Family Income Mediates the Effect of Parental Education on Adolescents’ Hippocampus Activation During an N-Back Memory Task
Abstract
:1. Introduction
Aims
2. Methods
2.1. Design and Settings
2.2. Ethical Aspect
2.3. Participants and Sampling
2.4. Functional MRI and Image Acquisition
2.5. ABCD Study Neuroimaging Data
2.6. N-Back Task
2.7. Variables
2.7.1. Outcome
2.7.2. Independent (Predictor) Variable
2.7.3. Mediator
2.7.4. Confounders
2.8. Data Analysis
3. Results
3.1. Descriptives
3.2. Socioeconomic Correlates of Left Hippocampus Function during a Memory Task
3.3. Regressions
3.4. Mediation
3.5. Validation of the Hippocampus during N-Back Memory Task
4. Discussion
4.1. Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Income Level | Assigned Code | n | % | Cumulative % |
---|---|---|---|---|
Less than $5000 | 1 | 111 | 3.6 | 3.6 |
$5000 | 2 | 126 | 4.1 | 7.7 |
$12,000 | 3 | 74 | 2.4 | 10.1 |
$16,000 | 4 | 114 | 3.7 | 13.8 |
$25,000 | 5 | 152 | 5.0 | 18.8 |
$35,000 | 6 | 224 | 7.3 | 26.1 |
$50,000 | 7 | 411 | 13.4 | 39.5 |
$75,000 | 8 | 436 | 14.2 | 53.7 |
$100,000 | 9 | 1059 | 34.5 | 88.2 |
$200,000 | 10 | 363 | 11.8 | 100.0 |
Total | 3070 | 100.0 |
References
- Oshri, A.; Hallowell, E.; Liu, S.; MacKillop, J.; Galvan, A.; Kogan, S.M.; Sweet, L.H. Socioeconomic hardship and delayed reward discounting: Associations with working memory and emotional reactivity. Dev. Cogn. Neurosci. 2019, 37, 100642. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, A.; King, A.P.; Evans, G.W.; Swain, J.E.; Angstadt, M.; Phan, K.L.; Liberzon, I. Childhood Poverty Predicts Adult Amygdala and Frontal Activity and Connectivity in Response to Emotional Faces. Front. Behav. Neurosci. 2015, 9, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masten, C.L.; Telzer, E.H.; Eisenberger, N.I. An FMRI investigation of attributing negative social treatment to racial discrimination. J. Cogn. Neurosci. 2011, 23, 1042–1051. [Google Scholar] [CrossRef]
- Wu, X.; Zou, Q.; Hu, J.; Tang, W.; Mao, Y.; Gao, L.; Zhu, J.; Jin, Y.; Wu, X.; Lu, L.; et al. Intrinsic Functional Connectivity Patterns Predict Consciousness Level and Recovery Outcome in Acquired Brain Injury. J. Neurosci. 2015, 35, 12932–12946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oladeji, B.D.; Makanjuola, V.A.; Gureje, O. Family-related adverse childhood experiences as risk factors for psychiatric disorders in Nigeria. Br. J. Psychiatry 2010, 196, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Han, M.; Sun, L.; Zhang, H.; Li, H.J. Family socioeconomic status and emotional adaptation among rural-to-urban migrant adolescents in China: The moderating roles of adolescent’s resilience and parental positive emotion. Int. J. Psychol. 2019, 54, 573–581. [Google Scholar] [CrossRef]
- Leiner, M.; Rescorla, L.; Medina, I.; Blanc, O.; Ortiz, M. Psychometric comparisons of the Pictorial Child Behavior Checklist with the standard version of the instrument. Psychol. Assess. 2010, 22, 618–627. [Google Scholar] [CrossRef]
- Choi, J.K.; Wang, D.; Jackson, A.P. Adverse experiences in early childhood and their longitudinal impact on later behavioral problems of children living in poverty. Child. Abuse. Negl. 2019, 98, 104181. [Google Scholar] [CrossRef]
- Zhou, Q.; Fan, L.; Yin, Z. Association between family socioeconomic status and depressive symptoms among Chinese adolescents: Evidence from a national household survey. Psychiatry Res. 2018, 259, 81–88. [Google Scholar] [CrossRef]
- Valencia, M.L.C.; Tran, B.T.; Lim, M.K.; Choi, K.S.; Oh, J.K. Association Between Socioeconomic Status and Early Initiation of Smoking, Alcohol Drinking, and Sexual Behavior Among Korean Adolescents. Asia Pac. J. Public Health 2019, 31, 443–453. [Google Scholar] [CrossRef]
- Sirin, S.R. Socioeconomic status and academic achievement: A meta-analytic review of research. Rev. Educ. Res. 2005, 75, 417–453. [Google Scholar] [CrossRef] [Green Version]
- Machlin, L.; McLaughlin, K.A.; Sheridan, M.A. Brain structure mediates the association between socioeconomic status and attention-deficit/hyperactivity disorder. Dev. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Caldwell, C.H. Family Income at Birth and Risk of Attention Deficit Hyperactivity Disorder at Age 15: Racial Differences. Children 2019, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonska, B.; Kosidou, K.; Ponce de Leon, A.; Wettermark, B.; Magnusson, C.; Dal, H.; Dalman, C. Neighborhood Socioeconomic Characteristics and Utilization of ADHD Medication in Schoolchildren: A Population Multilevel Study in Stockholm County. J. Atten. Disord. 2020, 24, 265–276. [Google Scholar] [CrossRef]
- Collins, K.P.; Cleary, S.D. Racial and ethnic disparities in parent-reported diagnosis of ADHD: National Survey of Children’s Health (2003, 2007, and 2011). J. Clin. Psychiatry 2016, 77, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Palma-Coca, O.; Hernandez-Serrato, M.I.; Villalobos-Hernandez, A.; Unikel-Santoncini, C.; Olaiz-Fernandez, G.; Bojorquez-Chapela, I. Association of socioeconomic status, problem behaviors, and disordered eating in Mexican adolescents: Results of the Mexican National Health and Nutrition Survey 2006. J. Adolesc. Health 2011, 49, 400–406. [Google Scholar] [CrossRef]
- Heshmat, R.; Qorbani, M.; Ghoreshi, B.; Djalalinia, S.; Tabatabaie, O.R.; Safiri, S.; Noroozi, M.; Motlagh, M.E.; Ahadi, Z.; Asayesh, H.; et al. Association of socioeconomic status with psychiatric problems and violent behaviours in a nationally representative sample of Iranian children and adolescents: The CASPIAN-IV study. BMJ Open 2016, 6, e011615. [Google Scholar] [CrossRef] [Green Version]
- Feldstein Ewing, S.W.; Hudson, K.A.; Caouette, J.; Mayer, A.R.; Thayer, R.E.; Ryman, S.G.; Bryan, A.D. Sexual risk-taking and subcortical brain volume in adolescence. Ann. Behav. Med. 2018, 52, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Kaleta, D.; Usidame, B.; Dziankowska-Zaborszczyk, E.; Makowiec-Dabrowska, T. Socioeconomic Disparities in Age of Initiation and Ever Tobacco Smoking: Findings from Romania. Cent. Eur. J. Public Health 2015, 23, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Barreto, S.M.; de Figueiredo, R.C.; Giatti, L. Socioeconomic inequalities in youth smoking in Brazil. BMJ Open 2013, 3, e003538. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.F.; Littlecott, H.J. School- and family-level socioeconomic status and health behaviors: Multilevel analysis of a national survey in wales, United Kingdom. J. Sch. Health 2015, 85, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Silveira, C.M.; Siu, E.R.; Anthony, J.C.; Saito, L.P.; de Andrade, A.G.; Kutschenko, A.; Viana, M.C.; Wang, Y.P.; Martins, S.S.; Andrade, L.H. Drinking patterns and alcohol use disorders in Sao Paulo, Brazil: The role of neighborhood social deprivation and socioeconomic status. PLoS ONE 2014, 9, e108355. [Google Scholar] [CrossRef] [Green Version]
- Gerra, G.; Benedetti, E.; Resce, G.; Potente, R.; Cutilli, A.; Molinaro, S. Socioeconomic Status, Parental Education, School Connectedness and Individual Socio-Cultural Resources in Vulnerability for Drug Use among Students. Int. J. Environ. Res. Public Health 2020, 17, 1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.J.; Davis, E.P.; Sandman, C.A.; Glynn, L.; Sporns, O.; O’Donnell, B.F.; Hetrick, W.P. Childhood poverty and the organization of structural brain connectome. Neuroimage 2019, 184, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staff, R.T.; Murray, A.D.; Ahearn, T.S.; Mustafa, N.; Fox, H.C.; Whalley, L.J. Childhood socioeconomic status and adult brain size: Childhood socioeconomic status influences adult hippocampal size. Ann. Neurol. 2012, 71, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Lawson, G.M.; Camins, J.S.; Wisse, L.; Wu, J.; Duda, J.T.; Cook, P.A.; Gee, J.C.; Farah, M.J. Childhood socioeconomic status and childhood maltreatment: Distinct associations with brain structure. PLoS ONE 2017, 12, e0175690. [Google Scholar] [CrossRef] [Green Version]
- Noble, K.G.; Houston, S.M.; Kan, E.; Sowell, E.R. Neural correlates of socioeconomic status in the developing human brain. Dev. Sci. 2012, 15, 516–527. [Google Scholar] [CrossRef]
- Baxendale, S.; Heaney, D. Socioeconomic status, cognition, and hippocampal sclerosis. Epilepsy Behav. 2011, 20, 64–67. [Google Scholar] [CrossRef]
- Gerges, N.Z.; Alzoubi, K.H.; Park, C.R.; Diamond, D.M.; Alkadhi, K.A. Adverse effect of the combination of hypothyroidism and chronic psychosocial stress on hippocampus-dependent memory in rats. Behav. Brain Res. 2004, 155, 77–84. [Google Scholar] [CrossRef]
- Hanson, J.L.; Chandra, A.; Wolfe, B.L.; Pollak, S.D. Association between income and the hippocampus. PLoS ONE 2011, 6, e18712. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, R.; Chattarji, S. Computational analysis of the impact of chronic stress on intrinsic and synaptic excitability in the hippocampus. J. Neurophysiol. 2010, 103, 3070–3083. [Google Scholar] [CrossRef] [PubMed]
- Zahodne, L.B.; Schupf, N.; Brickman, A.M. Control beliefs are associated with preserved memory function in the face of low hippocampal volume among diverse older adults. Brain Imaging Behav. 2018, 12, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.E.; McClure, E.B.; Monk, C.S.; Zarahn, E.; Leibenluft, E.; Pine, D.S.; Ernst, M. Developmental differences in neuronal engagement during implicit encoding of emotional faces: An event-related fMRI study. J. Child. Psychol. Psychiatry 2003, 44, 1015–1024. [Google Scholar] [CrossRef]
- Fischer, H.; Nyberg, L.; Backman, L. Age-related differences in brain regions supporting successful encoding of emotional faces. Cortex 2010, 46, 490–497. [Google Scholar] [CrossRef]
- Hair, N.L.; Hanson, J.L.; Wolfe, B.L.; Pollak, S.D. Association of Child Poverty, Brain Development, and Academic Achievement. JAMA Pediatr. 2015, 169, 822–829. [Google Scholar] [CrossRef]
- Chozick, B.S. The behavioral effects of lesions of the hippocampus: A review. Int. J. Neurosci. 1983, 22, 63–80. [Google Scholar] [CrossRef]
- Hu, L.; Han, B.; Zhao, X.; Mi, L.; Song, Q.; Wang, J.; Song, T.; Huang, C. Chronic early postnatal scream sound stress induces learning deficits and NMDA receptor changes in the hippocampus of adult mice. NeuroReport 2016, 27, 397–403. [Google Scholar] [CrossRef]
- Magarinos, A.M.; Verdugo, J.M.; McEwen, B.S. Chronic stress alters synaptic terminal structure in hippocampus. Proc. Natl. Acad. Sci. USA 1997, 94, 14002–14008. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J.L.; Nacewicz, B.M.; Sutterer, M.J.; Cayo, A.A.; Schaefer, S.M.; Rudolph, K.D.; Shirtcliff, E.A.; Pollak, S.D.; Davidson, R.J. Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biol. Psychiatry 2015, 77, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.N.; Patel, S.; Carrier, E.J.; Rademacher, D.J.; Ormerod, B.K.; Hillard, C.J.; Gorzalka, B.B. Downregulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacology 2005, 30, 508–515. [Google Scholar] [CrossRef]
- Coccaro, E.F.; Lee, R.; McCloskey, M.; Csernansky, J.G.; Wang, L. Morphometric analysis of amygdla and hippocampus shape in impulsively aggressive and healthy control subjects. J. Psychiatr. Res. 2015, 69, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Dailey, N.S.; Smith, R.; Vanuk, J.R.; Raikes, A.C.; Killgore, W.D.S. Resting-state functional connectivity as a biomarker of aggression in mild traumatic brain injury. NeuroReport 2018, 29, 1413–1417. [Google Scholar] [CrossRef]
- Chang, C.-H.; Gean, P.-W. The ventral hippocampus controls stress-provoked impulsive aggression through the ventromedial hypothalamus in post-weaning social isolation mice. Cell Rep. 2019, 28, 1195–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiki, T.J.; Averill, C.L.; Wrocklage, K.M.; Schweinsburg, B.; Scott, J.C.; Martini, B.; Averill, L.A.; Southwick, S.M.; Krystal, J.H.; Abdallah, C.G. The Association of PTSD Symptom Severity with Localized Hippocampus and Amygdala Abnormalities. Chronic. Stress 2017, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Qi, R.; Yin, Y.; Hu, X.; Duan, L.; Xu, Q.; Zhang, Z.; Zhong, Y.; Feng, B.; Xiang, H.; et al. Abnormalities in whole-brain functional connectivity observed in treatment-naive post-traumatic stress disorder patients following an earthquake. Psychol. Med. 2014, 44, 1927–1936. [Google Scholar] [CrossRef]
- Morey, R.A.; Haswell, C.C.; Hooper, S.R.; De Bellis, M.D. Amygdala, Hippocampus, and Ventral Medial Prefrontal Cortex Volumes Differ in Maltreated Youth with and without Chronic Posttraumatic Stress Disorder. Neuropsychopharmacology 2016, 41, 791–801. [Google Scholar] [CrossRef] [Green Version]
- Lindauer, R.J.; Olff, M.; van Meijel, E.P.; Carlier, I.V.; Gersons, B.P. Cortisol, learning, memory, and attention in relation to smaller hippocampal volume in police officers with posttraumatic stress disorder. Biol. Psychiatry 2006, 59, 171–177. [Google Scholar] [CrossRef]
- Ahmed-Leitao, F.; Rosenstein, D.; Marx, M.; Young, S.; Korte, K.; Seedat, S. Posttraumatic stress disorder, social anxiety disorder and childhood trauma: Differences in hippocampal subfield volume. Psychiatry Res. Neuroimaging 2019, 284, 45–52. [Google Scholar] [CrossRef]
- Lindauer, R.J.; Vlieger, E.J.; Jalink, M.; Olff, M.; Carlier, I.V.; Majoie, C.B.; den Heeten, G.J.; Gersons, B.P. Smaller hippocampal volume in Dutch police officers with posttraumatic stress disorder. Biol. Psychiatry 2004, 56, 356–363. [Google Scholar] [CrossRef]
- Kim, E.J.; Pellman, B.; Kim, J.J. Stress effects on the hippocampus: A critical review. Learn. Mem 2015, 22, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Filipovic, B.R.; Djurovic, B.; Marinkovic, S.; Stijak, L.; Aksic, M.; Nikolic, V.; Starcevic, A.; Radonjic, V. Volume changes of corpus striatum, thalamus, hippocampus and lateral ventricles in posttraumatic stress disorder (PTSD) patients suffering from headaches and without therapy. Cent. Eur. Neurosur. 2011, 72, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ho, C.S.; McIntyre, R.S.; Wang, W.; Ho, R.C. Effects of vortioxetine and fluoxetine on the level of Brain Derived Neurotrophic Factors (BDNF) in the hippocampus of chronic unpredictable mild stress-induced depressive rats. Brain Res. Bull. 2018, 142, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Andrus, B.M.; Blizinsky, K.; Vedell, P.T.; Dennis, K.; Shukla, P.K.; Schaffer, D.J.; Radulovic, J.; Churchill, G.A.; Redei, E.E. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry 2012, 17, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dore, B.P.; Rodrik, O.; Boccagno, C.; Hubbard, A.; Weber, J.; Stanley, B.; Oquendo, M.A.; Miller, J.M.; Sublette, M.E.; Mann, J.J.; et al. Negative Autobiographical Memory in Depression Reflects Elevated Amygdala-Hippocampal Reactivity and Hippocampally Associated Emotion Regulation. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Summa, K.C.; Jiang, P.; Fitzpatrick, K.; Voigt, R.M.; Bowers, S.J.; Forsyth, C.B.; Vitaterna, M.H.; Keshavarzian, A.; Turek, F.W. Chronic Alcohol Exposure and the Circadian Clock Mutation Exert Tissue-Specific Effects on Gene Expression in Mouse Hippocampus, Liver, and Proximal Colon. Alcohol Clin. Exp. Res. 2015, 39, 1917–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, R.; Schneider, R., Jr.; Quinteros, D.; Santos, C.F.; Bandiera, S.; Thiesen, F.V.; Coitinho, A.S.; Fernandes Mda, C.; Wieczorek, M.G. Effect of Alcohol and Tobacco Smoke on Long-Term Memory and Cell Proliferation in the Hippocampus of Rats. Nicotine Tob. Res. 2015, 17, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Gomez, G.I.; Falcon, R.V.; Maturana, C.J.; Labra, V.C.; Salgado, N.; Rojas, C.A.; Oyarzun, J.E.; Cerpa, W.; Quintanilla, R.A.; Orellana, J.A. Heavy Alcohol Exposure Activates Astroglial Hemichannels and Pannexons in the Hippocampus of Adolescent Rats: Effects on Neuroinflammation and Astrocyte Arborization. Front. Cell. Neurosci. 2018, 12, 472. [Google Scholar] [CrossRef]
- Wang, L.; Wu, L.; Wang, X.; Deng, J.; Ma, Z.; Fan, W.; He, W.; Deng, J. Prenatal alcohol exposure inducing the apoptosis of mossy cells in hippocampus of SMS2-/- mice. Environ. Toxicol. Pharmacol. 2015, 40, 975–982. [Google Scholar] [CrossRef]
- Hablitz, J.J. Prenatal exposure to alcohol alters short-term plasticity in hippocampus. Exp. Neurol. 1986, 93, 423–427. [Google Scholar] [CrossRef]
- Pagliaccio, D.; Luby, J.L.; Bogdan, R.; Agrawal, A.; Gaffrey, M.S. Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology 2014, 39, 1245–1253. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S.; Gianaros, P.J. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Ann. N.Y. Acad. Sci. 2010, 1186, 190–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchy-Dicey, A.; Shibata, D.; Cholerton, B.; Nelson, L.; Calhoun, D.; Ali, T.; Montine, T.J.; Longstreth, W.T.; Buchwald, D.; Verney, S.P. Cognitive Correlates of MRI-defined Cerebral Vascular Injury and Atrophy in Elderly American Indians: The Strong Heart Study. J. Int. Neuropsychol. Soc. 2019, 1–13. [Google Scholar] [CrossRef] [PubMed]
- McLean, J.; Krishnadas, R.; Batty, G.D.; Burns, H.; Deans, K.A.; Ford, I.; McConnachie, A.; McGinty, A.; McLean, J.S.; Millar, K.; et al. Early life socioeconomic status, chronic physiological stress and hippocampal N-acetyl aspartate concentrations. Behav. Brain Res. 2012, 235, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Noble, K.G.; Houston, S.M.; Brito, N.H.; Bartsch, H.; Kan, E.; Kuperman, J.M.; Akshoomoff, N.; Amaral, D.G.; Bloss, C.S.; Libiger, O.; et al. Family income, parental education and brain structure in children and adolescents. Nat. Neurosci. 2015, 18, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.B.; Riis, J.L.; Noble, K.G. State of the Art Review: Poverty and the Developing Brain. Pediatr. 2016, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, L.M.; Chiang, J.J.; Vause, K.; Hoffer, L.; Alpert, K.; Parrish, T.B.; Wang, L.; Miller, G.E. Subcortical structural variations associated with low socioeconomic status in adolescents. Hum. Brain Mapp. 2020, 41, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Luby, J.L. Poverty’s most insidious damage: The developing brain. JAMA Pediatrics 2015, 169, 810–811. [Google Scholar] [CrossRef]
