Update on Atypicalities of Central Nervous System in Autism Spectrum Disorder
Abstract
:1. Introduction
2. CNS and Social Function
3. Central Nervous Changes and ASD
3.1. Brain Structure and Function Abnormalities in ASD
3.2. Neuroglial Activation and Neuroinflammation in ASD
3.3. Glutamatergic Neurotransmission Dysfunction in ASD
3.4. Mitochondrial Dysfunction in ASD
3.5. Dysregulation of mTOR Signaling Pathway in ASD
4. Limitation and Challenges
5. Conclusions and Future Direction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Volkmar, F.R.; State, M.; Klin, A. Autism and autism spectrum disorders: Diagnostic issues for the coming decade. J. Child Psychol. Psychiatry 2009, 50, 108–115. [Google Scholar] [CrossRef]
- Rapin, I.; Tuchman, R.F. Autism: Definition, neurobiology, screening, diagnosis. Pediatr. Clin. N. Am. 2008, 55, 1129–1146. [Google Scholar] [CrossRef] [PubMed]
- Association, A.P. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Publishing Inc.: Washington, DC, USA, 2013. [Google Scholar]
- Weintraub, K. The prevalence puzzle: Autism counts. Nature 2011, 479, 22–24. [Google Scholar] [CrossRef]
- Dong, D.; Zielke, H.R.; Yeh, D.; Yang, P. Cellular stress and apoptosis contribute to the pathogenesis of autism spectrum disorder. Autism Res. 2018, 11, 1076–1090. [Google Scholar] [CrossRef] [PubMed]
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Rosenberg, C.R.; White, T. Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill. Summ. 2018, 67, 1. [Google Scholar] [CrossRef] [PubMed]
- Halladay, A.K.; Bishop, S.; Constantino, J.N.; Daniels, A.M.; Koenig, K.; Palmer, K.; Messinger, D.; Pelphrey, K.; Sanders, S.J.; Singer, A.T. Sex and gender differences in autism spectrum disorder: Summarizing evidence gaps and identifying emerging areas of priority. Mol. Autism 2015, 6, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, S.N.; Schendel, D.E.; Parner, E.T. Explaining the increase in the prevalence of autism spectrum disorders: The proportion attributable to changes in reporting practices. JAMA Pediatr. 2015, 169, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Betancur, C. Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Res. 2011, 1380, 42–77. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, C.P.; Zoghbi, H.Y. Solving the autism puzzle a few pieces at a time. Neuron 2011, 70, 806–808. [Google Scholar] [CrossRef] [Green Version]
- Lai, M.-C.; Lombardo, M.V.; Suckling, J.; Ruigrok, A.N.; Chakrabarti, B.; Ecker, C.; Deoni, S.C.; Craig, M.C.; Murphy, D.G.; Bullmore, E.T. Biological sex affects the neurobiology of autism. Brain 2013, 136, 2799–2815. [Google Scholar] [CrossRef]
- Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2005, 57, 67–81. [Google Scholar] [CrossRef]
- Baio, J. Prevalence of Autism Spectrum Disorders: Autism and Developmental Disabilities Monitoring Network, 14 Sites, United States, 2008. Morbidity and Mortality Weekly Report. Surveillance Summaries. Cent. Dis. Control Prev. 2012, 61, 3. [Google Scholar]
- Baxter, A.J.; Brugha, T.; Erskine, H.E.; Scheurer, R.W.; Vos, T.; Scott, J.G. The epidemiology and global burden of autism spectrum disorders. Psychol. Med. 2015, 45, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Ohja, K.; Gozal, E.; Fahnestock, M.; Cai, L.; Cai, J.; Freedman, J.H.; Switala, A.; El-Baz, A.; Barnes, G.N. Neuroimmunologic and neurotrophic interactions in autism spectrum disorders: Relationship to neuroinflammation. Neuromolecular Med. 2018, 20, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Maezawa, I.; Calafiore, M.; Wulff, H.; Jin, L.-W. Does microglial dysfunction play a role in autism and Rett syndrome? Neuron Glia Biol. 2011, 7, 85–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelphrey, K.A.; Carter, E.J. Brain mechanisms for social perception: Lessons from autism and typical development. Ann. N. Y. Acad. Sci. 2008, 1145, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anckarsäter, H. Central nervous changes in social dysfunction: Autism, aggression, and psychopathy. Brain Res. Bull. 2006, 69, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Pelphrey, K.A.; Shultz, S.; Hudac, C.M.; Vander Wyk, B.C. Research review: Constraining heterogeneity: The social brain and its development in autism spectrum disorder. J. Child Psychol. Psychiatry 2011, 52, 631–644. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Lin, S.X.; Newell, E.; Nelson, C. Abnormal measles-mumps-rubella antibodies and CNS autoimmunity in children with autism. J. Biomed. Sci. 2002, 9, 359–364. [Google Scholar] [CrossRef]
