Attention Networks in ADHD Adults after Working Memory Training with a Dual n-Back Task
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.2.1. Attention Network Task (ANT)
2.2.2. Computation of the Attention Network Effects
2.2.3. WM Training: Dual n-Back Task
2.3. Statistical Analysis
3. Results
3.1. Unsupervised Exclusion of Outliers
3.2. Clinical Assessment Scales and Subscales
3.3. Dimensional Analysis of Reaction Time (RT)
3.4. Categorical Analysis of Reaction Time (RT)
3.5. Attention Network Effects
3.6. Ex-Gaussian Distributional Model of RTs
4. Discussion
4.1. ADHD Diagnosed Subtypes
4.2. RT and RT Variability
4.3. Working Memory Training
4.4. Limitations and Future Investigations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barkley, R.A.; Fischer, M.; Smallish, L.; Fletcher, K. Young adult outcome of hyperactive children: Adaptive functioning in major life activities. J. Am. Acad. Child Adolesc. Psychiatry 2006, 45, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Asherson, P.; Banaschewski, T.; Biederman, J.; Buitelaar, J.K.; Ramos-Quiroga, J.A.; Rohde, L.A.; Sonuga-Barke, E.J.S.; Tannock, R.; Franke, B. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 2015, 1, 15020. [Google Scholar] [CrossRef] [PubMed]
- Instanes, J.T.; Haavik, J.; Halmøy, A. Personality Traits and Comorbidity in Adults With ADHD. J. Atten. Disord. 2016, 20, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Mesrobian, S.K.; Villa, A.E.P.; Bader, M.; Götte, L.; Lintas, A. Event-Related Potentials during a Gambling Task in Young Adults with Attention-Deficit/Hyperactivity Disorder. Front. Hum. Neurosci. 2018, 12, 79. [Google Scholar] [CrossRef] [Green Version]
- Shoham, R.; Sonuga-Barke, E.; Yaniv, I.; Pollak, Y. ADHD Is Associated With a Widespread Pattern of Risky Behavior Across Activity Domains. J. Atten. Disord. 2019, e1087054719875786. [Google Scholar] [CrossRef]
- Willcutt, E.G. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: A meta-analytic review. Neurotherapeutics 2012, 9, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Asherson, P.; Buitelaar, J.; Faraone, S.V.; Rohde, L.A. Adult attention-deficit hyperactivity disorder: Key conceptual issues. Lancet Psychiatry 2016, 3, 568–578. [Google Scholar] [CrossRef] [Green Version]
- Zalsman, G.; Shilton, T. Adult ADHD: A new disease? Int. J. Psychiatry Clin. Pract. 2016, 20, 70–76. [Google Scholar] [CrossRef]
- Katzman, M.A.; Bilkey, T.S.; Chokka, P.R.; Fallu, A.; Klassen, L.J. Adult ADHD and comorbid disorders: Clinical implications of a dimensional approach. BMC Psychiatry 2017, 17, 302. [Google Scholar] [CrossRef] [Green Version]
- Adler, L.A.; Faraone, S.V.; Spencer, T.J.; Berglund, P.; Alperin, S.; Kessler, R.C. The structure of adult ADHD. Int. J. Methods Psychiatr. Res. 2017, 26, e1555. [Google Scholar]
- Chung, W.; Jiang, S.F.; Paksarian, D.; Nikolaidis, A.; Castellanos, F.X.; Merikangas, K.R.; Milham, M.P. Trends in the Prevalence and Incidence of Attention-Deficit/Hyperactivity Disorder Among Adults and Children of Different Racial and Ethnic Groups. JAMA Netw. Open 2019, 2, e1914344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgkins, P.; Shaw, M.; Coghill, D.; Hechtman, L. Amfetamine and methylphenidate medications for attention-deficit/hyperactivity disorder: Complementary treatment options. Eur. Child Adolesc. Psychiatry 2012, 21, 477–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnock-Jones, K.P.; Keating, G.M. Atomoxetine: A review of its use in attention-deficit hyperactivity disorder in children and adolescents. Paediatr. Drugs 2009, 11, 203–226. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.J.; Brown, A.; Seidman, L.J.; Valera, E.M.; Makris, N.; Lomedico, A.; Faraone, S.V.; Biederman, J. Effect of psychostimulants on brain structure and function in ADHD: A qualitative literature review of MRI-based neuroimaging studies. J. Clin. Psychiatry 2013, 74, 902. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Couture, J. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Ann. Pharmacother. 2014, 48, 209–225. [Google Scholar] [CrossRef]
- De Crescenzo, F.; Cortese, S.; Adamo, N.; Janiri, L. Pharmacological and non-pharmacological treatment of adults with ADHD: A meta-review. Evid. Based Ment. Health 2017, 20, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Melby-Lervåg, M.; Hulme, C. Is working memory training effective? A meta-analytic review. Dev. Psychol. 2013, 49, 270–291. [Google Scholar] [CrossRef] [Green Version]
- Sonuga-Barke, E.; Brandeis, D.; Holtmann, M.; Cortese, S. Computer-based cognitive training for ADHD: A review of current evidence. Child Adolesc. Psychiatr. Clin. 2014, 23, 807–824. [Google Scholar] [CrossRef]
- Au, J.; Buschkuehl, M.; Duncan, G.J.; Jaeggi, S.M. There is no convincing evidence that working memory training is NOT effective: A reply to Melby-Lervåg and Hulme (2015). Psychon. Bull. Rev. 2016, 23, 331–337. [Google Scholar] [CrossRef]
- Mesrobian, S.K.; Lintas, A.; Jacquerod, M.; Bader, M.; Götte, L.; Villa, A.E. An ERP Study Reveals How Training with Dual N-Back Task Affects Risky Decision Making in a Gambling Task in ADHD Patients. In Advances in Cognitive Neurodynamics (VI); Delgado-García, J.M., Pan, X., Sánchez-Campusano, R., Wang, R., Eds.; Springer: Singapore, 2018; Chapter 34; pp. 271–277. [Google Scholar]
- Jaquerod, M.E.; Mesrobian, S.K.; Villa, A.E.P.; Bader, M.; Lintas, A. Early Attentional Modulation by Working Memory Training in Young Adult ADHD Patients during a Risky Decision-Making Task. Brain Sci. 2020, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the efficiency and independence of attentional networks. J. Cognit. Neurosci. 2002, 14, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I.; Petersen, S.E. The attention system of the human brain. Annu. Rev. Neurosci. 1990, 13, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.E.; Posner, M.I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Duque, D.; Posner, M.I. Relating the mechanisms of orienting and alerting. Neuropsychologia 1997, 35, 477–486. [Google Scholar] [CrossRef]
- Posner, M.I.; Rothbart, M.K. Research on attention networks as a model for the integration of psychological science. Annu. Rev. Psychol. 2007, 58, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, L.J.; Campoy, G. The time course of alerting effect over orienting in the attention network test. Exp. Brain Res. 2008, 185, 667–672. [Google Scholar] [CrossRef]
- Lampe, K.; Konrad, K.; Kroener, S.; Fast, K.; Kunert, H.J.; Herpertz, S.C. Neuropsychological and behavioural disinhibition in adult ADHD compared to borderline personality disorder. Psychol. Med. 2007, 37, 1717–1729. [Google Scholar] [CrossRef]
- Leth-Steensen, C.; Elbaz, Z.K.; Douglas, V.I. Mean response times, variability, and skew in the responding of ADHD children: A response time distributional approach. Acta Psychol. (Amst.) 2000, 104, 167–190. [Google Scholar] [CrossRef]