- Evans, G.W.; Swain, J.E.; King, A.P.; Wang, X.; Javanbakht, A.; Ho, S.S.; Angstadt, M.; Phan, K.L.; Xie, H.; Liberzon, I. Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function. J. Neurosci. Res. 2016, 94, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Javanbakht, A.; Kim, P.; Swain, J.E.; Evans, G.W.; Phan, K.L.; Liberzon, I. Sex-Specific Effects of Childhood Poverty on Neurocircuitry of Processing of Emotional Cues: A Neuroimaging Study. Behav. Sci. 2016, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, L.; Kong, X.; Hong, Y.; Cheon, B.; Liu, J. Pathway to neural resilience: Self-esteem buffers against deleterious effects of poverty on the hippocampus. Hum. Brain Mapp. 2016, 37, 3757–3766. [Google Scholar] [CrossRef]
- Spera, C.; Wentzel, K.R.; Matto, H.C. Parental aspirations for their children’s educational attainment: Relations to ethnicity, parental education, children’s academic performance, and parental perceptions of school climate. J. Youth Adolesc. 2009, 38, 1140–1152. [Google Scholar] [CrossRef] [PubMed]
- Goodman, E.; Slap, G.B.; Huang, B. The public health impact of socioeconomic status on adolescent depression and obesity. Am. J. Public Health 2003, 93, 1844–1850. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.S.; Silk, J.S.; Steinberg, L.; Myers, S.S.; Robinson, L.R. The role of the family context in the development of emotion regulation. Soc. Dev. 2007, 16, 361–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Holloway, S.D. No parent left behind: Predicting parental involvement in adolescents’ education within a sociodemographically diverse population. J. Educ. Res. 2013, 106, 105–119. [Google Scholar] [CrossRef]
- Pabayo, R.; Molnar, B.E.; Kawachi, I. The role of neighborhood income inequality in adolescent aggression and violence. J. Adolesc. Health 2014, 55, 571–579. [Google Scholar] [CrossRef]
- Wills, T.A.; McNamara, G.; Vaccaro, D. Parental education related to adolescent stress-coping and substance use: Development of a mediational model. Health Psychol. 1995, 14, 464. [Google Scholar] [CrossRef]
- Assari, S.; Boyce, S.; Bazargan, M.; Caldwell, C.H. African Americans’ Diminished Returns of Parental Education on Adolescents’ Depression and Suicide in the Adolescent Brain Cognitive Development (ABCD) Study. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 656–668. [Google Scholar] [CrossRef]
- Assari, S. Parental Education on Youth Inhibitory Control in the Adolescent Brain Cognitive Development (ABCD) Study: Blacks’ Diminished Returns. Brain Sci. 2020, 10, 312. [Google Scholar] [CrossRef]
- Assari, S.; Boyce, S.; Akhlaghipour, G.; Bazargan, M.; Caldwell, C.H. Reward Responsiveness in the Adolescent Brain Cognitive Development (ABCD) Study: African Americans’ Diminished Returns of Parental Education. Brain Sci. 2020, 10, 391. [Google Scholar] [CrossRef]
- Willis, A.W.; Schootman, M.; Kung, N.; Wang, X.Y.; Perlmutter, J.S.; Racette, B.A. Disparities in deep brain stimulation surgery among insured elders with Parkinson disease. Neurology 2014, 82, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Parker, N.; Wong, A.P.; Leonard, G.; Perron, M.; Pike, B.; Richer, L.; Veillette, S.; Pausova, Z.; Paus, T. Income inequality, gene expression, and brain maturation during adolescence. Sci. Rep. 2017, 7, 7397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufman, J.S.; Cooper, R.S.; McGee, D.L. Socioeconomic status and health in blacks and whites: The problem of residual confounding and the resiliency of race. Epidemiology 1997, 621–628. [Google Scholar] [CrossRef]
- Assari, S. Parental Educational Attainment and Mental Well-Being of College Students; Diminished Returns of Blacks. Brain Sci. 2018, 8, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirowsky, J.; Ross, C.E. Education, Health, and the Default American Lifestyle. J. Health Soc. Behav. 2015, 56, 297–306. [Google Scholar] [CrossRef]
- Ross, C.E.; Mirowsky, J. Refining the association between education and health: The effects of quantity, credential, and selectivity. Demography 1999, 36, 445–460. [Google Scholar] [CrossRef]
- Schulz, A.J.; Mentz, G.; Lachance, L.; Johnson, J.; Gaines, C.; Israel, B.A. Associations between socioeconomic status and allostatic load: Effects of neighborhood poverty and tests of mediating pathways. Am. J. Public Health 2012, 102, 1706–1714. [Google Scholar] [CrossRef]
- Domenech-Abella, J.; Mundo, J.; Miret, M.; Ayuso-Mateos, J.L.; Sanchez-Niubo, A.; Abduljabbar, A.S.; Haro, J.M.; Olaya, B. From childhood financial hardship to late-life depression: Socioeconomic pathways. Aging Ment. Health 2019, 1–8. [Google Scholar] [CrossRef]
- Assari, S.; Lankarani, M.M. Income Gradient in Renal Disease Mortality in the United States. Front. Med. 2017, 4, 190. [Google Scholar] [CrossRef]
- Ursache, A.; Merz, E.C.; Melvin, S.; Meyer, J.; Noble, K.G. Socioeconomic status, hair cortisol and internalizing symptoms in parents and children. Psychoneuroendocrinology 2017, 78, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Samuel, L.J.; Roth, D.L.; Schwartz, B.S.; Thorpe, R.J.; Glass, T.A. Socioeconomic Status, Race/Ethnicity, and Diurnal Cortisol Trajectories in Middle-Aged and Older Adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2018, 73, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Assari, S. Blacks’ Diminished Return of Education Attainment on Subjective Health; Mediating Effect of Income. Brain Sci. 2018, 8, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S. Distal, intermediate, and proximal mediators of racial disparities in renal disease mortality in the United States. J. Nephropathol. 2016, 5, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, K.G.; Santos Neto, E.T.; Gama, S.G.; Oliveira, A.E. Access to prenatal care: Inequalities in a region with high maternal mortality in southeastern Brazil. Cien Saude Colet 2016, 21, 1647–1658. [Google Scholar] [CrossRef] [Green Version]
- Assari, S. Unequal Gain of Equal Resources across Racial Groups. Int. J. Health Policy Manag. 2018, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- ASEBA® Web-Link™ ASEBA Overview. Available online: https://aseba.org/aseba-web/ (accessed on 8 January 2020).
- Achenbach, T.M.; Ruffle, T.M. The Child Behavior Checklist and related forms for assessing behavioral/emotional problems and competencies. Pediatr. Rev. 2000, 21, 265–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, G.; Veerman, J.W.; Damen, H.; Kroes, G. The Child Behavior Checklist for group care workers: A study regarding the factor structure. J. Abnorm. Child Psychol. 2001, 29, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Khotani, A.; Gjelset, M.; Naimi-Akbar, A.; Hedenberg-Magnusson, B.; Ernberg, M.; Christidis, N. Using the child behavior checklist to determine associations between psychosocial aspects and TMD-related pain in children and adolescents. J. Headache Pain 2018, 19, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison Bender, H.; Auciello, D.; Morrison, C.E.; MacAllister, W.S.; Zaroff, C.M. Comparing the convergent validity and clinical utility of the Behavior Assessment System for Children-Parent Rating Scales and Child Behavior Checklist in children with epilepsy. Epilepsy Behav. 2008, 13, 237–242. [Google Scholar] [CrossRef]
- Bordin, I.A.; Rocha, M.M.; Paula, C.S.; Teixeira, M.C.; Achenbach, T.M.; Rescorla, L.A.; Silvares, E.F. Child Behavior Checklist (CBCL),Youth Self-Report (YSR) and Teacher’s Report Form(TRF): An overview of the development of the original and Brazilian versions. Cadernos de Saúde Pública 2013, 29, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Alcohol Research: Current Reviews Editorial, S. NIH’s Adolescent Brain Cognitive Development (ABCD) Study. Alcohol. Res. 2018, 39, 97. [Google Scholar]
- Casey, B.J.; Cannonier, T.; Conley, M.I.; Cohen, A.O.; Barch, D.M.; Heitzeg, M.M.; Soules, M.E.; Teslovich, T.; Dellarco, D.V.; Garavan, H.; et al. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 2018, 32, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Karcher, N.R.; O’Brien, K.J.; Kandala, S.; Barch, D.M. Resting-State Functional Connectivity and Psychotic-like Experiences in Childhood: Results From the Adolescent Brain Cognitive Development Study. Biol. Psychiatry 2019, 86, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Lisdahl, K.M.; Sher, K.J.; Conway, K.P.; Gonzalez, R.; Feldstein Ewing, S.W.; Nixon, S.J.; Tapert, S.; Bartsch, H.; Goldstein, R.Z.; Heitzeg, M. Adolescent brain cognitive development (ABCD) study: Overview of substance use assessment methods. Dev. Cogn. Neurosci. 2018, 32, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Luciana, M.; Bjork, J.M.; Nagel, B.J.; Barch, D.M.; Gonzalez, R.; Nixon, S.J.; Banich, M.T. Adolescent neurocognitive development and impacts of substance use: Overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 2018, 32, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Auchter, A.M.; Hernandez Mejia, M.; Heyser, C.J.; Shilling, P.D.; Jernigan, T.L.; Brown, S.A.; Tapert, S.F.; Dowling, G.J. A description of the ABCD organizational structure and communication framework. Dev. Cogn. Neurosci. 2018, 32, 8–15. [Google Scholar] [CrossRef]
- Garavan, H.; Bartsch, H.; Conway, K.; Decastro, A.; Goldstein, R.Z.; Heeringa, S.; Jernigan, T.; Potter, A.; Thompson, W.; Zahs, D. Recruiting the ABCD sample: Design considerations and procedures. Dev. Cogn. Neurosci. 2018, 32, 16–22. [Google Scholar] [CrossRef]
- Hagler, D.J., Jr.; Hatton, S.; Cornejo, M.D.; Makowski, C.; Fair, D.A.; Dick, A.S.; Sutherland, M.T.; Casey, B.J.; Barch, D.M.; Harms, M.P.; et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage 2019. [Google Scholar] [CrossRef]
- Gordon, E.M.; Laumann, T.O.; Adeyemo, B.; Huckins, J.F.; Kelley, W.M.; Petersen, S.E. Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cereb. Cortex 2016, 26, 288–303. [Google Scholar] [CrossRef]
- Barch, D.; Pagliaccio, D.; Belden, A.; Harms, M.P.; Gaffrey, M.; Sylvester, C.M.; Tillman, R.; Luby, J. Effect of Hippocampal and Amygdala Connectivity on the Relationship Between Preschool Poverty and School-Age Depression. Am. J. Psychiatry 2016, 173, 625–634. [Google Scholar] [CrossRef]
- Luby, J.; Belden, A.; Botteron, K.; Marrus, N.; Harms, M.P.; Babb, C.; Nishino, T.; Barch, D. The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA Pediatr. 2013, 167, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Calem, M.; Bromis, K.; McGuire, P.; Morgan, C.; Kempton, M.J. Meta-analysis of associations between childhood adversity and hippocampus and amygdala volume in non-clinical and general population samples. NeuroImage Clin. 2017, 14, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.C.; Diez Roux, A.V.; Latorre Mdo, R.; Jaime, P.C. Neighborhood socioeconomic characteristics and differences in the availability of healthy food stores and restaurants in Sao Paulo, Brazil. Health Place 2013, 23, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linetzky, B.; Mejia, R.; Ferrante, D.; De Maio, F.G.; Diez Roux, A.V. Socioeconomic status and tobacco consumption among adolescents: A multilevel analysis of Argentina’s Global Youth Tobacco Survey. Nicotine Tob. Res. 2012, 14, 1092–1099. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Diez Roux, A.V.; Kiefe, C.I.; Kawachi, I.; Liu, K. Do neighborhood socioeconomic deprivation and low social cohesion predict coronary calcification? The CARDIA study. Am. J. Epidemiol. 2010, 172, 288–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordstrom, C.K.; Diez Roux, A.V.; Jackson, S.A.; Gardin, J.M.; Cardiovascular Health, S. The association of personal and neighborhood socioeconomic indicators with subclinical cardiovascular disease in an elderly cohort. The cardiovascular health study. Soc. Sci. Med. 2004, 59, 2139–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Association, A.P. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Washington, DC, USA, 2013. [Google Scholar]
- Achenbach, T.M.; Rescorla, L. Manual for the ASEBA School-Age Forms & Profiles: An Integrated System of Multi-Informant Assessment; Aseba: Burlington, VT, USA, 2001. [Google Scholar]
- Suzuki, K.; Nishimura, K.; Sugihara, G.; Nakamura, K.; Tsuchiya, K.J.; Matsumoto, K.; Takebayashi, K.; Isoda, H.; Sakahara, H.; Sugiyama, T. Metabolite alterations in the hippocampus of high-functioning adult subjects with autism. Int. J. Neuropsychopharmacol. 2010, 13, 529–534. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Wu, H.; Zhou, H.; Liu, M.; Lee, H.; Liu, X.; Devkota, S.; Ro, E.; Zhu, D.; Suh, H. Reactivation of Tert in the medial prefrontal cortex and hippocampus rescues aggression and depression of Tert−/− mice. Transl. Psychiatry 2016, 6, e836. [Google Scholar] [CrossRef] [Green Version]
- Guillot, P.-V.; Roubertoux, P.L.; Crusio, W.E. Hippocampal mossy fiber distributions and intermale aggression in seven inbred mouse strains. Brain Res. 1994, 660, 167–169. [Google Scholar] [CrossRef]
- Kenny, D. Med Power. Sample Size Calculation for Mediation Analysis. Available online: https://davidakenny.shinyapps.io/MedPower/ (accessed on 8 January 2020).