- Herbert, M.R. Autism: A brain disorder or a disorder that affects the brain. Clin. Neuropsychiatry 2005, 2, 354–379. [Google Scholar]
- Parellada, M.; Penzol, M.; Pina, L.; Moreno, C.; González-Vioque, E.; Zalsman, G.; Arango, C. The neurobiology of autism spectrum disorders. Eur. Psychiatry 2014, 29, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Sparks, B.; Friedman, S.; Shaw, D.; Aylward, E.H.; Echelard, D.; Artru, A.; Maravilla, K.; Giedd, J.; Munson, J.; Dawson, G. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002, 59, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S.; Ring, H.A.; Bullmore, E.T.; Wheelwright, S.; Ashwin, C.; Williams, S. The amygdala theory of autism. Neurosci. Biobehav. Rev. 2000, 24, 355–364. [Google Scholar] [CrossRef]
- Groen, W.; Teluij, M.; Buitelaar, J.; Tendolkar, I. Amygdala and hippocampus enlargement during adolescence in autism. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 552–560. [Google Scholar] [PubMed]
- Adolphs, R.; Baron-Cohen, S.; Tranel, D. Impaired recognition of social emotions following amygdala damage. J. Cogn. Neurosci. 2002, 14, 1264–1274. [Google Scholar] [CrossRef] [Green Version]
- Pierce, K.; Müller, R.-A.; Ambrose, J.; Allen, G.; Courchesne, E. Face processing occurs outside the fusiformface area’in autism: Evidence from functional MRI. Brain 2001, 124, 2059–2073. [Google Scholar] [CrossRef] [PubMed]
- Aylward, E.H.; Minshew, N.; Goldstein, G.; Honeycutt, N.; Augustine, A.; Yates, K.; Barta, P.E.; Pearlson, G. MRI volumes of amygdala and hippocampus in non–mentally retarded autistic adolescents and adults. Neurology 1999, 53, 2145. [Google Scholar] [CrossRef] [PubMed]
- Paul, L.K.; Corsello, C.; Tranel, D.; Adolphs, R. Does bilateral damage to the human amygdala produce autistic symptoms? J. Neurodev. Disord. 2010, 2, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumann, C.M.; Hamstra, J.; Goodlin-Jones, B.L.; Lotspeich, L.J.; Kwon, H.; Buonocore, M.H.; Lammers, C.R.; Reiss, A.L.; Amaral, D.G. The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J. Neurosci. 2004, 24, 6392–6401. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Chen, M.-H.; Li, G.; Wu, D.; Sun, Q.; Shen, D.; Wang, L. A Preliminary Volumetric MRI Study of Amygdala and Hippocampal Subfields in Autism during Infancy. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 1052–1056. [Google Scholar]
- Aloisi, F. Immune function of microglia. Glia 2001, 36, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Fields, R.D.; Stevens-Graham, B. New insights into neuron-glia communication. Science 2002, 298, 556–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedergaard, M.; Takano, T.; Hansen, A.J. Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 2002, 3, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Rauschka, H.; Lassmann, H. Inflammation in the nervous system: The human perspective. Glia 2001, 36, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, A.W.; Jyonouchi, H.; Comi, A.M.; Connors, S.L.; Milstien, S.; Varsou, A.; Heyes, M.P. Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr. Neurol. 2005, 33, 195–201. [Google Scholar] [CrossRef]
- Molloy, C.A.; Morrow, A.L.; Meinzen-Derr, J.; Schleifer, K.; Dienger, K.; Manning-Courtney, P.; Altaye, M.; Wills-Karp, M. Elevated cytokine levels in children with autism spectrum disorder. J. Neuroimmunol. 2006, 172, 198–205. [Google Scholar] [CrossRef]
- Li, X.; Chauhan, A.; Sheikh, A.M.; Patil, S.; Chauhan, V.; Li, X.-M.; Ji, L.; Brown, T.; Malik, M. Elevated immune response in the brain of autistic patients. J. Neuroimmunol. 2009, 207, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaylock, R.; Strunecka, A. Immune-glutamatergic dysfunction as a central mechanism of the autism spectrum disorders. Curr. Med. Chem. 2009, 16, 157–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, C.A.; Vargas, D.L.; Zimmerman, A.W. Immunity, neuroglia and neuroinflammation in autism. Int. Rev. Psychiatry 2005, 17, 485–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekdahl, C.T.; Claasen, J.-H.; Bonde, S.; Kokaia, Z.; Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA 2003, 100, 13632–13637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, G.C. Glutamate receptor dysfunction and drug targets across models of autism spectrum disorders. Pharmacol. Biochem. Behav. 2012, 100, 850–854. [Google Scholar] [CrossRef] [Green Version]
- Lam, K.S.; Aman, M.G.; Arnold, L.E. Neurochemical correlates of autistic disorder: A review of the literature. Res. Dev. Disabil. 2006, 27, 254–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manent, J.-B.; Represa, A. Neurotransmitters and brain maturation: Early paracrine actions of GABA and glutamate modulate neuronal migration. Neuroscientist 2007, 13, 268–279. [Google Scholar] [CrossRef]
- Sheldon, A.L.; Robinson, M.B. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem. Int. 2007, 51, 333–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimmura, C.; Suda, S.; Tsuchiya, K.J.; Hashimoto, K.; Ohno, K.; Matsuzaki, H.; Iwata, K.; Matsumoto, K.; Wakuda, T.; Kameno, Y. Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PLoS ONE 2011, 6, e25340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bejjani, A.; O’Neill, J.; Kim, J.A.; Frew, A.J.; Yee, V.W.; Ly, R.; Kitchen, C.; Salamon, N.; McCracken, J.T.; Toga, A.W. Elevated glutamatergic compounds in pregenual anterior cingulate in pediatric autism spectrum disorder demonstrated by 1H MRS and 1H MRSI. PLoS ONE 2012, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rothman, D.L.; Behar, K.L.; Hyder, F.; Shulman, R.G. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: Implications for brain function. Annu. Rev. Physiol. 2003, 65, 401–427. [Google Scholar] [CrossRef]
- Maddock, R.J.; Buonocore, M.H. MR spectroscopic studies of the brain in psychiatric disorders. In Brain Imaging in Behavioral Neuroscience; Springer: Berlin/Heidelberg, Germany, 2011; pp. 199–251. [Google Scholar]
- Page, L.A.; Daly, E.; Schmitz, N.; Simmons, A.; Toal, F.; Deeley, Q.; Ambery, D. Clin Psych, F.; McAlonan, G.M.; Murphy, K.C.; et al. In vivo 1 H-magnetic resonance spectroscopy study of amygdala-hippocampal and parietal regions in autism. Am. J. Psychiatry 2006, 163, 2189–2192. [Google Scholar] [CrossRef]
- Brown, M.S.; Singel, D.; Hepburn, S.; Rojas, D.C. Increased glutamate concentration in the auditory cortex of persons with autism and first-degree relatives: A 1H-MRS study. Autism Res. 2013, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Joshi, G.; Biederman, J.; Wozniak, J.; Goldin, R.L.; Crowley, D.; Furtak, S.; Lukas, S.E.; Gönenç, A. Magnetic resonance spectroscopy study of the glutamatergic system in adolescent males with high-functioning autistic disorder: A pilot study at 4T. Eur. Arch. Psychiatry Clin. Neurosci. 2013, 263, 379–384. [Google Scholar] [CrossRef]
- Hassan, T.H.; Abdelrahman, H.M.; Fattah, N.R.A.; El-Masry, N.M.; Hashim, H.M.; El-Gerby, K.M.; Fattah, N.R.A. Blood and brain glutamate levels in children with autistic disorder. Res. Autism Spectr. Disord. 2013, 7, 541–548. [Google Scholar] [CrossRef]
- Tirouvanziam, R.; Obukhanych, T.V.; Laval, J.; Aronov, P.A.; Libove, R.; Banerjee, A.G.; Parker, K.J.; O’Hara, R.; Herzenberg, L.A.; Herzenberg, L.A. Distinct plasma profile of polar neutral amino acids, leucine, and glutamate in children with autism spectrum disorders. J. Autism Dev. Disord. 2012, 42, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Shinohe, A.; Hashimoto, K.; Nakamura, K.; Tsujii, M.; Iwata, Y.; Tsuchiya, K.J.; Sekine, Y.; Suda, S.; Suzuki, K.; Sugihara, G.-I. Increased serum levels of glutamate in adult patients with autism. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2006, 30, 1472–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldred, S.; Moore, K.M.; Fitzgerald, M.; Waring, R.H. Plasma amino acid levels in children with autism and their families. J. Autism Dev. Disord. 2003, 33, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.H.; Halt, A.R.; Stary, J.M.; Kanodia, R.; Schulz, S.C.; Realmuto, G.R. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol. Psychiatry 2002, 52, 805–810. [Google Scholar] [CrossRef]