- Hervey, A.S.; Epstein, J.N.; Curry, J.F.; Tonev, S.; Eugene Arnold, L.; Keith Conners, C.; Hinshaw, S.P.; Swanson, J.M.; Hechtman, L. Reaction time distribution analysis of neuropsychological performance in an ADHD sample. Child Neuropsychol. 2006, 12, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.N.; Conners, C.K.; Hervey, A.S.; Tonev, S.T.; Arnold, L.E.; Abikoff, H.B.; Elliott, G.; Greenhill, L.L.; Hechtman, L.; Hoagwood, K.; et al. Assessing medication effects in the MTA study using neuropsychological outcomes. J. Child Psychol. Psychiatry 2006, 47, 446–456. [Google Scholar] [CrossRef]
- Hwang-Gu, S.L.; Chen, Y.C.; Liang, S.H.Y.; Ni, H.C.; Lin, H.Y.; Lin, C.F.; Gau, S.S.F. Exploring the Variability in Reaction Times of Preschoolers at Risk of Attention-Deficit/Hyperactivity Disorder: An ex-Gaussian Analysis. J. Abnorm. Child Psychol. 2019, 47, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- Kofler, M.J.; Rapport, M.D.; Sarver, D.E.; Raiker, J.S.; Orban, S.A.; Friedman, L.M.; Kolomeyer, E.G. Reaction time variability in ADHD: A meta-analytic review of 319 studies. Clin. Psychol. Rev. 2013, 33, 795–811. [Google Scholar] [CrossRef] [PubMed]
- Gmehlin, D.; Fuermaier, A.B.M.; Walther, S.; Debelak, R.; Rentrop, M.; Westermann, C.; Sharma, A.; Tucha, L.; Koerts, J.; Tucha, O.; et al. Intraindividual variability in inhibitory function in adults with ADHD–an ex-Gaussian approach. PLoS ONE 2014, 9, e112298. [Google Scholar] [CrossRef] [PubMed]
- Forns, J.; Esnaola, M.; López-Vicente, M.; Suades-González, E.; Alvarez-Pedrerol, M.; Julvez, J.; Grellier, J.; Sebastián-Gallés, N.; Sunyer, J. The n-back test and the attentional network task as measures of child neuropsychological development in epidemiological studies. Neuropsychology 2014, 28, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.N.; Langberg, J.M.; Rosen, P.J.; Graham, A.; Narad, M.E.; Antonini, T.N.; Brinkman, W.B.; Froehlich, T.; Simon, J.O.; Altaye, M. Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations. Neuropsychology 2011, 25, 427–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonini, T.N.; Kingery, K.M.; Narad, M.E.; Langberg, J.M.; Tamm, L.; Epstein, J.N. Neurocognitive and Behavioral Predictors of Math Performance in Children With and Without ADHD. J. Atten. Disord. 2016, 20, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchner, W.K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 1958, 55, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.M.; McMillan, K.M.; Laird, A.R.; Bullmore, E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 2005, 25, 46–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, M.J.; Conway, A.R.A.; Miura, T.K.; Colflesh, G.J.H. Working memory, attention control, and the N-back task: A question of construct validity. J. Exp. Psychol. Learn. Mem. Cognit. 2007, 33, 615–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeggi, S.M.; Buschkuehl, M.; Jonides, J.; Perrig, W.J. Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. USA 2008, 105, 6829–6833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Au, J.; Sheehan, E.; Tsai, N.; Duncan, G.J.; Buschkuehl, M.; Jaeggi, S.M. Improving fluid intelligence with training on working memory: A meta-analysis. Psychon. Bull. Rev. 2015, 22, 366–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soveri, A.; Antfolk, J.; Karlsson, L.; Salo, B.; Laine, M. Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychon. Bull. Rev. 2017, 24, 1077–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helzer, J.E.; Kraemer, H.C.; Krueger, R.F.; Wittchen, H.U.; Sirovatka, P.J.; Regier, D.A. (Eds.) Dimensional Approaches in Diagnostic Classification: Refining the Research Agenda for DSM-V; American Psychiatric Association: Washington, DC, USA, 2009. [Google Scholar]
- Swanson, J.M.; Wigal, T.; Lakes, K. DSM-V and the future diagnosis of attention-deficit/hyperactivity disorder. Curr. Psychiatry Rep. 2009, 11, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.; Goodman, R. Strengths and difficulties questionnaire as a dimensional measure of child mental health. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 400–403. [Google Scholar] [CrossRef] [Green Version]
- Lubke, G.H.; Hudziak, J.J.; Derks, E.M.; van Bijsterveldt, T.C.E.M.; Boomsma, D.I. Maternal ratings of attention problems in ADHD: Evidence for the existence of a continuum. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 1085–1093. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th Text Rev., ed.; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Haavik, J.; Halmøy, A.; Lundervold, A.J.; Fasmer, O.B. Clinical assessment and diagnosis of adults with attention-deficit/hyperactivity disorder. Expert Rev. Neurother. 2010, 10, 1569–1580. [Google Scholar] [CrossRef]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59 (Suppl. 20), 22–33. [Google Scholar]
- Cross-Villasana, F.; Finke, K.; Hennig-Fast, K.; Kilian, B.; Wiegand, I.; Müller, H.J.; Möller, H.J.; Töllner, T. The Speed of Visual Attention and Motor-Response Decisions in Adult Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2015, 78, 107–115. [Google Scholar] [CrossRef]
- Groom, M.J.; Bates, A.T.; Jackson, G.M.; Calton, T.G.; Liddle, P.F.; Hollis, C. Event-related potentials in adolescents with schizophrenia and their siblings: A comparison with Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2008, 63, 784–792. [Google Scholar] [CrossRef]
- Mazaheri, A.; Fassbender, C.; Coffey-Corina, S.; Hartanto, T.A.; Schweitzer, J.B.; Mangun, G.R. Differential oscillatory electroencephalogram between Attention-Deficit/Hyperactivity Disorder subtypes and typically developing adolescents. Biol. Psychiatry 2014, 76, 422–429. [Google Scholar] [CrossRef] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2000, 284, 3043–3045. [Google Scholar] [CrossRef]
- Conners, C.K.; Erhardt, D.; Sparrow, E. Conner’s Adult ADHD Rating Scales: Technical Manual; Multi-Health Systems Incorporated (MHS): North Tonawanda, NY, USA, 1999. [Google Scholar]
- Kessler, R.C.; Adler, L.; Ames, M.; Demler, O.; Faraone, S.; Hiripi, E.; Howes, M.J.; Jin, R.; Secnik, K.; Spencer, T.; et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS): A short screening scale for use in the general population. Psychol. Med. 2005, 35, 245–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fumeaux, P.; Mercier, C.; Roche, S.; Iwaz, J.; Bader, M.; Stéphan, P.; Ecochard, R.; Revol, O. Validation of the French Version of Conners’ Parent Rating Scale Revised, Short Version: Factorial Structure and Reliability. Can. J. Psychiatry 2016, 61, 236–242. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Komsta, L. Outliers: Tests for Outliers; R Package Version 0.14; R Foundation for Statistical Computing: Vienna, Austria, 2011. [Google Scholar]
- Mair, P.; Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 2020, 52, 464–488. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zamar, R.; Marazzi, A.; Yohai, V.; Salibian-Barrera, M.; Maronna, R.; Zivot, E.; Rocke, D.; Martin, D.; Maechler, M.; et al. Robust: Port of the S+ “Robust Library”; R Package Version 0.5-0.0; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Makowski, D.; Ben-Shachar, M.S.; Lüdecke, D. The easystats collection of R packages. GitHub 2020. Available online: https://github.com/easystats/easystats (accessed on 7 October 2020).
