Upper and Lower Limb Movement Kinematics in Aging FMR1 Gene Premutation Carriers
Abstract
:1. Background
2. Materials and Methods
2.1. Participants
2.2. Procedures and Approaches
2.2.1. T2-Weighted Magnetic Resonance Imaging (MRI) Scan
2.2.2. CGG Repeat Length
2.2.3. Neurological Examination
2.2.4. Gait Assessment
2.2.5. Upper Limb Assessment
2.3. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Gait Performance in FXTAS
3.3. Reaching Performance in FXTAS
3.4. Demographic and Clinical Correlations
4. Discussion
4.1. Gait Atypicalities in FXTAS
4.2. Reaching Atypicalities in FXTAS
4.3. Upper and Lower Limb Kinematics and Their Relation to Demographic and Clinical Characteristics in FMR1 Premutation Carriers
5. Limitations and Future Directions
6. Conclusions
List of Abbreviations
FXTAS | Fragile X-associated tremor/ataxia syndrome |
CGG | Cytosine-guanine-guanine |
mRNA | Messenger RNA |
MRI | Magnetic resonance imaging |
ICARS | International Cooperative Ataxia Rating Scale |
SB-5 | Stanford–Binet Intelligence Scales, Fifth Edition |
DSJP | Dimensionless squared jerk normalized by peak velocity |
CoV | Coefficient of variation |
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacquemont, S.; Hagerman, R.J.; Leehey, M.; Grigsby, J.; Zhang, L.; Brunberg, J.A.; Berry–Kravis, E. Fragile X premutation tremor/ataxia syndrome: Molecular, clinical, neuroimaging correlates. Am. J. Hum. Genet. 2003, 72, 869–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, D.A.; O’keefe, J.A. Fragile X–associated tremor ataxia syndrome: The expanding clinical picture, pathophysiology, epidemiology and update on treatment. Other Hyperkinet. Mov. 2012, 2, 1–11. [Google Scholar]
- Tassone, F.; Adams, J.; Berry-Kravis, E.M.; Cohen, S.S.; Brusco, A.; Leehey, M.A.; Hagerman, P.J. CGG repeat length correlates with age of onset of motor signs of the fragile X–associated tremor/ataxia syndrome (FXTAS). Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Leehey, M.A.; Berry–Kravis, E.; Goetz, C.G.; Zhang, L.; Hall, D.A.; Li, L.; Gane, L. FMR1 CGG repeat length predicts motor dysfunction in premutation carriers. Neurology 2008, 70, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Masyn, K.; Adams, J.; Hessl, D.; Rivera, S.; Tassone, F.; Loesch, D. Molecular and imaging correlates of the fragile X–associated tremor/ataxia syndrome. Neurology 2006, 67, 1426–1431. [Google Scholar] [CrossRef]
- Grigsby, J.; Brega, A.G.; Engle, K.; Leehey, M.A.; Hagerman, R.J.; Tassone, F.; Cook, K. Cognitive profile of fragile X premutation carriers with and without fragile X–associated tremor/ataxia syndrome. Neuropsychology 2008, 22, 48–60. [Google Scholar] [CrossRef]
- Wang, J.Y.; Hessl, D.; Hagerman, R.J.; Simon, T.J.; Tassone, F.; Ferrer, E.; Rivera, S.M. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation. Neurobiol. Aging 2017, 55, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Hocking, D.R.; Birch, R.C.; Bui, Q.M.; Menant, J.C.; Lord, S.R.; Georgiou–Karistianis, N.; Trollor, J.N. Cerebellar volume mediates the relationship between FMR1 mRNA levels and voluntary step initiation in males with the premutation. Neurobiol. Aging 2017, 50, 5–12. [Google Scholar] [CrossRef]
- Hall, D.A.; Berry-Kravis, E.; Jacquemont, S.; Rice, C.D.; Cogswell, J.; Zhang, L.; Hagerman, R.J.; Leehey, M.A. Initial diagnoses given to persons with the fragile X associated tremor/ataxia syndrome (FXTAS). Neurology 2005, 65, 299–301. [Google Scholar] [CrossRef]