- Yip, J.; Soghomonian, J.-J.; Blatt, G.J. Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: Pathophysiological implications. Acta Neuropathol. 2007, 113, 559–568. [Google Scholar] [CrossRef]
- Brune, C.W.; Kim, S.J.; Hanna, G.L.; Courchesne, E.; Lord, C.; Leventhal, B.L.; Cook, E.H. Family-based association testing of OCD-associated SNPs of SLC1A1 in an autism sample. Autism Res. 2008, 1, 108–113. [Google Scholar] [CrossRef]
- Horder, J.; Lavender, T.; Mendez, M.; O’gorman, R.; Daly, E.; Craig, M.; Lythgoe, D.; Barker, G.; Murphy, D. Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: A [1 H] MRS study. Transl. Psychiatry 2013, 3, 279. [Google Scholar] [CrossRef]
- Bernardi, S.; Anagnostou, E.; Shen, J.; Kolevzon, A.; Buxbaum, J.D.; Hollander, E.; Hof, P.R.; Fan, J. In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism. Brain Res. 2011, 1380, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Van Elst, L.T.; Maier, S.; Fangmeier, T.; Endres, D.; Mueller, G.; Nickel, K.; Ebert, D.; Lange, T.; Hennig, J.; Biscaldi, M. Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: Evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol. Psychiatry 2014, 19, 1314–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVito, T.J.; Drost, D.J.; Neufeld, R.W.; Rajakumar, N.; Pavlosky, W.; Williamson, P.; Nicolson, R. Evidence for cortical dysfunction in autism: A proton magnetic resonance spectroscopic imaging study. Biol. Psychiatry 2007, 61, 465–473. [Google Scholar] [CrossRef]
- Kubas, B.; Kułak, W.; Sobaniec, W.; Tarasow, E.; Łebkowska, U.; Walecki, J. Metabolite alterations in autistic children: A 1H MR spectroscopy study. Adv. Med Sci. 2012, 57, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Haas, R.H.; Parikh, S.; Falk, M.J.; Saneto, R.P.; Wolf, N.I.; Darin, N.; Cohen, B.H. Mitochondrial disease: A practical approach for primary care physicians. Pediatrics 2007, 120, 1326–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boekema, E.J.; Braun, H.-P. Supramolecular structure of the mitochondrial oxidative phosphorylation system. J. Biol. Chem. 2007, 282, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Chan, D.C. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum. Mol. Genet. 2009, 18, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Okamoto, K.-I.; Hayashi, Y.; Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 2004, 119, 873–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, M.P.; Liu, D. Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Med. 2002, 2, 215–231. [Google Scholar] [CrossRef]
- Valenti, D.; de Bari, L.; De Filippis, B.; Henrion-Caude, A.; Vacca, R.A. Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: An overview of Down syndrome, autism, Fragile X and Rett syndrome. Neurosci. Biobehav. Rev. 2014, 46, 202–217. [Google Scholar] [CrossRef]
- Palmieri, L.; Persico, A.M. Mitochondrial dysfunction in autism spectrum disorders: Cause or effect? BBA Bioenerg. 2010, 1797, 1130–1137. [Google Scholar] [CrossRef] [Green Version]
- Legido, A.; Jethva, R.; Goldenthal, M.J. Mitochondrial dysfunction in autism. Semin. Pediatr. Neurol. 2013, 20, 163–175. [Google Scholar]
- Essa, M.M.; Guillemin, G.J.; Waly, M.I.; Al-Sharbati, M.M.; Al-Farsi, Y.M.; Hakkim, F.L.; Ali, A.; Al-Shafaee, M.S. Increased markers of oxidative stress in autistic children of the Sultanate of Oman. Biol. Trace Elem. Res. 2012, 147, 25–27. [Google Scholar] [CrossRef]
- Khemakhem, A.M.; Frye, R.E.; El-Ansary, A.; Al-Ayadhi, L.; Bacha, A.B. Novel biomarkers of metabolic dysfunction is autism spectrum disorder: Potential for biological diagnostic markers. Metab. Brain Dis. 2017, 32, 1983–1997. [Google Scholar] [CrossRef]
- Shahjadi, S.; Khan, A.S.; Ahmed, M.U. Mitochondrial dysfunction in early diagnosed autism spectrum disorder children. J. Dhaka Med. Coll. 2017, 26, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Karim, M.; Begum, S.; Shahzadi, S. Serum lactate, AST, ALT in male autistic children in Bangladesh. J. Bangladesh Soc. Physiol. 2015, 10, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Mousavinejad, E.; Ghaffari, M.; Payami, S. Coenzyme-Q10 deficiency and stress oxidative in children with autism spectrum disorders. J. Neurol. Neurorehabil. Res. 2017, 2, 25–29. [Google Scholar] [CrossRef]