- Hothorn, T.; Hornik, K.; van de Wiel, M.A.; Zeileis, A. Implementing a class of permutation tests: The coin package. J. Stat. Softw. 2008, 28, 1–23. [Google Scholar] [CrossRef]
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2002, 2, 7–10. [Google Scholar]
- Massidda, D. Retimes: Reaction Time Analysis, R Package Version 0.1-2 ed.; CRAN; 2013. Available online: https://CRAN.R-project.org/package=retimes (accessed on 7 October 2020).
- Shiffler, R.E. Maximum Z Scores and Outliers. Am. Stat. 1988, 42, 79–80. [Google Scholar] [CrossRef]
- Ratcliff, R. Methods for dealing with reaction time outliers. Psychol. Bull. 1993, 114, 510–532. [Google Scholar] [CrossRef]
- Robinson, M.D. Lives lived in milliseconds: Using cognitive methods in personality research. In Handbook of Research Methods in Personality Psychology; Robins, R.W., Fraley, R.C., Krueger, R.F., Eds.; The Guilford Press: New York, NY, USA, 2009; Chapter 20; pp. 345–359. [Google Scholar]
- Redick, T.S.; Engle, R.W. Working memory capacity and attention network test performance. Appl. Cognit. Psychol. 2006, 20, 713–721. [Google Scholar] [CrossRef]
- Jennings, J.M.; Dagenbach, D.; Engle, C.M.; Funke, L.J. Age-related changes and the attention network task: An examination of alerting, orienting, and executive function. Neuropsychol. Dev. Cognit. B Aging Neuropsychol. Cognit. 2007, 14, 353–369. [Google Scholar] [CrossRef]
- Macleod, J.W.; Lawrence, M.A.; McConnell, M.M.; Eskes, G.A.; Klein, R.M.; Shore, D.I. Appraising the ANT: Psychometric and theoretical considerations of the Attention Network Test. Neuropsychology 2010, 24, 637–651. [Google Scholar] [CrossRef] [PubMed]
- McConnell, M.M.; Shore, D.I. Mixing measures: Testing an assumption of the Attention Network Test. Atten. Percept. Psychophys. 2011, 73, 1096–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberlin, B.G.; Alford, J.L.; Marrocco, R.T. Normal attention orienting but abnormal stimulus alerting and conflict effect in combined subtype of ADHD. Behav. Brain Res. 2005, 165, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.A.; Robertson, I.H.; Barry, E.; Mulligan, A.; Dáibhis, A.; Daly, M.; Watchorn, A.; Gill, M.; Bellgrove, M.A. Impaired conflict resolution and alerting in children with ADHD: Evidence from the Attention Network Task (ANT). J. Child Psychol. Psychiatry 2008, 49, 1339–1347. [Google Scholar] [CrossRef]
- Adólfsdóttir, S.; Sørensen, L.; Lundervold, A.J. The attention network test: A characteristic pattern of deficits in children with ADHD. Behav. Brain Funct. 2008, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Kar, B.R. Development of attentional processes in ADHD and normal children. Prog. Brain Res. 2009, 176, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Bush, G. Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 2010, 35, 278–300. [Google Scholar] [CrossRef]
- Lundervold, A.J.; Adolfsdottir, S.; Halleland, H.; Halmøy, A.; Plessen, K.; Haavik, J. Attention Network Test in adults with ADHD–the impact of affective fluctuations. Behav. Brain Funct. 2011, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Sripada, C.; Kessler, D.; Fang, Y.; Welsh, R.C.; Prem Kumar, K.; Angstadt, M. Disrupted network architecture of the resting brain in attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 2014, 35, 4693–4705. [Google Scholar] [CrossRef] [Green Version]
- Hasler, R.; Perroud, N.; Meziane, H.B.; Herrmann, F.; Prada, P.; Giannakopoulos, P.; Deiber, M.P. Attention-related EEG markers in adult ADHD. Neuropsychologia 2016, 87, 120–133. [Google Scholar] [CrossRef]
- Beck, S.J.; Hanson, C.A.; Puffenberger, S.S.; Benninger, K.L.; Benninger, W.B. A controlled trial of working memory training for children and adolescents with ADHD. J. Clin. Child Adolesc. Psychol. 2010, 39, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.; Chaban, P.; Martinussen, R.; Goldberg, R.; Gotlieb, H.; Kronitz, R.; Hockenberry, M.; Tannock, R. Effects of a computerized working memory training program on working memory, attention, and academics in adolescents with severe LD and comorbid ADHD: A randomized controlled trial. J. Child Psychol. Psychiatry 2012, 53, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Gropper, R.J.; Gotlieb, H.; Kronitz, R.; Tannock, R. Working memory training in college students with ADHD or LD. J. Atten. Disord. 2014, 18, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Van der Donk, M.; Hiemstra-Beernink, A.C.; Tjeenk-Kalff, A.; Van Der Leij, A.; Lindauer, R. Cognitive training for children with ADHD: A randomized controlled trial of cogmed working memory training and ‘paying attention in class’. Front. Psychol. 2015, 6, 1081. [Google Scholar] [CrossRef] [Green Version]
- Holmes, J.; Woolgar, F.; Hampshire, A.; Gathercole, S.E. Are working memory training effects paradigm-specific? Front. Psychol. 2019, 10, 1103. [Google Scholar] [CrossRef] [Green Version]
- Sobanski, E.; Brüggemann, D.; Alm, B.; Kern, S.; Philipsen, A.; Schmalzried, H.; Hesslinger, B.; Waschkowski, H.; Rietschel, M. Subtype differences in adults with attention-deficit/hyperactivity disorder (ADHD) with regard to ADHD-symptoms, psychiatric comorbidity and psychosocial adjustment. Eur. Psychiatry 2008, 23, 142–149. [Google Scholar] [CrossRef]
- Johansson, S.; Halleland, H.; Halmøy, A.; Jacobsen, K.K.; Landaas, E.T.; Dramsdahl, M.; Fasmer, O.B.; Bergsholm, P.; Lundervold, A.J.; Gillberg, C.; et al. Genetic analyses of dopamine related genes in adult ADHD patients suggest an association with the DRD5-microsatellite repeat, but not with DRD4 or SLC6A3 VNTRs. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147B, 1470–1475. [Google Scholar] [CrossRef]
- Salvi, V.; Migliarese, G.; Venturi, V.; Rossi, F.; Torriero, S.; Viganò, V.; Cerveri, G.; Mencacci, C. ADHD in adults: Clinical subtypes and associated characteristics. Riv. Psichiatr. 2019, 54, 84–89. [Google Scholar] [CrossRef]
- Weibel, S.; Menard, O.; Ionita, A.; Boumendjel, M.; Cabelguen, C.; Kraemer, C.; Micoulaud-Franchi, J.A.; Bioulac, S.; Perroud, N.; Sauvaget, A.; et al. Practical considerations for the evaluation and management of Attention Deficit Hyperactivity Disorder (ADHD) in adults. Encephale 2020, 46, 30–40. [Google Scholar] [CrossRef]
- Lis, S.; Baer, N.; Stein-en Nosse, C.; Gallhofer, B.; Sammer, G.; Kirsch, P. Objective measurement of motor activity during cognitive performance in adults with attention-deficit/hyperactivity disorder. Acta Psychiatr. Scand. 2010, 122, 285–294. [Google Scholar] [CrossRef]
- Weissenberger, S.; Děchtěrenko, F.; Klicperova-Baker, M.; Vňuková, M.; Zimbardo, P.; Raboch, J.; Anders, M.; Braaten, E.; Ptáček, R. ADHD Symptoms in Adults and Time Perspectives - Findings From a Czech National Sample. Front. Psychol. 2020, 11, 950. [Google Scholar] [CrossRef] [PubMed]
- Solanto, M.V.; Etefia, K.; Marks, D.J. The utility of self-report measures and the continuous performance test in the diagnosis of ADHD in adults. CNS Spectr. 2004, 9, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.Y.R.; Jain, U.R.; Shapiro, C.M. Sleep and daytime function in adults with attention-deficit/hyperactivity disorder: Subtype differences. Sleep Med. 2013, 14, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Nikolas, M.A.; Nigg, J.T. Neuropsychological performance and attention-deficit hyperactivity disorder subtypes and symptom dimensions. Neuropsychology 2013, 27, 107–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willcutt, E.G.; Chhabildas, N.; Kinnear, M.; DeFries, J.C.; Olson, R.K.; Leopold, D.R.; Keenan, J.M.; Pennington, B.F. The internal and external validity of sluggish cognitive tempo and its relation with DSM-IV ADHD. J. Abnorm. Child Psychol. 2014, 42, 21–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parke, E.M.; Mayfield, A.R.; Barchard, K.A.; Thaler, N.S.; Etcoff, L.M.; Allen, D.N. Factor structure of symptom dimensions in attention-deficit/hyperactivity disorder (ADHD). Psychol. Assess. 2015, 27, 1427–1437. [Google Scholar] [CrossRef] [Green Version]
- Buzy, W.M.; Medoff, D.R.; Schweitzer, J.B. Intra-individual variability among children with ADHD on a working memory task: An ex-Gaussian approach. Child Neuropsychol. 2009, 15, 441–459. [Google Scholar] [CrossRef]
- Lin, H.Y.; Hwang-Gu, S.L.; Gau, S.S.F. Intra-individual reaction time variability based on ex-Gaussian distribution as a potential endophenotype for attention-deficit/hyperactivity disorder. Acta Psychiatr. Scand. 2015, 132, 39–50. [Google Scholar] [CrossRef]
- Karalunas, S.L.; Geurts, H.M.; Konrad, K.; Bender, S.; Nigg, J.T. Annual research review: Reaction time variability in ADHD and autism spectrum disorders: Measurement and mechanisms of a proposed trans-diagnostic phenotype. J. Child Psychol. Psychiatry 2014, 55, 685–710. [Google Scholar] [CrossRef] [Green Version]
- Geurts, H.M.; Grasman, R.P.P.P.; Verté, S.; Oosterlaan, J.; Roeyers, H.; van Kammen, S.M.; Sergeant, J.A. Intra-individual variability in ADHD, autism spectrum disorders and Tourette’s syndrome. Neuropsychologia 2008, 46, 3030–3041. [Google Scholar] [CrossRef]
- Oelhafen, S.; Nikolaidis, A.; Padovani, T.; Blaser, D.; Koenig, T.; Perrig, W.J. Increased parietal activity after training of interference control. Neuropsychologia 2013, 51, 2781–2790. [Google Scholar] [CrossRef] [PubMed]
- Rothman, R.B.; Baumann, M.H.; Dersch, C.M.; Romero, D.V.; Rice, K.C.; Carroll, F.I.; Partilla, J.S. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 2001, 39, 32–41. [Google Scholar] [CrossRef]
- Kuczenski, R.; Segal, D.S. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: Comparison with amphetamine. J. Neurochem. 1997, 68, 2032–2037. [Google Scholar] [CrossRef] [PubMed]
- Seeman, P.; Madras, B. Anti-hyperactivity medication: Methylphenidate and amphetamine. Mol. Psychiatry 1998, 3, 386–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Ding, Y.S. Imaging the effects of methylphenidate on brain dopamine: New model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol. Psychiatry 2005, 57, 1410–1415. [Google Scholar] [CrossRef]
