Thalamic Functional Connectivity during Spatial Long-Term Memory and the Role of Sex
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimulus Protocol and Task
2.3. Image Acquisition and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aggleton, J.P.; Brown, M.W. Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav. Brain Sci. 1999, 22, 425–444. [Google Scholar] [CrossRef]
- Aggleton, J.P.; DeSimone, R.; Mishkin, M. The origin, course, and termination of the hippocampothalamic projections in the macaque. J. Comp. Neurol. 1986, 243, 409–421. [Google Scholar] [CrossRef]
- Papez, J.W. A Proposed Mechanism of Emotion. Arch. Neurol. Psychiatry 1937, 38, 725. [Google Scholar] [CrossRef]
- Aggleton, J.P.; Pralus, A.; Nelson, A.J.D.; Hornberger, M. Thalamic pathology and memory loss in early Alzheimer’s disease: Moving the focus from the medial temporal lobe to Papez circuit. Brain 2016, 139, 1877–1890. [Google Scholar] [CrossRef] [PubMed]
- Grodd, W.; Kumar, V.J.; Schüz, A.; Lindig, T.; Scheffler, K. The anterior and medial thalamic nuclei and the human limbic system: Tracing the structural connectivity using diffusion-weighted imaging. Sci. Rep. 2020, 10, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-S.; Kim, H.J.; Lee, K.J.; Kim, Y.I.; Lim, S.-C.; Shon, Y.-M. Cognitive improvement after long-term electrical stimulation of bilateral anterior thalamic nucleus in refractory epilepsy patients. Seizure 2012, 21, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Ridley, R.M.; Baker, H.F.; Mills, D.A.; Green, M.E.; Cummings, R.M. Topographical memory impairments after unilateral lesions of the anterior thalamus and contralateral inferotmeporal cortex. Neuropsychologia 2004, 42, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Benon, R.; LeHuche, R. Crainial Injuries and Korsakoff’s Psychosis. J. Ment. Sci. 1920, 68, 89–90. [Google Scholar]
- Harding, A.; Halliday, G.M.; Caine, D.; Kril, J.J. Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 2000, 123, 141–154. [Google Scholar] [CrossRef]
- Mitchell, A.S.; Chakraborty, S. What does the mediodorsal thalamus do? Front. Syst. Neurosci. 2013, 7, 37. [Google Scholar] [CrossRef]
- Isseroff, A.; Rosvold, H.; Galkin, T.; Goldman-Rakic, P. Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys. Brain Res. 1982, 232, 97–113. [Google Scholar] [CrossRef]
- Mitchell, A.S.; Baxter, M.G.; Gaffan, D. Dissociable Performance on Scene Learning and Strategy Implementation after Lesions to Magnocellular Mediodorsal Thalamic Nucleus. J. Neurosci. 2007, 27, 11888–11895. [Google Scholar] [CrossRef] [PubMed]
- Edelstyn, N.M.J.; Mayes, A.R.; Denby, C.; Ellis, S.J. Impairment in material-specific long-term memory following unilateral mediodorsal thalamic damage and presumed partial disconnection of the mamillo-thalamic tract. J. Neuropsychol. 2012, 6, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Kafkas, A.; Mayes, A.R.; Montaldi, D. Thalamic-Medial Temporal Lobe Connectivity Underpins Familiarity Memory. Cereb. Cortex 2020, 30, 3827–3837. [Google Scholar] [CrossRef]
- Geier, K.T.; Buchsbaum, B.R.; Parimoo, S.; Olsen, R.K. The role of anterior and medial dorsal thalamus in associative memory encoding and retrieval. Neuropsychologia 2020, 148, 107623. [Google Scholar] [CrossRef]
- Van Der Werf, Y.D.; Jolles, J.; Witter, M.P.; Uylings, H.B. Contributions of Thalamic Nuclei to Declarative Memory Functioning. Cortex 2003, 39, 1047–1062. [Google Scholar] [CrossRef]
- Carlesimo, G.A.; Lombardi, M.G.; Caltagirone, C.; Barban, F. Recollection and familiarity in the human thalamus. Neurosci. Biobehav. Rev. 2015, 54, 18–28. [Google Scholar] [CrossRef]
- Canli, T.; Desmond, J.E.; Zhao, Z.; Gabrieli, J.D.E. Sex differences in the neural basis of emotional memories. Proc. Natl. Acad. Sci. USA 2002, 99, 10789–10794. [Google Scholar] [CrossRef]