- Kuwabara, H.; Yamasue, H.; Koike, S.; Inoue, H.; Kawakubo, Y.; Kuroda, M.; Takano, Y.; Iwashiro, N.; Natsubori, T.; Aoki, Y. Altered metabolites in the plasma of autism spectrum disorder: A capillary electrophoresis time-of-flight mass spectroscopy study. PLoS ONE 2013, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.M.; Abdel-Al, H.; Al-Sawi, M. Assessment of plasma amino acid profile in autism using cation-exchange chromatography with postcolumn derivatization by ninhydrin. Turk. J. Med. Sci. 2017, 47, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Pastural, É.; Ritchie, S.; Lu, Y.; Jin, W.; Kavianpour, A.; Su-Myat, K.K.; Heath, D.; Wood, P.L.; Fisk, M.; Goodenowe, D.B. Novel plasma phospholipid biomarkers of autism: Mitochondrial dysfunction as a putative causative mechanism. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 253–264. [Google Scholar] [CrossRef]
- El-Ansary, A.K.; Bacha, A.G.B.; Al-Ayahdi, L.Y. Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia. Lipids Health Dis. 2011, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Rose, S.; Niyazov, D.M.; Rossignol, D.A.; Goldenthal, M.; Kahler, S.G.; Frye, R.E. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol. Diagn. Ther. 2018, 22, 571–593. [Google Scholar] [CrossRef] [Green Version]
- Giulivi, C.; Zhang, Y.-F.; Omanska-Klusek, A.; Ross-Inta, C.; Wong, S.; Hertz-Picciotto, I.; Tassone, F.; Pessah, I.N. Mitochondrial dysfunction in autism. JAMA 2010, 304, 2389–2396. [Google Scholar] [CrossRef] [Green Version]
- Napoli, E.; Wong, S.; Hertz-Picciotto, I.; Giulivi, C. Deficits in bioenergetics and impaired immune response in granulocytes from children with autism. Pediatrics 2014, 133, 1405–1410. [Google Scholar] [CrossRef] [Green Version]
- Varga, N.Á.; Pentelényi, K.; Balicza, P.; Gézsi, A.; Reményi, V.; Hársfalvi, V.; Bencsik, R.; Illés, A.; Prekop, C.; Molnár, M.J. Mitochondrial dysfunction and autism: Comprehensive genetic analyses of children with autism and mtDNA deletion. Behav. Brain Funct. 2018, 14, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, F.; Chauhan, V.; Kaur, K.; Brown, W.; LaFauci, G.; Wegiel, J.; Chauhan, A. Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl. Psychiatry 2013, 3, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, A.; Gu, F.; Essa, M.M.; Wegiel, J.; Kaur, K.; Brown, W.T.; Chauhan, V. Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J. Neurochem. 2011, 117, 209–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, G.; Rios, P.G.; Kuo, S.-H.; Akman, H.O.; Rosoklija, G.; Tanji, K.; Dwork, A.; Schon, E.A.; DiMauro, S.; Goldman, J. Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol. Dis. 2013, 54, 349–361. [Google Scholar] [CrossRef]
- Tavazoie, S.F.; Alvarez, V.A.; Ridenour, D.A.; Kwiatkowski, D.J.; Sabatini, B.L. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 2005, 8, 1727–1734. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [Green Version]
- Crino, P.B. mTOR: A pathogenic signaling pathway in developmental brain malformations. Trends Mol. Med. 2011, 17, 734–742. [Google Scholar] [CrossRef]
- Tang, G.; Gudsnuk, K.; Kuo, S.-H.; Cotrina, M.L.; Rosoklija, G.; Sosunov, A.; Sonders, M.S.; Kanter, E.; Castagna, C.; Yamamoto, A. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014, 83, 1131–1143. [Google Scholar] [CrossRef] [Green Version]
- Redcay, E. The superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autism. Neurosci. Biobehav. Rev. 2008, 32, 123–142. [Google Scholar] [CrossRef]
- Zahn, R.; Moll, J.; Krueger, F.; Huey, E.D.; Garrido, G.; Grafman, J. Social concepts are represented in the superior anterior temporal cortex. Proc. Natl. Acad. Sci. USA 2007, 104, 6430–6435. [Google Scholar] [CrossRef] [Green Version]
- Nicolini, C.; Ahn, Y.; Michalski, B.; Rho, J.M.; Fahnestock, M. Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta Neuropathol. Commun. 2015, 3, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onore, C.; Yang, H.; Van de Water, J.; Ashwood, P. Dynamic Akt/mTOR signaling in children with autism spectrum disorder. Front. Pediatr. 2017, 5, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waite, K.; Eickholt, B.J. The neurodevelopmental implications of PI3K signaling. Curr. Top. Microbiol. Immunol. 2010, 346, 245–265. [Google Scholar]
