Neural Stem Cells/Neuronal Precursor Cells and Postmitotic Neuroblasts in Constitutive Neurogenesis and After ,Traumatic Injury to the Mesencephalic Tegmentum of Juvenile Chum Salmon, Oncorhynchus keta
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Animals
2.2. Experimental Damage to the Midbrain Tegmentum
2.3. Immunohistochemistry
2.4. Experimental BrdU Labeling
2.5. Microscopy
2.6. Statistical Analysis
3. Results
3.1. Experimental Labeling of BrdU in the Intact Tegmentum of Juvenile Chum Salmon and after Traumatic Injury
3.2. Labeling of Neuronal Precursors with Nestin in the Mesencephalic Tegmentum of Juvenile Chum Salmon in Normal Conditions and after Traumatic Injury
3.3. Vimentin Labeling of Progenitor Cells in the Mesencephalic Tegmentum in Intact Juvenile Chum Salmon and after Traumatic Injury
3.4. Expression of Doublecortin in Postmitotic Neuroblasts of the Tegmentum in Intact Juvenile Chum Salmon and after a Traumatic Injury
4. Discussion
4.1. Investigation of the Proliferative Potential of the Mesencephalic Tegmentum of Juvenile Chum with Experimental BrdU Labeling
4.2. Investigation of Neuronal Progenitor Cells in the Tegmentum of Intact Juvenile Chum Salmon and after Traumatic Injury
4.3. Expression of Vimentin in Intact Juvenile Chum Salmon and a Change in Constructive Metabolism during a Traumatic Injury to the Tegmentum
4.4. The Expression of Doublecortin in Neuroblasts of the Mesencephalic Tegmentum Formed during Constitutive Neurogenesis and the Induction of DC Immunopositivity in Post-Injury Neuroblasts of Chum Salmon
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Kempermann, G.; Kuhn, H.G.; Gage, F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997, 386, 493–495. [Google Scholar] [CrossRef]
- van Praag, H.; Schinder, A.F.; Christie, B.R.; Toni, N.; Palmer, T.D.; Gage, F.H. Functional neurogenesis in the adult hippocampus. Nature 2002, 415, 1030–1034. [Google Scholar] [CrossRef]
- Cheng, L.C.; Pastrana, E.; Tavazoie, M.; Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 2009, 12, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Yoo, A.S.; Staahl, B.T.; Chen, L.; Crabtree, G.R. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 2009, 460, 642–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, D.K.; Marchetto, M.C.; Guo, J.U.; Ming, G.L.; Gage, F.H.; Song, H. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat. Neurosci. 2010, 13, 1338–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zupanc, G.K.; Horschke, I. Proliferation zones in the brain of adult gymnotiform fish: A quantitative mapping study. J. Comp. Neurol. 1995, 353, 213–233. [Google Scholar] [CrossRef]
- Ekström, P.; Johnsson, C.M.; Ohlin, L.M. Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J. Comp. Neurol. 2001, 436, 92–110. [Google Scholar] [CrossRef]
- Adolf, B.; Chapouton, P.; Lam, C.S.; Topp, S.; Tannhauser, B.; Strahle, U.; Götz, M.; Bally-Cuif, L. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev. Biol. 2006, 295, 278–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandel, H.; Kaslin, J.; Ganz, J.; Wenzel, I.; Brand, M. Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate. Dev. Biol. 2006, 295, 263–277. [Google Scholar] [CrossRef] [Green Version]