- Noble, K.G.; Grieve, S.M.; Korgaonkar, M.S.; Engelhardt, L.E.; Griffith, E.Y.; Williams, L.M.; Brickman, A.M. Hippocampal volume varies with educational attainment across the life-span. Front. Hum. Neurosci. 2012, 6, 307. [Google Scholar] [CrossRef] [Green Version]
- Daun, K.A.; Fuchigami, T.; Koyama, N.; Maruta, N.; Ikenaka, K.; Hitoshi, S. Early Maternal and Social Deprivation Expands Neural Stem Cell Population Size and Reduces Hippocampus/Amygdala-Dependent Fear Memory. Front. Neurosci. 2020, 14, 22. [Google Scholar] [CrossRef]
- Dzyuba, B.; Van Look, K.J.; Cliffe, A.; Koldewey, H.J.; Holt, W.V. Effect of parental age and associated size on fecundity, growth and survival in the yellow seahorse Hippocampus kuda. J. Exp. Biol. 2006, 209, 3055–3061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattle, B.; Wilson, A.B. Body size preferences in the pot-bellied seahorse Hippocampus abdominalis: Choosy males and indiscriminate females. Behav. Ecol. Socio. Biol. 2009, 63, 1403–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golub, Y.; Kaltwasser, S.F.; Mauch, C.P.; Herrmann, L.; Schmidt, U.; Holsboer, F.; Czisch, M.; Wotjak, C.T. Reduced hippocampus volume in the mouse model of Posttraumatic Stress Disorder. J. Psychiatr. Res. 2011, 45, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Gurvits, T.V.; Shenton, M.E.; Hokama, H.; Ohta, H.; Lasko, N.B.; Gilbertson, M.W.; Orr, S.P.; Kikinis, R.; Jolesz, F.A.; McCarley, R.W. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry 1996, 40, 1091–1099. [Google Scholar] [CrossRef] [Green Version]
- Czéh, B.; Michaelis, T.; Watanabe, T.; Frahm, J.; De Biurrun, G.; Van Kampen, M.; Bartolomucci, A.; Fuchs, E. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl. Acad. Sci. USA 2001, 98, 12796–12801. [Google Scholar] [CrossRef] [Green Version]
- Gianaros, P.J.; Jennings, J.R.; Sheu, L.K.; Greer, P.J.; Kuller, L.H.; Matthews, K.A. Prospective reports of chronic life stress predict decreased grey matter volume in the hippocampus. Neuroimage 2007, 35, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Duval, E.R.; Garfinkel, S.N.; Swain, J.E.; Evans, G.W.; Blackburn, E.K.; Angstadt, M.; Sripada, C.S.; Liberzon, I. Childhood poverty is associated with altered hippocampal function and visuospatial memory in adulthood. Dev. Cogn. Neurosci. 2017, 23, 39–44. [Google Scholar] [CrossRef]
- Jednorog, K.; Altarelli, I.; Monzalvo, K.; Fluss, J.; Dubois, J.; Billard, C.; Dehaene-Lambertz, G.; Ramus, F. The influence of socioeconomic status on children’s brain structure. PLoS ONE 2012, 7, e42486. [Google Scholar] [CrossRef]
- Yaple, Z.A.; Yu, R. Functional and Structural Brain Correlates of Socioeconomic Status. Cereb. Cortex 2019. [Google Scholar] [CrossRef]
- Perkins, S.C.; Finegood, E.D.; Swain, J.E. Poverty and language development: Roles of parenting and stress. Innov. Clin. Neurosci. 2013, 10, 10–19. [Google Scholar]
- Woods-Jaeger, B.A.; Cho, B.; Sexton, C.C.; Slagel, L.; Goggin, K. Promoting Resilience: Breaking the Intergenerational Cycle of Adverse Childhood Experiences. Health Educ. Behav. 2018, 45, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Emmen, R.A.; Malda, M.; Mesman, J.; van Ijzendoorn, M.H.; Prevoo, M.J.; Yeniad, N. Socioeconomic status and parenting in ethnic minority families: Testing a minority family stress model. J. Fam. Psychol. 2013, 27, 896–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anton, M.T.; Jones, D.J.; Youngstrom, E.A. Socioeconomic status, parenting, and externalizing problems in African American single-mother homes: A person-oriented approach. J. Fam. Psychol. 2015, 29, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Kiang, L.; Andrews, K.; Stein, G.L.; Supple, A.J.; Gonzalez, L.M. Socioeconomic stress and academic adjustment among Asian American adolescents: The protective role of family obligation. J. Youth Adolesc. 2013, 42, 837–847. [Google Scholar] [CrossRef] [Green Version]
- Danese, A.; Moffitt, T.E.; Harrington, H.; Milne, B.J.; Polanczyk, G.; Pariante, C.M.; Poulton, R.; Caspi, A. Adverse childhood experiences and adult risk factors for age-related disease: Depression, inflammation, and clustering of metabolic risk markers. Arch. Pediatr. Adolesc. Med. 2009, 163, 1135–1143. [Google Scholar] [CrossRef] [Green Version]
- Spann, S.J.; Gillespie, C.F.; Davis, J.S.; Brown, A.; Schwartz, A.; Wingo, A.; Habib, L.; Ressler, K.J. The association between childhood trauma and lipid levels in an adult low-income, minority population. Gen. Hosp. Psychiatry 2014, 36, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Subic-Wrana, C.; Tschan, R.; Michal, M.; Zwerenz, R.; Beutel, M.; Wiltink, J. Childhood trauma and its relation to diagnoses and psychic complaints in patients of an psychosomatic university ambulance. Psychothe.r Psychosom. Med. Psychol. 2011, 61, 54–61. [Google Scholar] [CrossRef]
- Ladebauche, P. Childhood trauma-When to suspect abuse. RN 1997, 60, 38–42. [Google Scholar]