- McKinney, W.S.; Bartolotti, J.; Khemani, P.; Wang, J.Y.; Hagerman, R.; Mosconi, M.W. Cerebellar-Cortical Function and Connectivity During Sensorimotor Behavior in Aging FMR1 Gene Premutation Carriers. NeuroImage: Clin. 2020, 27, 102332. [Google Scholar] [CrossRef]
- Wang, J.Y.; Hessl, D.; Schneider, A.; Tassone, F.; Hagerman, R.J.; Rivera, S.M. Fragile X–associated tremor/ataxia syndrome: Influence of the FMR1 gene on motor fiber tracts in males with normal and premutation alleles. JAMA Neurol. 2013, 70, 1022–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinney, W.S.; Wang, Z.; Kelly, S.; Khemani, P.; Lui, S.; White, S.P.; Mosconi, M.W. Precision Sensorimotor Control in Aging FMR1 Gene Premutation Carriers. Front. Integr. Neurosci. 2019, 13, 56. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Wang, Z.; McKinney, W.; Khemani, P.; Lui, S.; Christou, E.A.; Mosconi, M.W. Functional motor control deficits in older FMR1 premutation carriers. Exp. Brain Res. 2019, 237, 2269–2278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Khemani, P.; Schmitt, L.M.; Lui, S.; Mosconi, M.W. Static and dynamic postural control deficits in aging fragile X mental retardation 1 (FMR1) gene premutation carriers. J. Neurodev. Disord. 2019, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, J.A.; Robertson-Dick, E.; Dunn, E.J.; Li, Y.; Deng, Y.; Fiutko, A.N.; Berry-Kravis, E.; Hall, D.A. Characterization and Early Detection of Balance Deficits in Fragile X Premutation Carriers With and Without Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). Cerebellum 2015, 14, 650–662. [Google Scholar] [CrossRef]
- Birch, R.C.; Hocking, D.R.; Cornish, K.M.; Menant, J.C.; Georgiou-Karistianis, N.; Godler, D.E.; Wen, W.; Hackett, A.; Rogers, C.; Trollor, J. Preliminary evidence of an effect of cerebellar volume on postural sway inFMR1premutation males. Genes, Brain Behav. 2015, 14, 251–259. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, J.A.; Robertson-Dick, E.E.; Hall, D.A.; Berry-Kravis, E. Gait and Functional Mobility Deficits in Fragile X-Associated Tremor/Ataxia Syndrome. Cerebellum 2015, 15, 1–8. [Google Scholar] [CrossRef]
- Hocking, D.R.; Kraan, C.M.; Godler, D.E.; Bui, Q.M.; Li, X.; Bradshaw, J.L.; Georgiou-Karistianis, N.; A Metcalfe, S.; Archibald, A.D.; Turbitt, E.; et al. Evidence linking FMR1 mRNA and attentional demands of stepping and postural control in women with the premutation. Neurobiol. Aging 2015, 36, 1400–1408. [Google Scholar] [CrossRef]
- Kraan, C.; Hocking, D.R.; Georgiou-Karistianis, N.; A Metcalfe, S.; Archibald, A.D.; Fielding, J.; Trollor, J.; Bradshaw, J.L.; Cohen, J.; Cornish, K.M. Cognitive-motor interference during postural control indicates at-risk cerebellar profiles in females with the FMR1 premutation. Behav. Brain Res. 2013, 253, 329–336. [Google Scholar] [CrossRef]
- Hall, D.A.; Stebbins, G.T.; Jacquemont, S.; Berry-Kravis, E.; Goetz, C.G.; Hagerman, R.; Zhang, L.; Leehey, M.A. Clinimetric Properties of the Fragile X-associated Tremor Ataxia Syndrome Rating Scale. Mov. Disord. Clin. Pr. 2019, 6, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.J. Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies. Front. Hum. Neurosci. 2015, 9, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, D. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Jeannerod, M.; Biguer, B. Visuomotor mechanisms in reaching: Within extrapersonal space. In Analysis of Visual Behavior; Ingle, D.J., Goodale, M.A., Mansfield, R.J.W., Eds.; The MIT Press: Cambridge, MA, USA, 1982; pp. 387–409. [Google Scholar]
- Castiello, U. The neuroscience of grasping. Nat. Rev. Neurosci. 2005, 6, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, N.M.; Moraes, R. Gait and reach–to–grasp movements are mutually modified when performed simultaneously. Hum. Mov. Sci. 2015, 40, 38–58. [Google Scholar] [CrossRef]
- Kraan, C.M.; Hocking, D.R.; Georgiou-Karistianis, N.; A Metcalfe, S.; Archibald, A.D.; Fielding, J.; Trollor, J.; Bradshaw, J.L.; Cohen, J.; Cornish, K.M. Age and CGG-repeat length are associated with neuromotor impairments in at-risk females with the FMR1 premutation. Neurobiol. Aging 2014, 35, 2179.e7–2179.e13. [Google Scholar] [CrossRef]
- O’Keefe, J.A.; Robertson, E.E.; Ouyang, B.; Carns, D.; McAsey, A.; Liu, Y.; Swanson, M.; Bernard, B.; Berry-Kravis, E.; Hall, D.A. Cognitive function impacts gait, functional mobility and falls in fragile X-associated tremor/ataxia syndrome. Gait Posture 2018, 66, 288–293. [Google Scholar] [CrossRef]
- Hore, J.; Wild, B.; Diener, H.C. Cerebellar dysmetria at the elbow, wrist, and fingers. J. Neurophysiol. 1991, 65, 563–571. [Google Scholar] [CrossRef]
- Mark, H.; Steve, G.M. Physiologic Studies of Dysmetria in Patients with Cerebellar Deficits. Can. J. Neurol. Sci. 2013, 20, S83–S92. [Google Scholar] [CrossRef] [Green Version]
- Bastian, A.J.; Martin, T.A.; Keating, J.G.; Thach, W.T. Cerebellar ataxia: Abnormal control of interaction torques across multiple joints. J. Neurophysiol. 1996, 76, 492–509. [Google Scholar] [CrossRef]
- Becker, W.; Morrice, B.; Clark, A.; Lee, R. Multi-Joint Reaching Movements and Eye-Hand Tracking in Cerebellar Incoordination: Investigation of a Patient with Complete Loss of Purkinje Cells. Can. J. Neurol. Sci./J. Can. des Sci. Neurol. 1991, 18, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Bonnefoi-Kyriacou, B.; Legallet, E.; Lee, R.G.; Trouche, E. Spatio-temporal and kinematic analysis of pointing movements performed by cerebellar patients with limb ataxia. Exp. Brain Res. 1998, 119, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Birch, R.C.; Hocking, D.R.; Cornish, K.M.; Menant, J.C.; Lord, S.R.; Georgiou-Karistianis, N.; E Godler, D.; Wen, W.; Rogers, C.; Trollor, J.N. Selective subcortical contributions to gait impairments in males with theFMR1premutation. J. Neurol. Neurosurg. Psychiatry 2017, 88, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Leehey, M.; Heinrichs, W.; Tassone, F.; Wilson, R.; Hills, J.; Grigsby, J.; Gage, B. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 2001, 57, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Juncos, J.; Lazarus, J.T.; Graves-Allen, E.; Shubeck, L.; Rusin, M.; Novak, G.; Hamilton, D.; Rohr, J.; Sherman, S.L. New clinical findings in the fragile X-associated tremor ataxia syndrome (FXTAS). Neurogenetics 2011, 12, 123–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salcedo-Arellano, M.J.; Cabal-Herrera, A.M.; Tassanakijpanich, N.; McLennan, Y.A.; Hagerman, R. Ataxia as the Major Manifestation of Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Case Series. Biomedicines 2020, 8, 136. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Arellano, M.J.; Wolf-Ochoa, M.W.; Hong, T.; Amina, S.; Tassone, F.; Lechpammer, M.; Martínez-Cerdeño, V. Parkinsonism Versus Concomitant Parkinson’s Disease in Fragile X–Associated Tremor/Ataxia Syndrome. Mov. Disord. Clin. Pract. 2020, 7, 413–418. [Google Scholar] [CrossRef]
- Bastian, A.J. Understanding sensorimotor adaptation and learning for rehabilitation. Curr. Opin. Neurol. 2008, 21, 628–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, G. The cerebellum of man. Brain 1939, 62, 1–30. [Google Scholar] [CrossRef]