- Fruman, D.A.; Bismuth, G. Fine tuning the immune response with PI3K. Immunol. Rev. 2009, 228, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Tylee, D.S.; Hess, J.L.; Quinn, T.P.; Barve, R.; Huang, H.; Zhang-James, Y.; Chang, J.; Stamova, B.S.; Sharp, F.R.; Hertz-Picciotto, I. Blood transcriptomic comparison of individuals with and without autism spectrum disorder: A combined-samples mega-analysis. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2017, 174, 181–201. [Google Scholar] [CrossRef] [Green Version]
- Tylee, D.S.; Espinoza, A.J.; Hess, J.L.; Tahir, M.A.; McCoy, S.Y.; Rim, J.K.; Dhimal, T.; Cohen, O.S.; Glatt, S.J. RNA sequencing of transformed lymphoblastoid cells from siblings discordant for autism spectrum disorders reveals transcriptomic and functional alterations: Evidence for sex-specific effects. Autism Res. 2017, 10, 439–455. [Google Scholar] [CrossRef]
- Zoghbi, H.Y.; Bear, M.F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 2012, 4, 009886. [Google Scholar] [CrossRef] [Green Version]
Reference | Subjects | Sex | Age Group | Test Samples/Regions | Method | Major Findings |
---|---|---|---|---|---|---|
[27] | 7 autistic adults, 8 normal control | Male | 21 to 41 years | Brain: Fusiform gyrus, inferior temporal gyrus, middle temporal gyrus, amygdala | fMRI | ⇓ bilateral amygdala volumes in autistic subjects; fusiform gyrus volume was ⇓ but not statistically significant. |
[28] | 14 autistic subjects, 14 normal control | Male | 11 to 37 years | Brain: Hippocampus, amygdala | MRI | ⇓ amygdala volume (with and without total brain volume correction); ⇓hippocampal volume (with correction) in autistic subjects. |
[29] | 2 adults with bilateral damage to amygdala | Female | 23-and 48-years | Autism Diagnostic Questionnaire Observation Schedule, Social Responsiveness Scale and other questionnaires | No evidence of autistic changes in all measurements. | |
[23] | 45 children with ASD, 26 typically- developing (TD), 14 developmentally- delayed (DD) children | Male, female | 36 to 58 months | Brain: Cerebellum, cerebrum, amygdala, hippocampus | MRI | ⇑ cerebral volume in ASD compared to TD and DD children; ⇑ cerebellar volume in ASD compared to TD; ⇑ bilateral amygdala and hippocampi volume in ASD. |
[30] | 19 low-functioning autism (LFA), 27 high-functioning autism (HFA), 25 Asperger’s and 27 typically developing control children | Male | 7.5 to 18.5 years | Brain: Amygdala, hippocampus | MRI | ⇑ right and left amygdala in children with autism than control (7–12.5 years old); ⇔ amygdala volume in adolescent group (12.75–18.5 years old). |
[25] | 23 adolescents with autism, 29 control | Male, female | 12 to 18 years hippocampus | Brain: Amygdala, | MRI | ⇑ right amygdala and left hippocampus in adolescent with autism. |
[31] | 60 infants with risk of ASD, 211 normal control Brain: Amygdala, | Male, female | 23 to 27 months | Brain: Amygdala, hippocampus | MRI | ⇑ amygdala and hippocampus in each hemisphere and the whole brain in ASD group. |
Reference | Subjects | Sex | Age Group | Test Samples/Regions | Method | Major Findings |
---|---|---|---|---|---|---|
[36] | 12 children with autism (group 1), 35 children with autism (group 2), 12 control | Male, female | 2.7 to 10 years | CSF (group 1), serum (group 2) ELISA | ELISA | Changes in indicator of immune response (CSF: ⇑ biopterin, ⇓ quinolinic acid and neopterin, serum: ⇑ TNF receptor II in serum) in autistic children. |
[37] | 20 children with ASD, 20 matched control | Male | 3 to 11 years | Peripheral blood mononuclear ELISA cells | ELISA | ⇑ IL-13/IL10 and IFN-γ/IL-10 in children with ASD. |
[38] | 8 autistic patients, 8 matched control | Male, female | 4 to 37 years | Frontal cortex brain tissue | Multiplex Bead Immunoassay | ⇑ proinflammatory cytokines (TNF-α, IL-6 and GM-CSF), Th1 cytokines (IFN-γ) and chemokine (IL-8) in autistic patients. |
[12] | 11 autistic patients, 6 control | Male, female | 4 to 45 years | Middle frontal gyrus, anterior cingulate gyrus, cerebellar hemisphere | Immunohisto- chemistry, protein tissue array, ELISA | Marked activation of microglia and astroglia (immunohistochemical studies); MCP-1 and TGF-β1 were the most prevalent cytokines in brain tissue (cytokine profile) of autistic patients. |
Reference | Subjects | Sex | Age Group | Test Samples/Regions | Methods | Main Findings |
---|---|---|---|---|---|---|
[50] | 25 adults with ASD, 21 healthy control | Not specified | Not specified | Brain: Amygdala-hippocampal, parietal region | 1H-MRS | ⇑ amygdala hippocampal Glx but ⇔ parietal Glx of ASD subjects. |
[51] | 13 adults with ASD, 15 parents of ASD child (pASD), 15 healthy control | Male, female | 25 to 48 years | Brain: Left and right hemisphere auditory cortex | 1H-MRS | ⇑ Glx of left and right hemisphere auditory cortex in ASD subjects, ⇔ Glx in pASD subjects. |
[47] | 8 children with ASD, 10 healthy control | Male, female | 7 to 16.5 years | Brain: pregenual anterior cingulate cortex (pACC) | 1H-MRS | ⇑ Glx of pACC in ASD subjects. |
[52] | 7 adolescents with ASD, 7 healthy adolescents | Male | 12 to 17 years | Brain: anterior cingulate cortex | MRS at 4T | ⇑ Glu of anterior cingulate cortex in ASD. |
[53] | 10 children with ASD, 10 healthy control | Female | 6 to 14 years | Plasma Brain: bilateral anterior cingulate, left striatum, left cerebellar, left frontal lobe | HPLC 1H-MRS | ⇑ Glu of blood and brain in ASD subjects. |
[46] | 23 children with HFA, 22 healthy control | Male | 8 to 17 years | Plasma | HPLC | ⇑ plasma Glu, ⇓ plasma glutamine in HFA subjects. |
[54] | 27 children with ASD, 20 healthy control | Male, female | 3 to 12 years | Platelet-poor plasma | LC-MS | ⇑ plasma Glu, ⇓ plasma glutamine in ASD subjects. |
[55] | 18 adult autistic, 19 healthy control | Male | 18 to 26 years | Serum | HPLC | ⇑ serum Glu, ⇔ serum glutamine in autistic subjects. |
[56] | 23 autistic and Asperger’s patients with their 23 siblings and 32 parents | Male, female | 4 to 29 years | Plasma | HPLC | ⇑ plasma Glu, ⇓ plasma glutamine in autism or Asperger’s patients and their siblings and parents. |
[60] | 28 adults with ASD, 14 healthy control | Male, female | 27 to 34 years | Brain: basal ganglia, dorsolateral prefrontal cortex, parietal lobe | 1H-MRS | ⇓ Glx of basal ganglia, ⇔ Glx of dorsolateral prefrontal cortex, ⇔ Glx of parietal lobe in ASD. subjects |
[61] | 14 adults with ASD, 14 healthy control | Male, female | 21 to 50 years | Brain: anterior cingulate cortex, thalamus, temporoparietal junction, areas near or along parietal sulcus | 1H-MRS | ⇓ Glx of right anterior cingulate cortex in ASD subjects. |
[62] | 29 ASD patients, 29 healthy control | Male, female | 26 to 44 years | Brain: anterior cingulate cortex, cerebellum | 1H-MRS | ⇓ Glx of anterior cingulate cortex but ⇔ Glx of cerebellum in ASD subjects. |
[63] | 26 with autism, 29 healthy control | Male | 6 to 17 years | Brain: cerebral gray and white matter | 1H-MRS | ⇓ Glx of cerebral gray matter but ⇔ Glx of white matter in autistic males. |
[64] | 12 autistic children, 16 healthy control | Male, female | 7 to 17 years | Brain: frontal lobes | 1H-MRS | ⇓ Glx/creatinine ratio of frontal lobes in autistic patients. |
Reference | Subjects | Sex | Age Group | Test Samples | Method | Main Findings |
---|---|---|---|---|---|---|
[74] | 41 children with ASD, 41 healthy control | Male | 2 to 14 years | Plasma | ELISA | Abnormal pyruvate, creatine kinase and complex I ETC in children with ASD. |
[75] | 10 children with ASD, 10 healthy control | Not specified | 3 to 5 years | Serum | Standard method | ⇑ serum lactate, AST, creatinine kinase in ASD children. |
[76] | 50 autistic children, 50 healthy control | Male | 3 to 8 years | Serum | Auto analyzer kits from IFCC | ⇑ serum lactate, AST and ALT in autistic children. |
[77] | 30 children with autism, 30 healthy control | Male, female | 3 to 12 years | Serum | ELISA | ⇓ serum coenzyme Q10 (ubiquinone) in autistic children. |
[78] | 15 adults with ASD, 18 typically-developed control | Male | 23 to 39 years | Plasma | Capillary electrophoresis time-of-flight mass spectroscopy | ⇑ plasma arginine and taurine; ⇓ oxoproline and lactic acid in ASD subject plasma. |
[79] | 42 autistic children, 26 healthy control | Male, female | 2 to 14 years | Plasma | HPLC | ⇑ plasma Glu, ⇓ plasma cyctein, tyrosine, serine, carnosine, β-alanine in autistic children. |
[80] | 15 autistic children, 12 non-autistic control | Male, female | 2 to 17 years | Plasma | LC-MS | ⇑ plasma DHA-PtdEtn, DHA-PlsEtn, saturated and poly-unsaturated VLCFA-PtdEtn in autistic children. |