- Kuroyanagi, Y.; Okuyama, T.; Suehiro, Y.; Imada, H.; Shimada, A.; Naruse, K.; Takeda, H.; Kubo, T.; Takeuchi, H. Proliferation zones in adult medaka (Oryzias latipes) brain. Brain Res. 2010, 1323, 33–40. [Google Scholar] [CrossRef]
- Mueller, T.; Wullimann, M.F. An evolutionary interpretation of teleostean forebrain anatomy. Brain Behav. Evol. 2009, 74, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Rothenaigner, I.; Krecsmarik, M.; Hayes, J.A.; Bahn, B.; Lepier, A.; Fortin, G.; Götz, M.; Jagasia, R.; Bally-Cuif, L. Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Development 2011, 138, 1459–1469. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Tanaka, H.; Okamoto, H.; Ohshima, T. Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. Dev. Biol. 2010, 342, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Arochena, M.; Anadón, R.; Diaz-Regueira, S.M. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. J. Comp. Neurol. 2004, 469, 413–436. [Google Scholar] [CrossRef]
- Pushchina, E.V.; Kapustyanov, I.A.; Varaksin, A.A. Proliferation and neuro- and gliogenesis in normal and mechanically damaged mesencephalic tegmentum in juvenile chum salmon Oncorhynchus keta. Russ. J. Devel. Biol. 2019, 50, 59–76. [Google Scholar] [CrossRef]
- Dolbeare, F. Bromodeoxyuridine: Diagnostic toll in biology and medicine. Part I: Historical perspectives, histochemical methods and cell kinetics. Histochem. J. 1995, 27, 339–369. [Google Scholar] [CrossRef]
- Traniello, I.M.; Sîrbulescu, R.F.; Ilieş, I.; Zupanc, G.K. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: A novel teleost fish model of negligible senescence. Dev. Neurobiol. 2014, 74, 514–530. [Google Scholar] [CrossRef]
- März, M.; Chapouton, P.; Diotel, N.; Vaillant, C.; Hesl, B.; Takamiya, M.; Lam, C.S.; Kah, O.; Bally-Cuif, L.; Strähle, U. Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. Glia 2010, 58, 870–888. [Google Scholar] [CrossRef]
- Ganz, J.; Kaslin, J.; Hochmann, S.; Freudenreich, D.; Brand, M. Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia 2010, 58, 1345–1363. [Google Scholar] [CrossRef]
- Kishimoto, N.; Alfaro-Cervello, C.; Shimizu, K.; Asakawa, K.; Urasaki, A.; Nonaka, S.; Kawakami, K.; Garcia-Verdugo, J.M.; Sawamoto, K. Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish. J. Comp. Neurol. 2011, 519, 3549–3565. [Google Scholar] [CrossRef]
- Zupanc, G.K.; Sîrbulescu, R.F. Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Eur. J. Neurosci. 2011, 34, 917–929. [Google Scholar] [CrossRef]
- Pushchina, E.V.; Varaksin, A.A.; Obukhov, D.K.; Shukla, S. Neurochemical Organization and Adult Neurogenesis of Masu Salmon Oncorhynchus Masou Brain; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2017; p. 267. [Google Scholar]
- Wullimann, M.; Puelles, L. Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains. Anat. Embryol. (Berl). 1999, 199, 329–348. [Google Scholar] [CrossRef]
- Bravo, R.; MacDonald-Bravo, H. Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: Association with DNA replication sites. J. Cell Biol. 1987, 105, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Margotta, V.; Morelli, A.; Gelosi, E.; Alfei, L. PCNA positivity in the mesencephalic matrix areas in the adult of a Teleost, Carassius carassius L. Ital. J. Anat. Embryol. 2002, 107, 185–198. [Google Scholar]
- Zupanc, G.K. Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J. Exp. Biol. 1999, 202 (Pt 10), 1435–1446. [Google Scholar]
- Zupanc, G.K. Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Brain Behav. Evol. 2001, 58, 250–275. [Google Scholar] [CrossRef]
- Rink, E.; Wullimann, M.F. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res. 2001, 889, 316–330. [Google Scholar] [CrossRef]
- Barbosa, J.S.; Sanchez-Gonzalez, R.; Di Giaimo, R.; Baumgart, E.V.; Theis, F.J.; Götz, M.; Ninkovic, J. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain. Science 2015, 348, 789–793. [Google Scholar] [CrossRef]
- Lyons, D.A.; Guy, A.T.; Clarke, J.D. Monitoring neural progenitor fate through multiple rounds of division in an intact vertebrate brain. Development 2003, 130, 3427–3436. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Yang, N.; Yeo, S.Y.; Chitnis, A.; Guo, S. Intra-lineage directional notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron 2012, 74, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Mahler, J.; Driever, W. Expression of the zebrafish intermediate neurofilament Nestin in the developing nervous system and in neural proliferation zones at postembryonic stages. BMC Dev. Biol. 2007, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Zupanc, G.K.; Sîrbulescu, R.F. Teleost fish as a model system to study successful regeneration of the central nervous system. Curr. Top. Microbiol. Immunol. 2013, 367, 193–233. [Google Scholar]
- Wiese, C.; Rolletschek, A.; Kania, G.; Blyszczuk, P.; Tarasov, K.V.; Tarasova, Y.; Wersto, R.P.; Boheler, K.R.; Wobus, A.M. Nestin expression—a property of muti-lineage progenitor cells? Cell. Mol. Life Sci. 2004, 61, 2510–2522. [Google Scholar] [CrossRef]
- Michalczyk, K.; Ziman, M. Nestin structure and predicted function in cellular cytoskeletal organization. Histol. Histopathol. 2005, 20, 665–671. [Google Scholar]
- Grandel, H.; Brand, M. Comparative aspects of adult neural stem cell activity in vertebrates. Dev. Genes Evol. 2013, 223, 131–147. [Google Scholar] [CrossRef]
- Ferretti, P. Is there a relationship between adult neurogenesis and neuron generation following injury across evolution? Eur. J. Neurosci. 2011, 34, 951–962. [Google Scholar] [CrossRef]
- Chen, H.L.; Yuh, C.H.; Wu, K.K. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis. PLoS ONE. 2010, 5, e9318. [Google Scholar] [CrossRef] [Green Version]
- Carmona, I.; Bartolomé, M.J.; Lavoie-Gagnon, C.; Escribano, C. Distribution of nestin protein: Immunohistochemical study in enteric plexus of rat duodenum. Microsc. Res. Tech. 2011, 74, 148–152. [Google Scholar] [CrossRef]
- Albright, J.E.; Stojkovska, I.; Rahman, A.A.; Brown, C.J.; Morrison, B.E. Nestin-positive/SOX2-negative cells mediate adult neurogenesis of nigral dopaminergic neurons in mice. Neurosci Lett. 2016, 615, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Hendrickson, M.L.; Rao, A.J.; Demerdash, O.N.; Kalil, R.E. Expression of nestin by neural cells in the adult rat and human brain. PLoS ONE. 2011, 6, e18535. [Google Scholar] [CrossRef] [Green Version]
- Dahl, D.; Rueger, D.C.; Bignami, A.; Weber, K.; Osborn, M. Vimentin, the 57,000 molecular weight protein of fibroblasts filaments, is the major cytoskeletal component in immature glia. Eur. J. Cell. Biol. 1981, 24, 191–196. [Google Scholar]
- Chen, M.; Puschmann, T.B.; Marasek, P.; Inagaki, M.; Pekna, M.; Wilhelmsson, U.; Pekny, M. Increased neuronal differentiation of neural progenitor cells derived from phosphovimentin-deficient mice. Mol. Neurobiol. 2018, 55, 5478–5489. [Google Scholar] [CrossRef]
- Kálmán, M.; Ari, C. Distribution of GFAP immunoreactive structures in the rhombencephalon of the sterlet (Acipenser ruthenus) and its evolutionary implication. J. Exp. Zool. 2002, 293, 395–406. [Google Scholar] [CrossRef]
- Cerdà, J.; Conrad, M.; Markl, J.; Brand, M.; Herrmann, H. Zebrafish vimentin: Molecular characterization, assembly properties and developmental expression. Eur. J. Cell. Biol. 1998, 77, 175–187. [Google Scholar] [CrossRef]
- Kálmán, M. Astroglial architecture of the carp (Cyprinus carpio) brain as revealed by immunohistochemical staining against glial fibrillary acidic protein (GFAP). Anat. Embryol. (Berl). 1998, 198, 409–433. [Google Scholar] [CrossRef]
- Elmquist, J.K.; Swanson, J.J.; Sakaguchi, D.S.; Ross, L.R.; Jacobson, C.D. Developmental distribution of GFAP and vimentin in the Brazilian opossum brain. J. Comp. Neurol. 1994, 344, 283–296. [Google Scholar] [CrossRef]
- Kaslin, J.; Ganz, J.; Geffarth, M.; Grandel, H.; Hans, S.; Brand, M. Stem cells in the adult zebrafish cerebellum: Initiation and maintenance of a novel stem cell niche. J. Neurosci. 2009, 29, 6142–6153. [Google Scholar] [CrossRef] [Green Version]
- Baumgart, E.V.; Barbosa, J.S.; Bally-Cuif, L.; Götz, M.; Ninkovic, J. Stab wound injury of the zebrafish telencephalon: A model for comparative analysis of reactive gliosis. Glia. 2012, 60, 343–357. [Google Scholar] [CrossRef]
- Takeda, A.; Atobe, Y.; Kadota, T.; Goris, R.C.; Funakoshi, K. Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord. Neuroscience 2015, 284, 134–152. [Google Scholar] [CrossRef]
- Francis, F.; Koulakoff, A.; Boucher, D.; Chafey, P.; Schaar, B.; Vinet, M.C.; Friocourt, G.; McDonnell, N.; Reiner, O.; Kahn, A.; et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 1999, 23, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.A.; Huang, Y.; Alvarez-Buylla, A. Adult subventricular zone and olfactory bulb neurogenesis. In Adult Neurogenesis; Gage, F., Kempermann, H.G., Song, H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2008; pp. 175–206. [Google Scholar]
- Schaar, B.T.; Kinoshita, K.; McConnell, S.K. Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron 2004, 41, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Ambrogini, P.; Lattanzi, D.; Ciuffoli, S.; Agostini, D.; Bertini, L.; Stocchi, V.; Santi, S.; Cuppini, R. Morphofunctional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res. 2004, 1017, 21–31. [Google Scholar] [CrossRef]
- Brown, J.P.; Couillard-Després, S.; Cooper-Kuhn, C.M.; Winkler, J.; Aigner, L.; Kuhn, H.G. Transient expression of doublecortin during adult neurogenesis. J. Comp. Neurol. 2003, 467, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Beb Abfalah, N.M.; Slomianka, L.; Vyssotski, A.L.; Lipp, H.P. Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol. Aging 2010, 1, 151–161. [Google Scholar]
- Knoth, R.; Singec, I.; Ditter, M.; Pantazis, G.; Capetian, P.; Meyer, R.P.; Horvat, V.; Volk, B.; Kempermann, G. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE. 2010, 5, e8809. [Google Scholar] [CrossRef]
- Alonso, J.R.; Lara, J.; Vecino, E.; Coveñas, R.; Aijón, J. Cell proliferation in the olfactory bulb of adult freshwater teleosts. J. Anat. 1989, 163, 155–163. [Google Scholar]
- Brandt, M.D.; Jessberger, S.; Steiner, B.; Kronenberg, G.; Reuter, K.; Bick-Sander, A.; von der Behrens, W.; Kempermann, G. Transient calretinin-expression defines early postmitotic step of neuronal differentiation in adult hippocampus neurogenesis of mice. Mol. Cell. Neurosci. 2003, 24, 603–613. [Google Scholar] [CrossRef]
- Tozzini, E.T.; Baumgart, M.; Battistoni, G.; Cellerino, A. Adult neurogenesis in the short-lived teleost Nothobranchius furzeri: Localization of neurogenic niches, molecular characterization and effects of aging. Aging Cell. 2012, 11, 241–251. [Google Scholar] [CrossRef] [Green Version]
PVZ, Intact Animals | Injured Tegmentum | |||
---|---|---|---|---|
BrdU-Negative Cells | ||||
Cells/Nuclei | Cell Type | Cell Size, µm * | Cell Type | Cell Size, µm * |
Nuclei | 1 | - | 1 | - |
Undifferentiated | 2 | 5.3 ± 0.5/4.1 ± 0.7 | 2 | - |
Oval I | 3 | 6.8 ± 0.6/4.9 ± 0.8 | 3 | 7.0 ± 0.7/5.2 ± 1.5 |
Oval II | 4 | 8.7 ± 0.6/5.3 ± 1.1 | 4 | 9.2 ± 1.1/5.9 ± 0.6 |
Differentiated | 5 | - | 5 | 14.4 ± 2.3/10.5 ± 1.8 |
BrdU-positive cells | ||||
Nuclei | 1 | 2.9 ± 0.4/1.7 ± 0.6 | 1 | 2.8 ± 0.6/2.0 ± 0.5 |
Undifferentiated | 2 | 4.5 ± 0.7/3.1 ± 0.9 | 2 | 4.3 ± 0.7/2.6 ± 0.7 |
Oval I | 3 | 7.3 ± 0.5/4.5 ± 0.6 | 3 | 6.3 ± 0.2/5.0 ± 0.4 |
Oval II | 4 | 8.8 ± 0.04/5.5 ± 0.6 | 4 | 10.8 ± 0.1/7.9 ± 0.4 |
Differentiated | 5 | - | 5 | 13.9 ± 2.6/7.1 ± 1.7 |
Intact Animals | Injured Tegmentum | |||
---|---|---|---|---|
Nes-Negative Cells | ||||
Cells/Granules | Cell Type | Cell Size *, µm | Cell Type | Cell Size *, µm |
Granules | 1 | - | 1 | - |
Undifferentiated | 2 | 5.3 ± 0.5/3.4 ± 0.6 | 2 | 5.3 ± 0.5/3.5 ± 0.7 |
Oval I | 3 | 6.9 ± 0.6/3.6 ± 0.9 | 3 | 6.7 ± 0.5/4.4 ± 0.8 |
Oval II | 4 | 10.2 ± 1.8/4.4 ± 1.3 | 4 | 8.3 ± 0.4/4.2 ± 1.3 |
Differentiated | 5 | 21.7 ± 10.9/12 ± 11.5 | 5 | - |
Nes-positive cells | ||||
Granules | 1 | 2.5 ± 0.6/1.6 ± 0.5 | 1 | 2.9 ± 0.3/2.1 ± 0.4 |