- Frings, L.; Wagner, K.; Unterrainer, J.; Spreer, J.; Halsband, U.; Schulze-Bonhage, A. Gender-related differences in lateralization of hippocampal activation and cognitive strategy. NeuroReport 2006, 17, 417–421. [Google Scholar] [CrossRef]
- Banks, S.J.; Jones-Gotman, M.; Ladowski, D.; Sziklas, V. Sex differences in the medial temporal lobe during encoding and recognition of pseudowords and abstract designs. NeuroImage 2012, 59, 1888–1895. [Google Scholar] [CrossRef]
- Spets, D.S.; Slotnick, S.D. Similar patterns of cortical activity in females and males during item memory. Brain Cogn. 2019, 135, 103581. [Google Scholar] [CrossRef]
- Armony, J.L.; Sergerie, K. Own-sex effects in emotional memory for faces. Neurosci. Lett. 2007, 426, 1–5. [Google Scholar] [CrossRef]
- Lovén, J.; Svärd, J.; Ebner, N.C.; Herlitz, A.; Fischer, H. Face gender modulates women’s brain activity during face encoding. Soc. Cogn. Affect. Neurosci. 2014, 9, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Jacques, P.L.S.; Conway, M.A.; Cabeza, R. Gender differences in autobiographical memory for everyday events: Retrieval elicited by SenseCam images versus verbal cues. Memory 2011, 19, 723–732. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Young, K.D.; Bellgowan, P.S.; Bodurka, J.; Drevets, W.C. Functional neuroimaging of sex differences in autobiographical memory recall. Hum. Brain Mapp. 2013, 34, 3320–3332. [Google Scholar] [CrossRef] [PubMed]
- Spets, D.S.; Jeye, B.M.; Slotnick, S.D. Different patterns of cortical activity in females and males during spatial long-term memory. NeuroImage 2019, 199, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Spets, D.S.; Slotnick, S.D. Are there sex differences in brain activity during long-term memory? A systematic review and fMRI activation likelihood estimation meta-analysis. Cogn. Neurosci. 2020, 1–11. [Google Scholar] [CrossRef]
- Grön, G.; Wunderlich, A.P.; Spitzer, M.; Tomczak, R.; Riepe, M.W. Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nat. Neurosci. 2000, 3, 404–408. [Google Scholar] [CrossRef]
- Cahill, L. Why sex matters for neuroscience. Nat. Rev. Neurosci. 2006, 7, 477–484. [Google Scholar] [CrossRef]
- Torromino, G.; Loffredo, V.; Esposito, F.; Colucci, M.; De Risi, M.; Gioffre, M.; De Leonibus, E. Thalamus-hippocampal direct pathway regulates sex-differences in memory consolidation. In Proceedings of the Society of Neuroscience Conference, Chicago, IL, USA, 19–23 October 2019. [Google Scholar]
- Kumar, V.J.; Van Oort, E.; Scheffler, K.; Beckmann, C.F.; Grodd, W. Functional anatomy of the human thalamus at rest. NeuroImage 2017, 147, 678–691. [Google Scholar] [CrossRef]
- Slotnick, S.D. Cognitive Neuroscience of Memory; Cambridge University Press (CUP): Cambridge, UK, 2017. [Google Scholar]
- Slotnick, S.D.; Schacter, D.L. A sensory signature that distinguishes true from false memories. Nat. Neurosci. 2004, 7, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Jeye, B.M.; MacEvoy, S.P.; Karanian, J.M.; Slotnick, S.D. Distinct regions of the hippocampus are associated with memory for different spatial locations. Brain Res. 2018, 1687, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Najdenovska, E.; Alemán-Gómez, Y.; Battistella, G.; Descoteaux, M.; Hagmann, P.; Jacquemont, S.; Maeder, P.; Thiran, J.-P.; Fornari, E.; Cuadra, M.B. In-vivo probabilistic atlas of human thalamic nuclei based on diffusion- weighted magnetic resonance imaging. Sci. Data 2018, 5, 180270. [Google Scholar] [CrossRef] [PubMed]
- Najdenovska, E.; Aleman-Gomez, Y.; Bach Cuadra, M. Dataset In-Vivo Probabilistic Atlas of Human Thalamic Nuclei Based on Diffusion-Weighted Magnetic Resonance Imaging. [Data Set]. Zenodo. Available online: https://zenodo.org/record/1405484#.X7xcqO0RWUk (accessed on 23 October 2020). [CrossRef]