- Wilens, T.E. Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder. J. Clin. Psychopharmacol. 2008, 28, S46–S53. [Google Scholar] [CrossRef]
- Faraone, S.V. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci. Biobehav. Rev. 2018, 87, 255–270. [Google Scholar] [CrossRef]
- Steinhauser, M.; Hübner, R. Distinguishing response conflict and task conflict in the Stroop task: Evidence from ex-Gaussian distribution analysis. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 1398–1412. [Google Scholar] [CrossRef]
- Kratz, O.; Studer, P.; Baack, J.; Malcherek, S.; Erbe, K.; Moll, G.H.; Heinrich, H. Differential effects of methylphenidate and atomoxetine on attentional processes in children with ADHD: An event-related potential study using the Attention Network Test. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2012, 37, 81–89. [Google Scholar] [CrossRef]
- Swanson, J.M.; Flodman, P.; Kennedy, J.; Spence, M.A.; Moyzis, R.; Schuck, S.; Murias, M.; Moriarity, J.; Barr, C.; Smith, M.; et al. Dopamine genes and ADHD. Neurosci. Biobehav. Rev. 2000, 24, 21–25. [Google Scholar] [CrossRef]
- Li, D.; Sham, P.C.; Owen, M.J.; He, L. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum. Mol. Genet. 2006, 15, 2276–2284. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Liu, W.; Ma, K.; Wei, J.; Zhong, P.; Cho, K.; Yan, Z. The ADHD-linked human dopamine D4 receptor variant D4.7 induces over-suppression of NMDA receptor function in prefrontal cortex. Neurobiol. Dis. 2016, 95, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNab, F.; Varrone, A.; Farde, L.; Jucaite, A.; Bystritsky, P.; Forssberg, H.; Klingberg, T. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 2009, 323, 800–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, B.; Li, Y.C.; Gao, W.J. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Brain Res. 2016, 1641, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Lai, T.K.Y.; Su, P.; Zhang, H.; Liu, F. Development of a peptide targeting dopamine transporter to improve ADHD-like deficits. Mol. Brain 2018, 11, 66. [Google Scholar] [CrossRef]
- Valera, E.M.; Faraone, S.V.; Murray, K.E.; Seidman, L.J. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol. Psychiatry 2007, 61, 1361–1369. [Google Scholar] [CrossRef]
- Amen, D.G.; Hanks, C.; Prunella, J. Preliminary evidence differentiating ADHD using brain SPECT imaging in older patients. J Psychoact. Drugs 2008, 40, 139–146. [Google Scholar] [CrossRef]
- Arnsten, A.F.T. The Emerging Neurobiology of Attention Deficit Hyperactivity Disorder: The Key Role of the Prefrontal Association Cortex. J. Pediatr. 2009, 154, I-S43. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.; Blackwell, A.D.; Aron, A.R.; Turner, D.C.; Dowson, J.; Robbins, T.W.; Sahakian, B.J. Association between response inhibition and working memory in adult ADHD: A link to right frontal cortex pathology? Biol. Psychiatry 2007, 61, 1395–1401. [Google Scholar] [CrossRef]
- Heijtz, R.D.; Kolb, B.; Forssberg, H. Motor inhibitory role of dopamine D1 receptors: Implications for ADHD. Physiol. Behav. 2007, 92, 155–160. [Google Scholar] [CrossRef]
- Morein-Zamir, S.; Dodds, C.; van Hartevelt, T.J.; Schwarzkopf, W.; Sahakian, B.; Müller, U.; Robbins, T. Hypoactivation in right inferior frontal cortex is specifically associated with motor response inhibition in adult ADHD. Hum. Brain Mapp. 2014, 35, 5141–5152. [Google Scholar] [CrossRef] [PubMed]
- Fabio, R.A.; Urso, M.F. The analysis of Attention Network in ADHD, attention problems and typically developing subjects. Life Span Disabil. 2014, 17, 199–221. [Google Scholar]
- Scahill, L.; Carroll, D.; Burke, K. Methylphenidate: Mechanism of action and clinical update. J. Child Adolesc. Psychiatr. Nurs. 2004, 17, 85. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Logan, J.; Gerasimov, M.; Maynard, L.; Ding, Y.S.; Gatley, S.J.; Gifford, A.; Franceschi, D. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J. Neurosci. 2001, 21, RC121. [Google Scholar] [CrossRef]
- Jones, M.R.; Katz, B.; Buschkuehl, M.; Jaeggi, S.M.; Shah, P. Exploring N-Back Cognitive Training for Children With ADHD. J. Atten. Disord. 2020, 24, 704–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkley, R.A. Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol. Bull. 1997, 121, 65–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonuga-Barke, E.J. The dual pathway model of AD/HD: An elaboration of neuro-developmental characteristics. Neurosci. Biobehav. Rev. 2003, 27, 593–604. [Google Scholar] [CrossRef]
- Prins, P.J.M.; Brink, E.T.; Dovis, S.; Ponsioen, A.; Geurts, H.M.; de Vries, M.; van der Oord, S. “Braingame Brian”: Toward an Executive Function Training Program with Game Elements for Children with ADHD and Cognitive Control Problems. Games Health J. 2013, 2, 44–49. [Google Scholar] [CrossRef]
- Houtepen, J.A.B.M.; Sijtsema, J.J.; Van der Lem, R.; Scheres, A.; Bogaerts, S. Cognitive-motivational, interpersonal, and behavioral functioning in relationship to treatment and research engagement in forensic patients with ADHD. J. Clin. Psychol. 2020. [Google Scholar] [CrossRef]