- Assari, S.; Bazargan, M. Unequal Associations between Educational Attainment and Occupational Stress across Racial and Ethnic Groups. Int. J. Environ. Res. Public Health 2019, 16, 3539. [Google Scholar] [CrossRef] [Green Version]
- Chassin, L.; Presson, C.C.; Sherman, S.J.; Edwards, D.A. Parent educational attainment and adolescent cigarette smoking. J. Subst Abuse. 1992, 4, 219–234. [Google Scholar] [CrossRef]
- Kocaoglu, B.; Moschonis, G.; Dimitriou, M.; Kolotourou, M.; Keskin, Y.; Sur, H.; Hayran, O.; Manios, Y. Parental educational level and cardiovascular disease risk factors in schoolchildren in large urban areas of Turkey: Directions for public health policy. BMC Public Health 2005, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Padilla-Moledo, C.; Ruiz, J.R.; Castro-Pinero, J. Parental educational level and psychological positive health and health complaints in Spanish children and adolescents. Child. Care Health Dev. 2016, 42, 534–543. [Google Scholar] [CrossRef]
- Barbarin, O.; Bryant, D.; McCandies, T.; Burchinal, M.; Early, D.; Clifford, R.; Pianta, R.; Howes, C. Children enrolled in public pre-K: The relation of family life, neighborhood quality, and socioeconomic resources to early competence. Am. J. Orthopsychiatry 2006, 76, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Caldwell, C.H.; Bazargan, M. Association Between Parental Educational Attainment and Youth Outcomes and Role of Race/Ethnicity. JAMA Netw. Open 2019, 2, e1916018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S.; Boyce, S.; Bazargan, M.; Caldwell, C.H. Diminished Returns of Parental Education in Terms of Youth School Performance: Ruling out Regression Toward the Mean. Children 2020, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, E.; Assari, M.J.; Farhadian, M.; Chavoshi, E.; Ehsani, H.R. Occupational exposure to mercury vapor in a compact fluorescent lamp factory: Evaluation of personal, ambient air, and biological monitoring. Toxicol. Ind. Health 2019, 35, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Caldwell, C.H. Parental Educational Attainment Differentially Boosts School Performance of American Adolescents: Minorities’ Diminished Returns. J. Fam. Reprod. Health 2019, 13, 7–13. [Google Scholar] [CrossRef]
- Yavas, E.; Gonzalez, S.; Fanselow, M.S. Interactions between the hippocampus, prefrontal cortex, and amygdala support complex learning and memory. F1000Ressearch 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Montagrin, A.; Saiote, C.; Schiller, D. The social hippocampus. Hippocampus 2018, 28, 672–679. [Google Scholar] [CrossRef]
- Gershoff, E.T.; Ansari, A.; Purtell, K.M.; Sexton, H.R. Changes in parents’ spanking and reading as mechanisms for Head Start impacts on children. J. Fam. Psychol. 2016, 30, 480. [Google Scholar] [CrossRef]
- Neville, H.J.; Stevens, C.; Pakulak, E.; Bell, T.A.; Fanning, J.; Klein, S.; Isbell, E. Family-based training program improves brain function, cognition, and behavior in lower socioeconomic status preschoolers. Proc. Natl. Acad. Sci. USA 2013, 110, 12138–12143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garces, E.; Thomas, D.; Currie, J. Longer-term effects of Head Start. Am. Econ. Rev. 2002, 92, 999–1012. [Google Scholar] [CrossRef] [Green Version]
- Zigler, E.; Valentine, J. Project Head Start: A Legacy of the War on Poverty; 1979. Available online: https://eric.ed.gov/?id=ED183266 (accessed on 8 January 2020).
- Finn, A.S.; Minas, J.E.; Leonard, J.A.; Mackey, A.P.; Salvatore, J.; Goetz, C.; West, M.R.; Gabrieli, C.F.O.; Gabrieli, J.D.E. Functional brain organization of working memory in adolescents varies in relation to family income and academic achievement. Dev. Sci. 2017, 20. [Google Scholar] [CrossRef] [PubMed]
- Brody, G.H.; Yu, T.; Nusslock, R.; Barton, A.W.; Miller, G.E.; Chen, E.; Holmes, C.; McCormick, M.; Sweet, L.H. The Protective Effects of Supportive Parenting on the Relationship between Adolescent Poverty and Resting-State Functional Brain Connectivity During Adulthood. Psychol. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Moadab, G.; Bliss-Moreau, E.; Bauman, M.D.; Amaral, D.G. Early amygdala or hippocampus damage influences adolescent female social behavior during group formation. Behav. Neurosci. 2017, 131, 68–82. [Google Scholar] [CrossRef]
- Thames, A.D.; Kuhn, T.P.; Mahmood, Z.; Bilder, R.M.; Williamson, T.J.; Singer, E.J.; Arentoft, A. Effects of social adversity and HIV on subcortical shape and neurocognitive function. Brain Imaging Behav. 2018, 12, 96–108. [Google Scholar] [CrossRef]
- Tottenham, N.; Sheridan, M.A. A review of adversity, the amygdala and the hippocampus: A consideration of developmental timing. Front. Hum. Neurosci. 2009, 3, 68. [Google Scholar] [CrossRef]
- Clark, U.S.; Miller, E.R.; Hegde, R.R. Experiences of Discrimination Are Associated With Greater Resting Amygdala Activity and Functional Connectivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 367–378. [Google Scholar] [CrossRef]
- Altman, J.; Brunner, R.L.; Bayer, S.A. The hippocampus and behavioral maturation. Behav. Biol. 1973, 8, 557–596. [Google Scholar] [CrossRef]
- Yu, Q.; Daugherty, A.M.; Anderson, D.M.; Nishimura, M.; Brush, D.; Hardwick, A.; Lacey, W.; Raz, S.; Ofen, N. Socioeconomic status and hippocampal volume in children and young adults. Dev. Sci. 2018, 21, e12561. [Google Scholar] [CrossRef]
- Chang, C.H.; Hsiao, Y.H.; Chen, Y.W.; Yu, Y.J.; Gean, P.W. Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice. Hippocampus 2015, 25, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; Park, J.; Asok, A.; Brann, D.H.; Meira, T.; Boyle, L.M.; Buss, E.W.; Kandel, E.R.; Siegelbaum, S.A. A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature 2018, 564, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Laakso, M.P.; Vaurio, O.; Koivisto, E.; Savolainen, L.; Eronen, M.; Aronen, H.J.; Hakola, P.; Repo, E.; Soininen, H.; Tiihonen, J. Psychopathy and the posterior hippocampus. Behav. Brain Res. 2001, 118, 187–193. [Google Scholar] [CrossRef]
n | % | |
---|---|---|
Race | ||
White | 2527 | 71.2 |
Black | 1023 | 28.8 |
Sex | ||
Male | 1712 | 48.2 |
Female | 1838 | 51.8 |
Marital status | ||
Not-Married | 1141 | 32.1 |
Married | 2409 | 67.9 |
Mean | SD | |
Age (Year) | 9.45 | 0.51 |
Parental Education | 16.87 | 2.44 |
Family Income | 0.78 | 0.36 |
Neighborhood Median Income | 7.37 | 2.43 |
Activation of the left hippocampus | –0.06 | 0.34 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 Race (Black) | 1.00 | 0.02 | 0.02 | −0.52 ** | −0.42 ** | −0.50 ** | −0.52 ** | 0.06 ** |
2 Sex (Male) | 1.00 | 0.03 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | |
3 Age (Year) | 1.00 | −0.02 | −0.05 ** | 0.00 | −0.02 | −0.01 | ||
4 Family marital status (Maried) | 1.00 | 0.41 ** | 0.40 ** | 0.58 ** | −0.04 * | |||
5 Parental educational attainment | 1.00 | 0.50 ** | 0.62 ** | −0.06 ** | ||||
6 Family income | 1.00 | 0.62 ** | −0.05 ** | |||||
7 Neighborhood income | 1.00 | −0.05 ** | ||||||
8 Left hippocampus function | 1.00 |
Model 1 Main Effect | Model 2 Mediation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta | b | SE | 95% CI | t | p | Beta | b | SE | 95% CI | t | p | |||
Race (Black) | 0.02 | 0.01 | 0.02 | −0.02 | 0.04 | 0.96 | 0.338 | 0.00 | 0.00 | 0.02 | −0.03 | 0.03 | −0.01 | 0.996 |
Sex (Male) | 0.00 | 0.00 | 0.01 | −0.02 | 0.02 | −0.06 | 0.949 | 0.01 | 0.01 | 0.01 | −0.02 | 0.03 | 0.56 | 0.574 |
Age | 0.00 | 0.00 | 0.01 | −0.02 | 0.02 | −0.07 | 0.947 | −0.01 | 0.00 | 0.01 | −0.03 | 0.02 | −0.31 | 0.759 |
Married | 0.01 | 0.01 | 0.01 | −0.02 | 0.04 | 0.46 | 0.643 | 0.02 | 0.01 | 0.02 | −0.02 | 0.05 | 0.79 | 0.428 |
Parental education | −0.04 | −0.01 | 0.00 | −0.01 | 0.00 | −2.10 | 0.036 | −0.01 | 0.00 | 0.00 | −0.01 | 0.01 | −0.25 | 0.799 |
Family income | - | - | - | - | - | - | - | 0.02 | 0.02 | 0.02 | −0.02 | 0.06 | 1.00 | 0.318 |
Neighborhood income | - | - | - | - | - | - | - | −0.09 | −0.01 | 0.00 | −0.02 | 0.00 | −2.93 | 0.003 |
Constant | 0.03 | 0.12 | −0.20 | 0.26 | 0.27 | 0.785 | 0.04 | 0.13 | −0.20 | 0.29 | 0.34 | 0.731 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 Activation of the left hippocampus | 1 | 0.00 | 0.01 | −0.01 | 0.03 ** | 0.01 | 0.04 ** | 0.02 | 0.03 ** | 0.02 * |
2 CBCL-Anxious and depressed mood (0–26) | 1 | 0.58 ** | 0.47 ** | 0.62 ** | 0.60 ** | 0.41 ** | 0.57 ** | 0.58 ** | 0.77 ** | |
3 CBCL-Withdrawn and depressed affect (0–14) | 1 | 0.40 ** | 0.56 ** | 0.51 ** | 0.39 ** | 0.49 ** | 0.52 ** | 0.67 ** | ||
4 CBCL-Somatic complaints (0–16) | 1 | 0.42 ** | 0.44 ** | 0.28 ** | 0.44 ** | 0.39 ** | 0.58 ** | |||
5 CBCL-Social and interpersonal problems (0–18) | 1 | 0.62 ** | 0.55 ** | 0.69 ** | 0.67 ** | 0.82 ** | ||||
6 CBCL-Thought problems (0–18) | 1 | 0.51 ** | 0.73 ** | 0.63 ** | 0.81 ** | |||||
7 CBCL-Rule-breaking behaviors (0–20) | 1 | 0.65 ** | 0.74 ** | 0.73 ** | ||||||
8 CBCL-Attention problems (0–38) | 1 | 0.76 ** | 0.90 ** | |||||||
9 CBCL-Violent and aggressive behaviors (0–38) | 1 | 0.88 ** | ||||||||
10 CBCL Total | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assari, S.; Boyce, S.; Bazargan, M.; Caldwell, C.H. Family Income Mediates the Effect of Parental Education on Adolescents’ Hippocampus Activation During an N-Back Memory Task. Brain Sci. 2020, 10, 520. https://doi.org/10.3390/brainsci10080520
Assari S, Boyce S, Bazargan M, Caldwell CH. Family Income Mediates the Effect of Parental Education on Adolescents’ Hippocampus Activation During an N-Back Memory Task. Brain Sciences. 2020; 10(8):520. https://doi.org/10.3390/brainsci10080520
Chicago/Turabian StyleAssari, Shervin, Shanika Boyce, Mohsen Bazargan, and Cleopatra H. Caldwell. 2020. "Family Income Mediates the Effect of Parental Education on Adolescents’ Hippocampus Activation During an N-Back Memory Task" Brain Sciences 10, no. 8: 520. https://doi.org/10.3390/brainsci10080520
APA StyleAssari, S., Boyce, S., Bazargan, M., & Caldwell, C. H. (2020). Family Income Mediates the Effect of Parental Education on Adolescents’ Hippocampus Activation During an N-Back Memory Task. Brain Sciences, 10(8), 520. https://doi.org/10.3390/brainsci10080520