[81] | 26 autistic patients, 26 healthy control | Not specified | 4 to 12 years | Plasma | Gas chromatography | Altered fatty acid profile- ⇑ plasma levels of acetic valeric, hexanoic, stearidonic saturated fatty acids; ⇓ plasma saturated, mono, polyunsaturated fatty acids in autistic patients. |
[83] | 10 children with autism, 10 healthy control | Male, female | 2 to 5 years | Plasma, lymphocyte | Spectrophotometry, qPCR | ⇓ lymphocytes NADH oxidase, complex I activity and pyruvate dehydrogenase; ⇑ plasma pyruvate levels; ⇑ mtDNA overreplication in autistic children. |
[84] | 10 children with autism, 10 typically-developed control | Not specified | Not specified | Granulocytes | qPCR | ⇑ mtDNA copy number and deletion in autistic children. |
[85] | 60 adults with ASD, 60 healthy control | Male, female | 7 to 45 years | Blood | PCR | mtDNA deletions in 16.6% of ASD patients. |
[86] | 14 autistic children, 12 healthy control | Male, female | 4 to 23 years | Brain: Frontal cortex | Colorimetric, qPCR | ⇑ mtDNA gene ND1, ND4 and Cyt B ratio to nuclear DNA (⇑ mtDNA copy number); ⇓ ETC complexes 1 and V in autistic children. |
[87] | Children with autism, adults with autism, age-matched control | Not specified | 4 to 10 years, 14 to 39 years | Brain: Cerebellum; frontal, parietal, temporal, occipital lobes | Western Blot | ⇓ levels of ETC complexes III and IV in cerebellum complexes I in frontal cortex, complexes II, III and IV in temporal cortex of autistic children; ⇔ levels of ETC complexes in adult with autism. |
[88] | 25 ASD patients, 20 control | Male, female | 3 to 65 years | Brain: temporal Western Blot lobe | ⇓ activity of ETC complexes I and IV; ⇓ protein levels of complexes I, III, IV and V in temporal lobe of ASD patients. |
Reference | Subjects | Sex | Age Group | Test Samples | Method | Main Findings |
---|---|---|---|---|---|---|
[92] | 8 children with ASD and 7 controls, 5 adolescents with ASD and 9 control | Male and female children, male adolescent | 2–9 years (children) 13–19 years (Adolescent) | Postmortem-temporal lobe | Western blot | ⇑ dendritic spine density, ⇓ spine pruning development in layer V pyramidal neurons; ⇑ p-mTOR level in ASD patients. |
[95] | 11 subjects with idiopathic autism, 13 control | Male, female | 5–56 years | Postmortem-fusiform gyrus | Western blot | ⇓ phosphorylated and total mTOR; ⇓ Akt, full-length TrkB, P13K, elF4B and PSD-95 in fusiform gyrus of autistic subjects. |
[96] | 41 children with ASD, 31 typically-developing control | Male | 4–9 years | Peripheral blood mononuclear | Multiplex bead immunoassay | ⇑ activity of mTOR, ERK and p70S6 kinase in T cells of ASD children. |
[99] | 626 individuals with ASD, 447 comparison subjects | Male, female | Not specified | Whole blood, lymphocytes | Raw microarray and clinical meta- data mega analysis | ⇓ P13k-Akt-mTOR signaling cascades (diminished actin organization; ⇑ protein translation). |
[100] | 12 female sibling pairs, 24 male sibling pairs | Male, female | 8 to 14 years | Transformed lymphoblastoid cells | RNA sequencing | ⇑ mTOR-related gene set in males with ASD. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuid, A.N.; Jayusman, P.A.; Shuid, N.; Ismail, J.; Kamal Nor, N.; Naina Mohamed, I. Update on Atypicalities of Central Nervous System in Autism Spectrum Disorder. Brain Sci. 2020, 10, 309. https://doi.org/10.3390/brainsci10050309
Shuid AN, Jayusman PA, Shuid N, Ismail J, Kamal Nor N, Naina Mohamed I. Update on Atypicalities of Central Nervous System in Autism Spectrum Disorder. Brain Sciences. 2020; 10(5):309. https://doi.org/10.3390/brainsci10050309
Chicago/Turabian StyleShuid, Ahmad Naqib, Putri Ayu Jayusman, Nazrun Shuid, Juriza Ismail, Norazlin Kamal Nor, and Isa Naina Mohamed. 2020. "Update on Atypicalities of Central Nervous System in Autism Spectrum Disorder" Brain Sciences 10, no. 5: 309. https://doi.org/10.3390/brainsci10050309
APA StyleShuid, A. N., Jayusman, P. A., Shuid, N., Ismail, J., Kamal Nor, N., & Naina Mohamed, I. (2020). Update on Atypicalities of Central Nervous System in Autism Spectrum Disorder. Brain Sciences, 10(5), 309. https://doi.org/10.3390/brainsci10050309