Undifferentiated | 2 | 4.2 ± 0.5/2.7 ± 0.7 | 2 | 4.5 ± 0.6/3.1 ± 0.9 |
Oval I | 3 | - | 3 | 6.9 ± 0.4/4.4 ± 1.0 |
Oval II | 4 | - | 4 | 9.8 ± 1.3/6.7 ± 0.6 |
Differentiated | 5 | - | 5 | - |
Intact Animals | Injured Tegmentum | |||
---|---|---|---|---|
Vim-Negative Cells | ||||
Cells/Granules | Cell Type | Cell Size *, µm | Cell Type | Cell Size *, µm |
Granules | 1 | - | 1 | - |
Undifferentiated | 2 | 5.4 ± 0.4/3.8 ± 0.7 | 2 | 5.3 ± 0.5/3.5 ± 0.6 |
Oval I | 3 | 6.9 ± 0.5/4.1 ± 0.8 | 3 | 6.9 ± 0.5/4.1 ± 0.7 |
Oval II | 4 | 9.4 ± 1.2/4.3 ± 1.1 | 4 | 9.8 ± 1.4/4.5 ± 1.2 |
Differentiated | 5 | 20.4 ± 3.5/4.2 ± 0.8 | 5 | - |
Vim-positive cells | ||||
Granules | 1 | 2.6 ± 0.6/1.6 ± 0.4 | 1 | 2.7 ± 0.6/1.7 ± 0.6 |
Undifferentiated | 2 | 4.2 ± 0.5/2.8 ± 0.6 | 2 | 4.8 ± 0.7/3.1 ± 0.7 |
Oval I | 3 | 6.8 ± 0.5/4.8 ± 1.1 | 3 | 6.8 ± 0.6/4.0 ± 0.9 |
Oval II | 4 | 10.5 ± 2.5/7.6 ± 2.5 | 4 | - |
Differentiated | 5 | - | 5 | - |
Intact Animals | Injured Tegmentum | |||
---|---|---|---|---|
DC-Negative Cells | ||||
Cells/Granules | Cell Type | Cell Size *, µm | Cell Type | Cell Size *, µm |
Granules | 1 | 1 | ||
Undifferentiated | 2 | - | 2 | 5.5 ± 0.4/4.3 ± 0.8 |
Oval I | 3 | 7.3 ± 0.5/4.5 ± 0.7 | 3 | 7.0 ± 0.6/4.8 ± 0.7 |
Oval II | 4 | 9.8 ± 1.3/5.1 ± 0.9 | 4 | 9.4 ± 1.3/5.5 ± 1.0 |
Differentiated | 5 | 14.1 ± 1.6/6.4 ± 1.2 | 5 | |
DC- positive cells | ||||
Granules | 1 | 3.5 ± 0.4/2.6 ± 0.5 | 1 | 2.9 ± 0.4/2.1 ± 0.3 |
Undifferentiated | 2 | 4.6 ± 0.6/2.9 ± 0.6 | 2 | 5.0 ± 0.7/3.4 ± 0.8 |
Oval I | 3 | 7.1 ± 0.5/3.9 ± 1.2 | 3 | 6.9 ± 0.5/4.3 ± 0.9 |
Oval II | 4 | 8.6 ± 0.5/5.1 ± 1.2 | 4 | 9.9 ± 1.3/5.6 ± 1.2 |
Differentiated | 5 | - | 5 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pushchina, E.V.; Kapustyanov, I.A.; Varaksin, A.A. Neural Stem Cells/Neuronal Precursor Cells and Postmitotic Neuroblasts in Constitutive Neurogenesis and After ,Traumatic Injury to the Mesencephalic Tegmentum of Juvenile Chum Salmon, Oncorhynchus keta. Brain Sci. 2020, 10, 65. https://doi.org/10.3390/brainsci10020065
Pushchina EV, Kapustyanov IA, Varaksin AA. Neural Stem Cells/Neuronal Precursor Cells and Postmitotic Neuroblasts in Constitutive Neurogenesis and After ,Traumatic Injury to the Mesencephalic Tegmentum of Juvenile Chum Salmon, Oncorhynchus keta. Brain Sciences. 2020; 10(2):65. https://doi.org/10.3390/brainsci10020065
Chicago/Turabian StylePushchina, Evgeniya V., Ilya A. Kapustyanov, and Anatoly A. Varaksin. 2020. "Neural Stem Cells/Neuronal Precursor Cells and Postmitotic Neuroblasts in Constitutive Neurogenesis and After ,Traumatic Injury to the Mesencephalic Tegmentum of Juvenile Chum Salmon, Oncorhynchus keta" Brain Sciences 10, no. 2: 65. https://doi.org/10.3390/brainsci10020065
APA StylePushchina, E. V., Kapustyanov, I. A., & Varaksin, A. A. (2020). Neural Stem Cells/Neuronal Precursor Cells and Postmitotic Neuroblasts in Constitutive Neurogenesis and After ,Traumatic Injury to the Mesencephalic Tegmentum of Juvenile Chum Salmon, Oncorhynchus keta. Brain Sciences, 10(2), 65. https://doi.org/10.3390/brainsci10020065