- Chacko, A.; Feirsen, N.; Bedard, A.C.; Marks, D.; Uderman, J.Z.; Chimiklis, A. Cogmed Working Memory Training for youth with ADHD: A closer examination of efficacy utilizing evidence-based criteria. J. Clin. Child Adolesc. Psychol. 2013, 42, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Rutledge, K.J.; van den Bos, W.; McClure, S.M.; Schweitzer, J.B. Training cognition in ADHD: Current findings, borrowed concepts, and future directions. Neurotherapeutics 2012, 9, 542–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, S.L. Stimulants and the developing brain. Trends Pharmacol. Sci. 2005, 26, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Schrantee, A.; Tamminga, H.G.H.; Bouziane, C.; Bottelier, M.A.; Bron, E.E.; Mutsaerts, H.J.M.M.; Zwinderman, A.H.; Groote, I.R.; Rombouts, S.A.R.B.; Lindauer, R.J.L.; et al. Age-Dependent Effects of Methylphenidate on the Human Dopaminergic System in Young vs Adult Patients With Attention-Deficit/Hyperactivity Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2016, 73, 955–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michel, J.A.; Kerns, K.A.; Mateer, C.A. The effect of reinforcement variables on inhibition in children with ADHD. Child Neuropsychol. 2005, 11, 295–302. [Google Scholar] [CrossRef]
- Mullane, J.C.; Corkum, P.V.; Klein, R.M.; McLaughlin, E.N.; Lawrence, M.A. Alerting, orienting, and executive attention in children with ADHD. J. Atten. Disord. 2011, 15, 310–320. [Google Scholar] [CrossRef]
- Lawrence, V.; Houghton, S.; Douglas, G.; Durkin, K.; Whiting, K.; Tannock, R. Executive function and ADHD: A comparison of children’s performance during neuropsychological testing and real-world activities. J. Atten. Disord. 2004, 7, 137–149. [Google Scholar] [CrossRef]
- De Bruyckere, K.; Bushe, C.; Bartel, C.; Berggren, L.; Kan, C.C.; Dittmann, R.W. Relationships Between Functional Outcomes and Symptomatic Improvement in Atomoxetine-Treated Adult Patients with Attention-Deficit/Hyperactivity Disorder: Post Hoc Analysis of an Integrated Database. CNS Drugs 2016, 30, 541–558. [Google Scholar] [CrossRef]
- Adler, L.A.; Solanto, M.; Escobar, R.; Lipsius, S.; Upadhyaya, H. Executive Functioning Outcomes Over 6 Months of Atomoxetine for Adults With ADHD: Relationship to Maintenance of Response and Relapse Over the Subsequent 6 Months After Treatment. J. Atten. Disord. 2020, 24, 363–372. [Google Scholar] [CrossRef]
- Roth, R.M.; Lance, C.E.; Isquith, P.K.; Fischer, A.S.; Giancola, P.R. Confirmatory factor analysis of the Behavior Rating Inventory of Executive Function-Adult version in healthy adults and application to attention-deficit/hyperactivity disorder. Arch. Clin. Neuropsychol. 2013, 28, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Løvstad, M.; Sigurdardottir, S.; Andersson, S.; Grane, V.A.; Moberget, T.; Stubberud, J.; Solbakk, A.K. Behavior Rating Inventory of Executive Function Adult Version in Patients with Neurological and Neuropsychiatric Conditions: Symptom Levels and Relationship to Emotional Distress. J. Int. Neuropsychol. Soc. 2016, 22, 682–694. [Google Scholar] [CrossRef]
Controls | MADHD | ADHD | ANOVA | p-Value | Effect Size | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | Adaptive | Baseline | Adaptive | Baseline | Adaptive | Effect | Pr() | ||||
Sample size (N) | 20 | 18 | 22 | 20 | 17 | 17 | |||||
After outlier removal | 18 | 17 | 21 | 19 | 16 | 14 | |||||
ADHD−C | − | − | 16 | 12 | 8 | 8 | |||||
ADHD−I | − | − | 4 | 6 | 8 | 4 | |||||
ADHD−HI | − | − | 0 | 0 | 0 | 1 | |||||
unknown ADHD subtype | − | − | 1 | 1 | 0 | 1 | |||||
ANT Accuracy Rate | 98.6% | 98.9% | 98.2% | 98.2% | 97.9% | 98.2% | 1.85 | 0.16 | 0.02 +s | ||
(before WMT) | 98.4 (3.9) | 98.4 (4.1) | 97.3 (4.9) | 98.0 (3.1) | 97.5 (6.1) | 97.8 (4.4) | 0.85 | 0.36 | 0.00 +si | ||
0.26 | 0.78 | 0.01 +si | |||||||||
ANT Accuracy Rate | 98.3% | 98.6% | 97.5% | 97.9% | 98.1% | 97.7% | 1.06 | 0.35 | 0.00 +si | ||
(after WMT) | 97.6 (4.8) | 98.2 (3.9) | 97.0 (5.1) | 97.5 (3.9) | 97.9 (4.1) | 97.4 (4.9) | 0.48 | 0.49 | 0.00 +si | ||
0.89 | 0.42 | 0.00 +si | |||||||||
Adult ADHD | 47.5 | 47.0 | 68.0 | 62.0 | 60.0 | 55.0 | 25.65 | <0.001 *** | 0.32 +L | ||
self−report Scale(ASRS) | 48.3 (3.0) | 45.7 (2.2) | 67.6 (2.4) | 63.6 (3.0) | 59.9 (2.9) | 55.6 (2.3) | 2.74 | 0.10 | 0.02 +s | ||
0.05 | 0.95 | −0.02 +si | |||||||||
Inattentive symptoms | 56.0 | 51.0 | 79.5 | 76.0 | 75.0 | 74.0 | 51.9 | <0.001 *** | 0.49 +L | ||
56.6 (2.8) | 49.8 (2.0) | 79.1 (1.8) | 74.7 (2.2) | 73.6 (3.2) | 70.8 (3.1) | 5.35 | <0.05 * | 0.04 +s | |||
0.29 | 0.75 | 0.01 +si | |||||||||
Hyperactive−impulsive | 47.5 | 41.0 | 67.0 | 59.0 | 69.0 | 59.0 | 47.3 | <0.001 *** | 0.87 +L | ||
symptoms | 47.3 (2.1) | 42.7 (2.1) | 64.3 (4.0) | 57.7 (3.8) | 65.5 (2.5) | 57.4 (2.8) | 6.36 | <0.05 * | 0.29 +s | ||
0.23 | 0.89 | − | |||||||||
Total ADHD | 58.0 | 44.0 | 78.0 | 69.0 | 78.0 | 64.5 | 47.2 | <0.001 *** | 0.47 +L | ||
symptoms | 52.9 (2.4) | 45.8 (2.0) | 75.5 (2.6) | 69.4 (3.3) | 73.9 (3.1) | 67.6 (2.3) | 8.86 | <0.01 ** | 0.07 +m | ||
0.02 | 0.98 | −0.02 +si | |||||||||
ADHD Index | 49.0 | 45.0 | 66.5 | 60.0 | 56.0 | 57.0 | 29.3 | <0.001 *** | 0.35 +L | ||
49.5 (1.8) | 45.5 (1.9) | 66.4 (2.6) | 60.8 (2.2) | 56.9 (2.0) | 58.1 (2.2) | 3.02 | 0.09 | 0.02 +s | |||
1.25 | 0.29 | 0.00 +si |
Baseline Training | Adaptive Training | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CAARS Scale | Robust Regression | Correlation | Robust Regression | Correlation | |||||||
Intercept | Slope | p-Value | Intercept | Slope | p-Value | ||||||
DSM-IV Inattentive Symptoms Subscale | |||||||||||
ALL participants | BEFORE WMT | 417.31 | 0.825 | 0.139 | <0.001 | 425.85 | 0.764 | 0.132 | <0.001 | ||
AFTER WMT | 421.30 | 0.766 | 0.124 | <0.001 | 426.10 | 0.655 | 0.112 | <0.001 | |||
Controls | BEFORE WMT | 417.27 | 0.927 | 0.160 | <0.001 | 420.69 | 0.887 | 0.153 | <0.001 | ||
AFTER WMT | 417.86 | 0.856 | 0.149 | <0.001 | 417.90 | 0.811 | 0.132 | <0.001 | |||
ADHD patients | BEFORE WMT | 407.09 | 0.914 | 0.153 | <0.001 | 433.95 | 0.617 | 0.113 | <0.001 | ||
with medication | AFTER WMT | 423.04 | 0.702 | 0.114 | <0.001 | 415.32 | 0.835 | 0.140 | <0.001 | ||
ADHD patients | BEFORE WMT | 428.64 | 0.632 | 0.104 | <0.001 | 419.28 | 0.845 | 0.132 | <0.001 | ||
without medication | AFTER WMT | 424.34 | 0.728 | 0.102 | <0.001 | 450.32 | 0.222 | 0.040 | 0.0149 | ||
DSM-IV Hyperactive-Impulsive Symptoms Subscale | |||||||||||
ALL participants | BEFORE WMT | 440.93 | 0.580 | 0.086 | <0.001 | 438.82 | 0.688 | 0.103 | <0.001 | ||
AFTER WMT | 448.06 | 0.457 | 0.061 | <0.001 | 444.13 | 0.466 | 0.067 | <0.001 | |||
Controls | BEFORE WMT | 429.90 | 0.881 | 0.133 | <0.001 | 442.87 | 0.661 | 0.104 | <0.001 | ||
AFTER WMT | 442.26 | 0.598 | 0.088 | <0.001 | 424.16 | 0.860 | 0.131 | <0.001 | |||
ADHD patients | BEFORE WMT | 437.04 | 0.587 | 0.077 | <0.001 | 443.81 | 0.565 | 0.082 | <0.001 | ||
with medication | AFTER WMT | 457.93 | 0.230 | 0.033 | 0.0167 | 446.13 | 0.457 | 0.063 | <0.001 | ||
ADHD patients | BEFORE WMT | 457.24 | 0.257 | 0.036 | 0.0208 | 427.39 | 0.885 | 0.123 | <0.001 | ||
without medication | AFTER WMT | 442.18 | 0.580 | 0.065 | <0.001 | 464.64 | 0.011 | 0.017 | 0.3137 NS | ||
DSM-IV Total ADHD Symptoms Subscale | |||||||||||
ALL participants | BEFORE WMT | 422.69 | 0.790 | 0.124 | <0.001 | 425.80 | 0.804 | 0.132 | <0.001 | ||
AFTER WMT | 432.14 | 0.641 | 0.104 | <0.001 | 434.41 | 0.557 | 0.101 | <0.001 | |||
Controls | BEFORE WMT | 414.69 | 1.013 | 0.163 | <0.001 | 421.48 | 0.913 | 0.150 | <0.001 | ||
AFTER WMT | 429.25 | 0.721 | 0.138 | <0.001 | 419.28 | 0.825 | 0.156 | <0.001 | |||
ADHD patients | BEFORE WMT | 415.98 | 0.836 | 0.125 | <0.001 | 434.76 | 0.638 | 0.104 | <0.001 | ||
with medication | AFTER WMT | 437.65 | 0.516 | 0.082 | <0.001 | 428.71 | 0.669 | 0.109 | <0.001 | ||
ADHD patients | BEFORE WMT | 440.01 | 0.493 | 0.075 | <0.001 | 417.04 | 0.927 | 0.139 | <0.001 | ||
without medication | AFTER WMT | 429.67 | 0.690 | 0.088 | <0.001 | 459.67 | 0.087 | 0.010 | 0.5267 NS | ||
‘ADHD Index’, the normalized T-score of CAARS | |||||||||||
ALL participants | BEFORE WMT | 406.53 | 1.173 | 0.141 | <0.001 | 414.51 | 1.115 | 0.131 | <0.001 | ||
AFTER WMT | 412.53 | 1.081 | 0.133 | <0.001 | 417.72 | 0.932 | 0.129 | <0.001 | |||
Controls | BEFORE WMT | 379.32 | 1.786 | 0.188 | <0.001 | 410.5 | 1.249 | 0.132 | <0.001 | ||
AFTER WMT | 378.32 | 1.738 | 0.200 | <0.001 | 376.89 | 1.714 | 0.219 | <0.001 | |||
ADHD patients | BEFORE WMT | 404.90 | 1.121 | 0.147 | <0.001 | 417.62 | 1.014 | 0.131 | <0.001 | ||
with medication | AFTER WMT | 437.30 | 0.589 | 0.084 | <0.001 | 415.74 | 0.985 | 0.125 | <0.001 | ||
ADHD patients | BEFORE WMT | 430.91 | 0.717 | 0.084 | <0.001 | 410.57 | 1.177 | 0.134 | <0.001 | ||
without medication | AFTER WMT | 420.13 | 0.958 | 0.109 | <0.001 | 463.67 | 0.028 | 0.015 | 0.3777 NS |
Congruent | Mann–Whitney Test | Incongruent | Mann–Whitney Test | ||||||
---|---|---|---|---|---|---|---|---|---|
Reaction Times () | Baseline | Adaptive | (Between Levels) | Baseline | Adaptive | (Between Levels) | |||
p-Value | r | p-Value | r | ||||||
BEFORE WMT | 437.3 | 453.0 | 0.08 | 0.15 +s | 531.0 | 531.5 | 0.09 | 0.14 +s | |
Controls | 440.4 (6.6) | 457.0 (7.0) | 524.3 (7.2) | 546.3 (7.8) | |||||
AFTER WMT | 421.5 | 438.0 | 0.15 | 0.12 +s | 500.0 | 507.8 | 0.12 | 0.13 +s | |
427.9 (5.1) | 443.5 (7.1) | 497.1 (5.9) | 513.3 (7.1) | ||||||
Wilcoxon Signed-Rank test | p-value | <0.01 ** | <0.01 ** | <0.001 *** | <0.001 *** | ||||
(within group) | effect sizer | 0.32 +m | 0.37 +m | 0.63 +L | 0.57 +L | ||||
BEFORE WMT | 453.0 | 480.3 | <0.05 * | 0.19 +s | 547.0 | 550.8 | 0.05 | 0.15 +s | |
ADHD patients | 458.6 (6.3) | 490.2 (8.9) | 548.8 (6.8) | 582.7 (10.0) | |||||
with medication | AFTER WMT | 437.3 | 438.0 | 0.39 | 0.07 +si | 515.0 | 519.8 | 0.39 | 0.07 +si |
445.4 (7.0) | 450.8 (6.2) | 520.7 (7.2) | 528.2 (6.5) | ||||||
Wilcoxon Signed-Rank test | p-value | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | ||||
(within group) | effect sizer | 0.43 +m | 0.57 +L | 0.55 +L | 0.68 +L | ||||
BEFORE WMT | 453.0 | 429.5 | <0.05 * | 0.19 +s | 546.8 | 543.3 | 0.72 | 0.03 +si | |
ADHD patients | 460.1 (6.9) | 439.1 (6.1) | 546.6 (6.7) | 545.0 (8.4) | |||||
without medication | AFTER WMT | 445.5 | 414.3 | <0.01 ** | 0.29 +s | 531.8 | 496.3 | <0.001 *** | 0.38 +m |
451.1 (5.8) | 422.7 (6.2) | 536.7 (5.7) | 497.3 (6.0) | ||||||
Wilcoxon Signed-Rank test | p-value | 0.34 | <0.001 *** | 0.12 | <0.001 *** | ||||
(within group) | effect sizer | 0.12 +s | 0.50 +L | 0.04 +si | 0.83 +L |
Spatial Cue | Mann–Whitney Test | No Cue | Mann–Whitney Test | ||||||
---|---|---|---|---|---|---|---|---|---|
Reaction Times () | Baseline | Adaptive | (Between Levels) | Baseline | Adaptive | (Between Levels) | |||
p-Value | r | p-Value | r | ||||||
BEFORE WMT | 437.5 | 453.0 | 0.12 | 0.15 +s | 484.8 | 516.0 | 0.19 | 0.13 +s | |
Controls | 447.2 (8.7) | 466.6 (9.2) | 504.3 (8.6) | 519.7 (8.8) | |||||
AFTER WMT | 410.8 | 438.0 | 0.13 | 0.15 +s | 484.0 | 500.0 | 0.08 | 0.17 +s | |
428.2 (6.6) | 446.5 (8.5) | 485.8 (6.3) | 504.0 (7.9) | ||||||
Wilcoxon Signed-Rank test | p-value | <0.01 ** | <0.01 ** | <0.01 ** | <0.05 * | ||||
(within group) | effect sizer | 0.46 +m | 0.49 +m | 0.37 +m | 0.35 +m | ||||
BEFORE WMT | 461.0 | 484.0% | 0.06 | 0.17 +s | 531.0 | 547.0 | 0.07 | 0.17 +s | |
ADHD patients | 468.9 (8.5) | 501.2 (11.3) | 523.6 (8.6) | 557.7 (12.3) | |||||
with medication | AFTER WMT | 453.0 | 453.0 | 0.37 | 0.08 +si | 500.0 | 500.0 | 0.73 | 0.03 +si |
450.4 (7.8) | 459.6 (7.5) | 506.1 (8.6) | 509.7 (8.7) | ||||||
Wilcoxon Signed-Rank test | p-value | <0.001 *** | <0.001 *** | <0.01 ** | <0.001 *** | ||||
(within group) | effect sizer | 0.47 +m | 0.56 +L | 0.42 +m | 0.61 +L | ||||
BEFORE WMT | 453.0 | 437.0 | 0.10 | 0.17 +s | 511.5 | 500.0 | 0.85 | 0.02 +si | |
ADHD patients | 464.6 (8.8) | 443.7 (8.3) | 514.3 (8.8) | 513.6 (10.9) | |||||
without medication | AFTER WMT | 438.0 | 418.2 | <0.01 ** | 0.29 +s | 515.0 | 492.5 | <0.05 * | 0.27 +s |
451.7 (7.1) | 421.0 (7.5) | 516.8 (6.8) | 485.7 (7.2) | ||||||
Wilcoxon Signed-Rank test | p-value | 0.18 | <0.001 *** | 0.95 | <0.001 *** | ||||
(within group) | effect sizer | 0.19 +s | 0.67 +L | 0.00 +si | 0.63 +L |
mu () | Between | sigma () | Between | tau () | Between | |||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Adaptive | Groups | Baseline | Adaptive | Groups | Baseline | Adaptive | Groups | ||
p, eff.size | p, eff.size | p, eff.size | ||||||||
Controls | BEFORE WMT | 395.7 | 424.4 | 0.29 | 45.6 | 49.7 | 0. 40 | 64.9 | 79.7 | 0.42 |
404.7 (10.3) | 419.7 (9.5) | +s | 45.9 (3.4) | 49.8 (3.2) | +s | 75.0 (6.9) | 77.9 (6.7) | +s | ||
AFTER WMT | 387.7 | 393.1 | 0.44 | 44.2 | 37.7 | 0.83s | 64.5 | 58.5 | 0.88 | |
391.8 (7.7) | 400.4 (7.9) | +s | 42.8 (2.7) | 45.0 (3.9) | +si | 65.8 (3.4) | 77.5 (9.9) | +si | ||
within group: | p-value | * | * | 0.39 | 0.28 | 0.07 | 0.82 | |||
effect size | +m | +m | +s | +s | +m | +si | ||||
ADHD patients | BEFORE WMT | 415.0 | 444.0 | 0.14 | 55.7 | 62.9 | 0.25 | 70.7 | 71.3 | 0.67 |
420.0 (10.6) | 445.8 (13.6) | +s | 54.2 (4.0) | 60.8 (4.0) | +s | 80.2 (6.7) | 89.8 (10.6) | +si | ||
with medication | AFTER WMT | 396.8 | 418.8 | 0.49 | 45.6 | 55.4 | 0.19s | 64.7 | 63.2 | 0.35 |
404.4 (9.9) | 413.3 (7.8) | +s | 48.4 (3.2) | 57.8 (5.3) | 77.0 (6.9) | 73.6 (10.9) | +s | |||
within group: | p-value | * | * | 0.28 | 0.13 | 0.66 | * | |||
effect size | +m | +m | +s | +m | +s | +m | ||||
ADHD patients | BEFORE WMT | 418.1 | 393.9 | 0.08 | 54.4 | 50.8 | * | 73.7 | 83.5 | 0.38 |
416.5 (7.8) | 398.1 (6.7) | +m | 58.0 (2.9) | 47.7 (3.7) | +L | 79.5 (7.1) | 87.3 (8.6) | +s | ||
without medication | AFTER WMT | 395.1 | 392.3 | 0.25 | 43.9 | 45.5 | 0.34s | 90.7 | 62.2 | * |
401.1 (7.3) | 389.0 (7.3) | +s | 46.8 (4.5) | 40.2 (5.0) | +s | 90.0 (6.8) | 67.7 (5.2) | +m | ||
within group: | p-value | * | * | 0.06 | 0.13 | * | ||||
effect size | +s | +m | +m | +m | +m | +L |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dotare, M.; Bader, M.; Mesrobian, S.K.; Asai, Y.; Villa, A.E.P.; Lintas, A. Attention Networks in ADHD Adults after Working Memory Training with a Dual n-Back Task. Brain Sci. 2020, 10, 715. https://doi.org/10.3390/brainsci10100715
Dotare M, Bader M, Mesrobian SK, Asai Y, Villa AEP, Lintas A. Attention Networks in ADHD Adults after Working Memory Training with a Dual n-Back Task. Brain Sciences. 2020; 10(10):715. https://doi.org/10.3390/brainsci10100715
Chicago/Turabian StyleDotare, Masashi, Michel Bader, Sarah K. Mesrobian, Yoshiyuki Asai, Alessandro E. P. Villa, and Alessandra Lintas. 2020. "Attention Networks in ADHD Adults after Working Memory Training with a Dual n-Back Task" Brain Sciences 10, no. 10: 715. https://doi.org/10.3390/brainsci10100715
APA StyleDotare, M., Bader, M., Mesrobian, S. K., Asai, Y., Villa, A. E. P., & Lintas, A. (2020). Attention Networks in ADHD Adults after Working Memory Training with a Dual n-Back Task. Brain Sciences, 10(10), 715. https://doi.org/10.3390/brainsci10100715