- Mclaren, D.G.; Ries, M.L.; Xu, G.; Johnson, S.C. A generalized form of context dependent psychological interactions (gPPI): A comparison to standard approaches. Neuroimage 2012, 61, 1277–1286. [Google Scholar] [CrossRef]
- O’Reilly, J.X.; Woolrich, M.W.; Behrens, T.E.; Smith, S.M.; Johansen-Berg, H. Tools of the trade: Psychophysiological interactions and functional connectivity. Soc. Cogn. Affect. Neurosci. 2012, 7, 604–609. [Google Scholar] [CrossRef]
- Slotnick, S.D. Cluster success: fMRI inferences for spatial extent have acceptable false-positive rates. Cogn. Neurosci. 2017, 8, 150–155. [Google Scholar] [CrossRef]
- Eklund, A.; Nichols, T.E.; Knutsson, H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA 2016, 113, 7900–7905. [Google Scholar] [CrossRef]
- Slotnick, S.D. Resting-state fMRI data reflects default network activity rather than null data: A defense of commonly employed methods to correct for multiple comparisons. Cogn. Neurosci. 2017, 8, 141–143. [Google Scholar] [CrossRef]
- Vertes, R.P.; Albo, Z.; Di Prisco, G.V. Theta-rhythmically firing neurons in the anterior thalamus: Implications for mnemonic functions of Papez’s circuit. Neuroscience 2001, 104, 619–625. [Google Scholar] [CrossRef]
- Shah, A.; Jhawar, S.S.; Goel, A. Analysis of the anatomy of the Papez circuit and adjoining limbic system by fiber dissection techniques. J. Clin. Neurosci. 2012, 19, 289–298. [Google Scholar] [CrossRef]
- Slotnick, S.D. The nature of recollection in behavior and the brain. NeuroReport 2013, 24, 663–670. [Google Scholar] [CrossRef]
- Seghier, M.L. The angular gyrus multiple functions and multiple subdivisions. Neuroscientist 2013, 19, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.R.; Kumaran, D.; Ólafsdóttir, H.F.; Spiers, H.J. Dissociation between Dorsal and Ventral Posterior Parietal Cortical Responses to Incidental Changes in Natural Scenes. PLoS ONE 2013, 8, e67988. [Google Scholar] [CrossRef] [PubMed]
- Place, R.; Farovik, A.; Brockmann, M.; Eichenbaum, H. Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nat. Neurosci. 2016, 19, 992–994. [Google Scholar] [CrossRef] [PubMed]
- Slotnick, S.D.; Schacter, D.L. The nature of memory related activity in early visual areas. Neuropsychologia 2006, 44, 2874–2886. [Google Scholar] [CrossRef] [PubMed]
- Thakral, P.P.; Slotnick, S.D. The role of parietal cortex during sustained visual spatial attention. Brain Res. 2009, 1302, 157–166. [Google Scholar] [CrossRef]
- Schmitt, L.I.; Wimmer, R.D.; Nakajima, M.; Happ, M.; Mofakham, S.; Halassa, M.M. Thalamic amplification of cortical connectivity sustains attentional control. Nat. Cell Biol. 2017, 545, 219–223. [Google Scholar] [CrossRef]
- Price, C. The anatomy of language: Contributions from functional neuroimaging. J. Anat. 2000, 197, 335–359. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, S.; Kim, J.H. Ischemic Evidence of Transient Global Amnesia: Location of the Lesion in the Hippocampus. J. Clin. Neurol. 2008, 4, 59–66. [Google Scholar] [CrossRef]
- Noble, S.; Scheinost, D.; Finn, E.S.; Shen, X.; Papademetris, X.; McEwen, S.C.; Bearden, C.E.; Addington, J.; Goodyear, B.G.; Cadenhead, K.S.; et al. Multisite reliability of MR-based functional connectivity. NeuroImage 2017, 146, 959–970. [Google Scholar] [CrossRef]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Yarkoni, T. Big Correlations in Little Studies: Inflated fMRI Correlations Reflect Low Statistical Power—Commentary on Vul et al. (2009). Perspect. Psychol. Sci. 2009, 4, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-C.; Lazzara, M.M.; Ranganath, C.; Knight, R.T.; Yonelinas, A.P. The Medial Temporal Lobe Supports Conceptual Implicit Memory. Neuron 2010, 68, 835–842. [Google Scholar] [CrossRef][Green Version]
- Wang, W.-C.; Ranganath, C.; Yonelinas, A.P. Activity reductions in perirhinal cortex predict conceptual priming and familiarity-based recognition. Neuropsychologia 2013, 52, 19–26. [Google Scholar] [CrossRef][Green Version]
- Tompary, A.; Duncan, K.; Davachi, L. High-resolution investigation of memory-specific reinstatement in the hippocampus and perirhinal cortex. Hippocampus 2016, 26, 995–1007. [Google Scholar] [CrossRef]
- Tambini, A.; Berners-Lee, A.; Davachi, L. Brief targeted memory reactivation during the awake state enhances memory stability and benefits the weakest memories. Sci. Rep. 2017, 7, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.P.; Wiebels, K.; Sumner, R.; Van Mulukom, V.; Grady, C.; Schacter, D.; Addis, D. An fMRI investigation of the relationship between future imagination and cognitive flexibility. Neuropsychologia 2017, 95, 156–172. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, L.K.; Gjorgieva, E.; Paller, K.A.; Kahnt, T.; A Gottfried, J. Odor-evoked category reactivation in human ventromedial prefrontal cortex during sleep promotes memory consolidation. eLife 2018, 7, 39681. [Google Scholar] [CrossRef]
Region | BA | x | y | z | k |
---|---|---|---|---|---|
All participants | |||||
Positive activations | |||||
L. Anterior Prefrontal Cortex | 10 | −32 | 51 | 12 | 31 |
L. Medial Prefrontal Cortex | 6 | −5 | 11 | 48 | 50 |
Bilateral Anterior Cingulate Gyrus | 32 | 0 | 24 | 38 | 30 |
Bilateral Anterior Cingulate Gyrus | 32 | 0 | 39 | −10 | 32 |
L. Angular Gyrus | 39 | −44 | −54 | 34 | 51 |
R. Superior Temporal Sulcus | 21/22 | 60 | −21 | −7 | 29 |
L. Parahippocampal Cortex | 19/37 | −27 | −46 | −-7 | 27 |
Negative activations | |||||
L. Calcarine Sulcus | 17 | −26 | −62 | 8 | 30 |
Region | BA | x | y | z | k |
---|---|---|---|---|---|
Female (Hits > Misses) > Male (Hits > Misses) | |||||
Positive activations | |||||
R. Inferior Frontal Gyrus/Insula | 44/45 | 39 | 25 | 7 | 74 |
Male (Hits > Misses) > Female (Hits > Misses) Negative activations | |||||
L. Calcarine Sulcus/Lingual Gyrus | 17/18 | 19 | −76 | −5 | 32 |
Region | BA | x | y | z | k |
---|---|---|---|---|---|
All participants | |||||
Positive activations | |||||
R. Superior Frontal Sulcus | 6/8 | 27 | 12 | 53 | 29 |
L. Precentral Sulcus | 6 | −37 | 3 | 32 | 48 |
L. Medial Prefrontal Cortex | 6 | −7 | 8 | 50 | 37 |
L. Intraparietal Sulcus | 19/39 | −19 | −68 | 45 | 50 |
L. Intraparietal Sulcus | 7/40 | −39 | −55 | 45 | 27 |
L. Insula | − | −31 | 16 | 4 | 32 |
R. Insula | − | 34 | 24 | −2 | 43 |
R. Putamen | − | 27 | 3 | 0 | 41 |
Negative activations | |||||
No activations |
Region | BA | x | y | z | k |
---|---|---|---|---|---|
Female (Hits > Misses) > Male (Hits > Misses) | |||||
Positive activations | |||||
L. Superior Temporal Sulcus | 22 | −48 | −41 | −2 | 31 |
Male (Hits > Misses) > Female (Hits > Misses) Negative activations | |||||
R. Supramarginal Gyrus | 40 | 61 | −31 | 29 | 40 |
L. Intraparietal Sulcus | 7/40 | −28 | −48 | 40 | 24 |
R. Intraparietal Sulcus | 19/39 | 28 | −67 | 42 | 37 |
Bilateral Precuneus/Post. Cingulate Gyrus | 7/31 | 0 | −42 | 48 | 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spets, D.S.; Slotnick, S.D. Thalamic Functional Connectivity during Spatial Long-Term Memory and the Role of Sex. Brain Sci. 2020, 10, 898. https://doi.org/10.3390/brainsci10120898
Spets DS, Slotnick SD. Thalamic Functional Connectivity during Spatial Long-Term Memory and the Role of Sex. Brain Sciences. 2020; 10(12):898. https://doi.org/10.3390/brainsci10120898
Chicago/Turabian StyleSpets, Dylan S., and Scott D. Slotnick. 2020. "Thalamic Functional Connectivity during Spatial Long-Term Memory and the Role of Sex" Brain Sciences 10, no. 12: 898. https://doi.org/10.3390/brainsci10120898
APA StyleSpets, D. S., & Slotnick, S. D. (2020). Thalamic Functional Connectivity during Spatial Long-Term Memory and the Role of Sex. Brain Sciences, 10(12), 898. https://doi.org/10.3390/brainsci10120898