkedUnmarked
Word frequency36.50
(74.78)
33.91
(58.77)
28.53
(36.29)
29.87
(30.47)
41.14
(47.53)
38.66
(44.66)
Word length7.55
(1.86)
7.37
(2.22)
7.46
(1.91)
7.30
(2.17)
6.66
(1.62)
6.45
(1.69)
Number of orthographic neighbors1.02
(1.77)
1.26
(2.08)
1.35
(2.52)
1.68
(3.27)
2.42
(4.00)
2.53
(3.94)
Age of acquisition3.27
(0.47)
3.24
(0.50)
3.17
(0.53)
3.16
(0.56)
3.12
(0.57)
3.09
(0.60)
Word concreteness4.08
(0.83)
3.99
(0.86)
4.01
(0.85)
3.94
(0.94)
4.05
(0.86)
4.06
(0.91)
Spanish bigram frequency1.30 “
(0.44)
1.31 “
(0.43)
2.52
(0.29)
2.49
(0.29)
Basque bigram frequency2.06
(0.27)
2.04
(0.24)
Number of Spanish-implausible bigrams1.16 *
(0.45)
0
(0)
Note: Asterisk indicates significant statistical differences between marked and unmarked conditions within sets (Basque or Spanish). Quotation marks denote significant differences between Basque and Spanish words within sets (Marked or Unmarked).
Table 3. Experiment 2: Mean levels of Spanish and English language proficiency calculated by participant’s self-perceived ratings. Standard deviations are provided within parentheses.
Table 3. Experiment 2: Mean levels of Spanish and English language proficiency calculated by participant’s self-perceived ratings. Standard deviations are provided within parentheses.
Language ProficiencySpanishEnglish
Speaking9.78 (0.55)7.33 (1.08)
Understand9.83 (0.38)7.89 (0.96)
Writing9.56 (0.70)7.44 (0.92)
Reading10 (0.00)8.06 (1.25)
General self-perception9.83 (0.38)7.82 (0.88)
Table 4. Experiment 2: Mean values for each factor in Spanish and English prime words for each condition, marked and unmarked. Standard deviations are provided within parentheses.
Table 4. Experiment 2: Mean values for each factor in Spanish and English prime words for each condition, marked and unmarked. Standard deviations are provided within parentheses.
Prime WordsTarget Words
EnglishSpanishSpanish
MarkedUnmarkedMarked ControlUnmarked ControlMarkedUnmarked
Word frequency33.98
(41.81)
41.70
(60.37)
29.68
(38.19)
34.80
(49.48)
41.01
(33.04)
41.72
(33.36)
Word length6.75
(1.73)
6.52
(2.04)
6.99
(1.83)
6.80
(1.84)
6.90
(1.91)
6.41
(1.57)
Number of orthographic neighbors1.66
(2.69)
1.99
(3.15)
1.95
(3.39)
2.39
(3.46)
2.17
(3.34)
2.63
(3.91)
Spanish bigram frequency1.30 “
(0.52)
1.38 “
(0.47)
2.50
(0.30)
2.54
(0.31)
2.51
(0.33)
2.55
(0.33)
English bigram frequency2.52
(0.36)
2.55
(0.39
Number of Spanish-implausible bigrams1.11 *
(0.39)
0
(0)
Frequency ratings were obtained from the N-Watch and B-Pal databases. The critical factor number of Spanish bigram frequency refers to the number of bigrams from the English words that are not legal in Spanish according to the Spanish LEXESP corpus. An asterisk indicates significant statistical differences between marked and unmarked conditions within sets (Basque or Spanish). Quotation marks denote significant differences between Basque and Spanish words within sets (marked or unmarked). The rest of comparisons (primes within and across sets, and prime–target relationships) were non-significant (all p > 0.35).

Share and Cite

MDPI and ACS Style

Casaponsa, A.; Thierry, G.; Duñabeitia, J.A. The Role of Orthotactics in Language Switching: An ERP Investigation Using Masked Language Priming. Brain Sci. 2020, 10, 22. https://doi.org/10.3390/brainsci10010022

AMA Style

Casaponsa A, Thierry G, Duñabeitia JA. The Role of Orthotactics in Language Switching: An ERP Investigation Using Masked Language Priming. Brain Sciences. 2020; 10(1):22. https://doi.org/10.3390/brainsci10010022

Chicago/Turabian Style

Casaponsa, Aina, Guillaume Thierry, and Jon Andoni Duñabeitia. 2020. "The Role of Orthotactics in Language Switching: An ERP Investigation Using Masked Language Priming" Brain Sciences 10, no. 1: 22. https://doi.org/10.3390/brainsci10010022

APA Style

Casaponsa, A., Thierry, G., & Duñabeitia, J. A. (2020). The Role of Orthotactics in Language Switching: An ERP Investigation Using Masked Language Priming. Brain Sciences, 10(1), 22. https://doi.org/10.3390/brainsci10010022

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop