Cognitive Training Deep Dive: The Impact of Child, Training Behavior and Environmental Factors within a Controlled Trial of Cogmed for Fragile X Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Statistical Analyses
3. Results
3.1. Training Metrics: Cogmed Adaptive and Nonadaptive Groups
3.2. Training Patterns
3.3. Demographics and Family Characteristics
3.4. Predictors of Clinical Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hunter, J.; Rivero-Arias, O.; Angelov, A.; Kim, E.; Fotheringham, I.; Leal, J. Epidemiology of fragile X syndrome: A systematic review and meta-analysis. Am. J. Med. Genet. A 2014, 164, 1648–1658. [Google Scholar] [CrossRef] [PubMed]
- Hessl, D.; Nguyen, D.V.; Green, C.; Chavez, A.; Tassone, F.; Hagerman, R.J.; Senturk, D.; Schneider, A.; Lightbody, A.; Reiss, A.L. A solution to limitations of cognitive testing in children with intellectual disabilities: The case of fragile X syndrome. J. Neurodev. Disord. 2009, 1, 33–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, S.; Hooper, S.; Skinner, M.; Hatton, D.; Schaaf, J.; Ornstein, P.; Bailey, D. Working memory subsystems and task complexity in young boys with fragile X syndrome. J. Intellect. Disabil. Res. 2011, 55, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, V.; Leroux, J.; White, C.D.; Reiss, A.L. Frontostriatal deficits in fragile X syndrome: Relation to FMR1 gene expression. Proc. Natl. Acad. Sci. USA 2004, 101, 3615–3620. [Google Scholar] [CrossRef] [Green Version]
- Hessl, D.; Sansone, S.M.; Berry-Kravis, E.; Riley, K.; Widaman, K.F.; Abbeduto, L.; Schneider, A.; Coleman, J.; Oaklander, D.; Rhodes, K.C. The NIH toolbox cognitive battery for intellectual disabilities: Three preliminary studies and future directions. J. Neurodev. Disord. 2016, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scerif, G.; Cornish, K.; Wilding, J.; Driver, J.; Karmiloff-Smith, A. Delineation of early attentional control difficulties in fragile X syndrome: Focus on neurocomputational changes. Neuropsychologia 2007, 45, 1889–1898. [Google Scholar] [CrossRef] [Green Version]
- Green, C.T.; Long, D.L.; Green, D.; Iosif, A.-M.; Dixon, J.F.; Miller, M.R.; Fassbender, C.; Schweitzer, J.B. Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity disorder? Neurotherapeutics 2012, 9, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Melby-Lervåg, M.; Hulme, C. Is working memory training effective? A meta-analytic review. Dev. Psychol. 2013, 49, 270. [Google Scholar] [CrossRef] [Green Version]
- Peijnenborgh, J.C.; Hurks, P.M.; Aldenkamp, A.P.; Vles, J.S.; Hendriksen, J.G. Efficacy of working memory training in children and adolescents with learning disabilities: A review study and meta-analysis. Neuropsychol. Rehabil. 2016, 26, 645–672. [Google Scholar] [CrossRef]
- Randall, L.; Tyldesley, K. Evaluating the impact of working memory training programmes on children—A systematic review. Educ. Child Psychol. 2016, 33, 34–50. [Google Scholar]
- Au, J.; Berkowitz-Sutherland, L.; Schneider, A.; Schweitzer, J.B.; Hessl, D.; Hagerman, R. A feasibility trial of Cogmed working memory training in fragile X syndrome. J. Pediatr. Genet. 2014, 3, 147–156. [Google Scholar] [PubMed] [Green Version]
- Hessl, D.; Schweitzer, J.B.; Nguyen, D.V.; McLennan, Y.A.; Johnston, C.; Shickman, R.; Chen, Y. Cognitive training for children and adolescents with fragile X syndrome: A randomized controlled trial of Cogmed. J. Neurodev. Disord. 2019, 11, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chacko, A.; Bedard, A.C.; Marks, D.J.; Feirsen, N.; Uderman, J.Z.; Chimiklis, A.; Rajwan, E.; Cornwell, M.; Anderson, L.; Zwilling, A. A randomized clinical trial of Cogmed working memory training in school-age children with ADHD: A replication in a diverse sample using a control condition. J. Child Psychol. Psychiatry 2014, 55, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Van der Donk, M.; Hiemstra-Beernink, A.-C.; Tjeenk-Kalff, A.; Van Der Leij, A.; Lindauer, R. Cognitive training for children with ADHD: A randomized controlled trial of cogmed working memory training and “paying attention in class”. Front. Psychol. 2015, 6, 1081. [Google Scholar] [CrossRef] [Green Version]
- Gibson, B.S.; Gondoli, D.M.; Johnson, A.C.; Steeger, C.M.; Dobrzenski, B.A.; Morrissey, R.A. Component analysis of verbal versus spatial working memory training in adolescents with ADHD: A randomized, controlled trial. Child Neuropsychol. 2011, 17, 546–563. [Google Scholar] [CrossRef]
- Gibson, B.S.; Kronenberger, W.G.; Gondoli, D.M.; Johnson, A.C.; Morrissey, R.A.; Steeger, C.M. Component analysis of simple span vs. complex span adaptive working memory exercises: A randomized, controlled trial. J. Appl. Res. Mem. Cogn. 2012, 1, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Söderqvist, S.; Bergman Nutley, S.; Ottersen, J.; Grill, K.M.; Klingberg, T. Computerized training of non-verbal reasoning and working memory in children with intellectual disability. Front. Hum. Neurosci. 2012, 6, 271. [Google Scholar] [CrossRef] [Green Version]
- Sternberg, D.A.; Ballard, K.; Hardy, J.L.; Katz, B.; Doraiswamy, P.M.; Scanlon, M. The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging. Front. Hum. Neurosci. 2013, 7, 292. [Google Scholar] [CrossRef] [Green Version]
- Steyvers, M.; Benjamin, A.S. The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets. Behav. Res. Methods 2019, 51, 1531–1543. [Google Scholar] [CrossRef] [Green Version]
- Roid, G.H.; Miller, L.J. Leiter International Performance Scale-Revised (Leiter-R); Stoelting: Wood Dale, IL, USA, 1997. [Google Scholar]
- Roid, G.H. The Stanford-Binet Intelligence Scales; Riverside Publishing: Rolling Meadows, IL, USA, 2003. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children—Fourth Edition (WISC-IV); The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- CK, C. Conners Third Edition (Conners 3); Western Psychological Services: Los Angeles, CA, USA, 2008. [Google Scholar]
- Gioia, G.A.; Isquith, P.K.; Guy, S.C.; Kenworthy, L. BRIEF-2: Behavior Rating Inventory of Executive Function; Psychological Assessment Resources: Lutz, FL, USA, 2015. [Google Scholar]
- Knox, A.; Schneider, A.; Abucayan, F.; Hervey, C.; Tran, C.; Hessl, D.; Berry-Kravis, E. Feasibility, reliability, and clinical validity of the test of attentional performance for children (KiTAP) in fragile X syndrome (FXS). J. Neurodev. Disord. 2012, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.H.; Caldwell, B.M.; Brisby, J.; Magee, M.; Whiteside, L.; Rock, S.L. The HOME inventory: A new scale for families of pre-and early adolescent children with disabilities. Res. Dev. Disabil. 1992, 13, 313–333. [Google Scholar] [CrossRef]
- Derogatis, L.R.; Unger, R. Symptom Checklist-90-Revised: Administration, Scoring, and Procedures Manual; National Computer Systems, Inc.: Minneapolis, MN, USA, 1994. [Google Scholar]
- Abidin, R.R. Parenting Stress Index-Short Form; Pediatric Psychology Press: Charlottesville, VA, USA, 1990. [Google Scholar]
- Tamm, L.; Narad, M.E.; Antonini, T.N.; O’Brien, K.M.; Hawk, L.W.; Epstein, J.N. Reaction time variability in ADHD: A review. Neurotherapeutics 2012, 9, 500–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diggle, P.; Diggle, P.J.; Heagerty, P.; Liang, K.Y.; Heagerty, P.J.; Zeger, S. Analysis of Longitudinal Data; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Laird, N.M.; Ware, J.H. Random-effects models for longitudinal data. Biometrics 1982, 963–974. [Google Scholar] [CrossRef]
- Jones, B.L.; Nagin, D.S.; Roeder, K. A SAS procedure based on mixture models for estimating developmental trajectories. Sociol. Methods Res. 2001, 29, 374–393. [Google Scholar] [CrossRef]
Game | Version | Adaptive | Time | Adaptive X Time | |
---|---|---|---|---|---|
9 | rotating dots | RM | −4.85 (1.05); −4.6 (34) | 0.24 (0.03); 8.21 (34) | −0.22 (0.04); −5.5 (34) |
14 | asteroids | RM | −9.86 (1.26); −7.8 (34) | 0.05 (0.05); 1.06 (34) | −0.13 (0.07); −1.93 (34) |
17 | space whack | RM | −2.78 (1.56); −1.78 (34) | 0.05 (0.03); 1.48 (33) | −0.11 (0.05); −2.41 (33) |
29 | visual data link | RM | −4.94 (0.95); −5.2 (34) | 0.21 (0.03); 7.94 (34) | −0.22 (0.04); −5.94 (34) |
30 | data room | RM | −5.50 (0.82); −6.7 (34) | 0.23 (0.03); 8.59 (34) | −0.22 (0.04); −5.9 (34) |
31 | input module | RM | −5.69 (0.90); −6.33 (34) | 0.22 (0.02); 8.73 (34) | −0.22 (0.04); −6.0 (34) |
32 | input module w/lid | RM | −5.2 (1.0); −5.38 (34) | 0.21 (0.02); 8.67 (34) | −0.19 (0.03); −5.69 (34) |
33 | rotating data link | RM | −3.41 (1.38); −2.47 (34) | 0.26 (0.03); 9.55 (34) | −0.25 (0.04); −6.43 (34) |
47 | decoder | RM | −4.08 (0.38); −10.84 (34) | 0.68 (0.10); 7.04 (34) | −0.80 (0.14); −5.85 (34) |
53 | sorter | RM | −8.25 (1.09); −7.6 (34) | 0.19 (0.04); 5.14 (34) | −0.23 (0.05); −4.55 (34) |
54 | stabilizer | RM | −3.11 (0.99); −3.14 (20) | 0.24 (0.06); 4.23 (19) | −0.23 (0.08); −2.86 (19) |
58 | 3D cube | RM | −8.91 (1.28); −6.97 (34) | 0.09 (0.05); 1.73 (34) | −0.15 (0.07); −2.19 (34) |
85 | animals | JM | 0.27 (0.83); 0.33 (58) | 0.10 (0.03); 3.67(58) | −0.17 (0.04); −4.26 (58) |
86 | bumper cars | JM | 1.26 (0.81); 1.55 (58) | 0.12 (0.03); 4.57 (58) | −0.16 (0.04); −4.27 (58) |
87 | ferris wheel | JM | 1.03 (0.81); 1.27 (58) | 0.15 (0.03); 5.75 (58) | −0.17 (0.04); −4.63 (58) |
88 | twister | JM | 0.30 (0.84); 0.36 (58) | 0.11 (0.03); 3.91 (58) | −0.14 (0.04); −3.37 (58) |
89 | rollercoaster | JM | 0.61 (0.88); 0.69 (58) | 0.10 (0.03); 3.35 (58) | −0.15 (0.04); −3.51 (58) |
90 | hotel | JM | 0.29 (0.91); 0.32 (58) | 0.08 (0.03); 2.58 (58) | −0.17 (0.04); −4.11 (58) |
91 | pool | JM | 0.83 (0.98); 0.84 (58) | 0.09 (0.03); 3.41 (58) | −0.20 (0.04); −5.07 (58) |
Game | Version | Time: β (SE); t(df) * | p-Value | |
---|---|---|---|---|
9 | rotating dots | RM | 0.02 (0.005); 3.51 (17) | 0.003 |
14 | asteroids | RM | 0.009 (0.009); 1.02 (17) | 0.32 |
17 | space whack | RM | 0.05 (0.02); 2.45 (15) | 0.03 |
29 | visual data link | RM | 0.02 (0.005); 2.97 (17) | 0.009 |
30 | data room | RM | 0.02 (0.004); 4.99 (17) | <0.001 |
31 | input module | RM | 0.02 (0.004); 6.09 (17) | <0.001 |
32 | input module w/lid | RM | 0.01 (0.007); 2.23 (17) | 0.04 |
33 | rotating data link | RM | 0.02 (0.008); 3.11 (17) | 0.006 |
47 | decoder | RM | 0.003 (0.03); 0.11 (17) | 0.91 |
53 | sorter | RM | 0.02 (0.006); 2.59 (17) | 0.02 |
54 | stabilizer | RM | 0.03 (0.02); 1.76 (9) | 0.11 |
58 | 3D cube | RM | 0.02 (0.007); 2.38 (17) | 0.03 |
85 | animals | JM | 0.01 (0.003); 3.81(29) | <0.001 |
86 | bumper cars | JM | 0.02 (0.004); 5.17 (29) | <0.001 |
87 | ferris wheel | JM | 0.02 (0.004); 4.74 (29) | <0.001 |
88 | twister | JM | 0.02 (0.003); 6.09 (29) | <0.001 |
89 | rollercoaster | JM | 0.02 (0.003); 4.96 (29) | <0.001 |
90 | hotel | JM | 0.01 (0.004); 3.23 (29) | 0.003 |
91 | pool | JM | 0.01 (0.004); 3.56 (29) | 0.001 |
WM Composite | Digit Span | BRIEF GEC | BRIEF WM | Conners Hyperactivity | Conners Inattention | |
---|---|---|---|---|---|---|
Parent 1 *: Less than College | 0.34 (0.97); 0.35 (92) | −0.15 (0.43); −0.34 (91) | 2.20 (3.21); 0.69 (81) | 0.33 (0.61); 0.54 (89) | −0.50 (1.31); −0.39 (87) | 0.52 (0.99); 0.53 (87) |
Parent 2 *: Less than College | 0.24 (1.00); 0.24 (87) | 0.13 (0.45); 0.28 (86) | 5.00 (3.17); 1.58 (78) | 1.33 (0.59); 2.25 (86) | 1.62 (1.29); 1.26 (85) | 0.87 (0.97); 0.90 (85) |
Household Income *: <$50K | 2.11 (1.44); 1.46 (89) | 0.65 (0.65); 1.01 (88) | 3.88 (4.29); 0.90 (78) | 0.86 (0.86); 1.01 (86) | −0.97 (1.98); −0.49 (84) | 0.24 (1.44); 0.17 (84) |
Household Income *: $50–100K | 0.08 (1.08); 0.08 (89) | 0.20 (0.49); 0.42 (88) | 7.40 (3.41); 2.17 (78) | 1.19 (0.66); 1.82 (86) | −0.78 (1.44); −0.54 (84) | 0.44 (1.07); 0.41 (84) |
Household Income *: Prefer Not to Say | 1.88 (1.67); 1.13 (89) | 0.69 (0.74); 0.92 (88) | 6.26 (5.83); 1.07 (78) | 0.89 (0.99); 0.90 (86) | 0.48 (2.15); 0.22 (84) | 2.34 (1.61); 1.46 (84) |
Child Age | 0.17 (0.15); 1.12 (93) | 0.11 (0.07); 1.69 (92) | −0.46 (0.57); −0.81 (82) | −0.07 (0.10); −0.68 (90) | 0.30 (0.22); 1.36 (88) | −0.01 (0.16); −0.08 (88) |
Child IQ | 0.10 (0.03); 2.74 (91) | 0.05 (0.02); 2.78 (91) | −0.13 (0.11); −1.19 (80) | −0.01 (0.02); −0.65 (88) | −0.06 (0.04); −1.38 (87) | −0.06 (0.03); −1.92 (87) |
Mental Age | 0.57 (0.19); 3.06 (90) | 0.45 (0.08); 5.42 (90) | −0.61 (0.63); −0.98 (79) | −0.01 (0.11); −0.11 (87) | −0.09 (0.25); −0.38 (86) | −0.22 (0.18); −1.28 (86) |
Parent Total Stress | −0.007 (0.02); −0.33 (90) | −0.01 (0.009); −1.58 (89) | 0.09 (0.09); 1.05 (81) | 0.01 (0.01); 0.81 (88) | −0.02 (0.03); −0.64 (86) | 0.01 (0.02); 0.52 (86) |
Parent Distress | −0.008 (0.05); −0.15 (90) | −0.02 (0.02); −0.72 (89) | 0.25 (0.18); 1.35 (81) | 0.04 (0.03); 1.27 (88) | 0.02 (0.07); 0.24 (86) | 0.02 (0.05); 0.44 (86) |
Dysfunctional Parent–Child Interaction | −0.002 (0.07); −0.03 (90) | −0.04 (0.03); −1.44 (89) | 0.14 (0.26); 0.54 (81) | 0.02 (0.04); 0.42 (88) | −0.10 (0.09); −1.09 (86) | 0.02 (0.07); 0.24 (86) |
SCL-90-R Global Severity | −0.18 (1.19); −0.15 (85) | 0.56 (0.52); 1.08 (84) | 2.55 (3.83); 0.67 (75) | 0.10 (0.75); 0.14 (83) | −0.75 (1.57); −0.48 (81) | −0.87 (1.15); −0.76 (81) |
SCL-90-R Depression | −0.19 (0.74); −0.26 (85) | 0.22 (0.32); 0.69 (84) | 1.43 (2.34); 0.61 (75) | 0.24 (0.46); 0.51 (83) | −0.63 (0.97); −0.65 (81) | −0.67 (0.71); −0.95 (81) |
HOME Total Score | −0.06 (0.06); −1.01 (77) | 0.06 (0.03); 1.65 (76) | −0.13 (0.24); −0.53 (68) | −0.03 (0.05); −0.72 (76) | −0.08 (0.09); −0.89 (74) | −0.04 (0.07); −0.55 (74) |
WM Composite | Digit Span | BRIEF GEC | BRIEF WM | Conners Hyperactivity | Conners Inattention | |
---|---|---|---|---|---|---|
Response time | 1.81 (0.97); 1.87 (88) | § 0.99 (0.42); 2.34 (87) | −4.14 (3.11); −1.33 (79) | −0.01 (0.60); −0.02 (87) | −0.14 (1.33); −0.10 (84) | § −2.12 (0.94); −2.26 (84) |
Std dev response time | 2.04 (0.96); 2.12 (88) | 0.86 (0.46); 1.88 (87) | −6.66 (3.01); −2.21 (79) | −0.61 (0.60); −1.01 (87) | −1.42 (1.32); −1.07 (84) | −0.04 (0.98); −0.05 (84) |
Accuracy | 1.14 (1.16); 0.98 (89) | 0.13 (0.53); 0.24 (88) | −3.56 (3.59); −0.99 (79) | −0.44 (0.70); −0.62 (87) | −1.90 (1.49); −1.28 (85) | −1.64 (1.10); −1.49 (85) |
WM Composite | Digit Span | BRIEF GEC | BRIEF WM | Conners Hyperactivity | Conners Inattention | |
---|---|---|---|---|---|---|
Response time | 1.38 (1.26); 1.10 (42) | 0.75 (0.64); 1.17 (41) | −0.93 (5.51); −0.17 (38) | 0.79 (0.94); 0.84 (40) | 1.33 (2.59); 0.51 (37) | −1.13 (1.71); −0.66 (37) |
Std dev response time | 1.22 (1.26); 0.97 (42) | 0.04 (0.68); 0.05 (41) | −9.42 (4.91); −1.92 (38) | −1.16 (0.91); −1.26 (40) | −2.01 (2.21); −0.91 (37) | 0.23 (1.58); 0.14 (37) |
Accuracy | 1.99 (1.27); 1.56 (43) | 0.26 (0.70); 0.37 (42) | −6.51 (4.97); −1.31 (38) | −0.95 (0.91); −1.05 (40) | −3.05 (2.14); −1.43 (38) | § −3.21 (1.39); −2.31 (38) |
WM Composite | Digit Span | BRIEF GEC | BRIEF WM | Conners Hyperactivity | Conners Inattention | |
---|---|---|---|---|---|---|
Trial difficulty | § 3.92 (1.59); 2.47 (43) | 0.44 (0.66); 0.66 (43) | −3.01 (3.99); −0.76 (38) | 0.58 (0.89); 0.65 (44) | 0.57 (1.67); 0.34 (44) | 0.29 (1.35); 0.22 (44) |
Response time | 2.45 (1.51); 1.62 (43) | 1.45 (0.56); 2.59 (43) | § −8.29 (3.37); −2.46 (38) | −0.78 (0.79); −0.99 (44) | −1.80 (1.46); −1.24 (44) | § −2.99 (1.13); −2.6 (44) |
Std dev response time | 3.21 (1.51); 2.13 (43) | § 1.70 (0.60) 2.81 (43) | −4.26 (3.82); −1.11 (38) | 0.07 (0.85); 0.08 (44) | −0.46 (1.66); −0.28 (44) | 0.16 (1.30); 0.13 (44) |
Accuracy | −0.32 (2.27); −0.14 (43) | 0.37 (0.87); 0.43 (43) | 3.61 (5.46); 0.66 (38) | 0.77 (1.17); 0.66 (44) | −0.38 (2.16); −0.18 (44) | 1.51 (1.79); 0.84 (44) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, H.; Harvey, D.J.; Li, Y.; McLennan, Y.A.; Johnston, C.K.; Shickman, R.; Piven, J.; Schweitzer, J.B.; Hessl, D. Cognitive Training Deep Dive: The Impact of Child, Training Behavior and Environmental Factors within a Controlled Trial of Cogmed for Fragile X Syndrome. Brain Sci. 2020, 10, 671. https://doi.org/10.3390/brainsci10100671
Scott H, Harvey DJ, Li Y, McLennan YA, Johnston CK, Shickman R, Piven J, Schweitzer JB, Hessl D. Cognitive Training Deep Dive: The Impact of Child, Training Behavior and Environmental Factors within a Controlled Trial of Cogmed for Fragile X Syndrome. Brain Sciences. 2020; 10(10):671. https://doi.org/10.3390/brainsci10100671
Chicago/Turabian StyleScott, Haleigh, Danielle J. Harvey, Yueju Li, Yingratana A. McLennan, Cindy K. Johnston, Ryan Shickman, Joseph Piven, Julie B. Schweitzer, and David Hessl. 2020. "Cognitive Training Deep Dive: The Impact of Child, Training Behavior and Environmental Factors within a Controlled Trial of Cogmed for Fragile X Syndrome" Brain Sciences 10, no. 10: 671. https://doi.org/10.3390/brainsci10100671
APA StyleScott, H., Harvey, D. J., Li, Y., McLennan, Y. A., Johnston, C. K., Shickman, R., Piven, J., Schweitzer, J. B., & Hessl, D. (2020). Cognitive Training Deep Dive: The Impact of Child, Training Behavior and Environmental Factors within a Controlled Trial of Cogmed for Fragile X Syndrome. Brain Sciences, 10(10), 671. https://doi.org/10.3390/brainsci10100671