- Day, B.L.; Thompson, P.D.; E Harding, A.; Marsden, C.D. Influence of vision on upper limb reaching movements in patients with cerebellar ataxia. Brain 1998, 121, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Potts, C.A.; Callahan-Flintoft, C.; Rosenbaum, D.A. How do reaching and walking costs affect movement path selection? Exp. Brain Res. 2018, 236, 2727–2737. [Google Scholar] [CrossRef]
- Reilly, J.L.; Lencer, R.; Bishop, J.R.; Keedy, S.; Sweeney, J.A. Pharmacological treatment effects on eye movement control. Brain Cogn. 2008, 68, 415–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz–Hübsch, T. International cooperative ataxia rating scale (ICARS). In Encyclopedia of Movement Disorders; Kompoliti, K., Metman, L.V., Eds.; Elsevier: Oxford, UK, 2010; pp. 75–81. [Google Scholar]
- Roid, G.H. Stanford–Binet Intelligence Scales, 5th ed.; Technical Manual; Riverside Publishing: Itasca, IL, USA, 2003. [Google Scholar]
- Shelton, A.L.; Cornish, K.M.; Godler, D.; Bui, Q.M.; Kolbe, S.; Fielding, J. White matter microstructure, cognition; molecular markers in fragile x premutation carriers. Neurology 2017, 88, 2080–2088. [Google Scholar] [CrossRef] [PubMed]
- Schoch, B.; Regel, J.P.; Frings, M.; Gerwig, M.; Maschke, M.; Neuhäuser, M.; Timmann, D. Reliability and validity of ICARS in focal cerebellar lesions. Mov. Disord. 2007, 22, 2162–2169. [Google Scholar] [CrossRef] [PubMed]
- Cano, S.J.; Hobart, J.C.; Hart, P.E.; Korlipara, L.P.; Schapira, A.H.; Cooper, J.M. International Cooperative Ataxia Rating Scale (ICARS): Appropriate for studies of Friedreich’s ataxia? Mov. Disord. 2005, 20, 1585–1591. [Google Scholar] [CrossRef]
- Kovac, I.; Medved, V.; Ostojić, L. Spatial, temporal and kinematic characteristics of traumatic transtibial amputees’ gait. Coll. Antropol. 2010, 34, 205–213. [Google Scholar]
- Bonnyaud, C.; Pradon, D.; Vuillerme, N.; Bensmail, D.; Roche, N. Spatiotemporal and Kinematic Parameters Relating to Oriented Gait and Turn Performance in Patients with Chronic Stroke. PLoS ONE 2015, 10, e0129821. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.H.; Ranganathan, R.; Newell, K.M. Changes in object-oriented arm movements that precede the transition to goal-directed reaching in infancy. Dev. Psychobiol. 2011, 53, 685–693. [Google Scholar] [CrossRef]
- Rohrer, B.; Fasoli, S.; Krebs, H.I.; Hughes, R.; Volpe, B.; Frontera, W.R.; Stein, J.; Hogan, N. Movement Smoothness Changes during Stroke Recovery. J. Neurosci. 2002, 22, 8297–8304. [Google Scholar] [CrossRef]
- Bergland, A.; Jorgensen, L.; Emaus, N.; Strand, B.H. Mobility as a predictor of all–cause mortality in older men and women, 11.8 year follow–up in the Tromso study. BMC Health Serv. Res. 2017, 17, 22. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, J.M.; Fried, L.P.; Salive, M.E. Disability as a public health outcome in the aging population. Annu. Rev. Public Health 1996, 17, 25–46. [Google Scholar] [CrossRef]
- Yang, F.; Pai, Y.C. Can stability really predict an impending slip–related fall among older adults? J. Biomech. 2014, 47, 3876–3881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owings, T.M.; Grabiner, M.D. Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion. J. Biomech. 2004, 37, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Amboni, M.; Barone, P.; Hausdorff, J.M. Cognitive contributions to gait and falls: Evidence and implications. Mov. Disord. 2013, 28, 1520–1533. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.D.; Echt, K.V.; Wolf, S.L.; Rogers, W.A. Cognitive and Motor Mechanisms Underlying Older Adults’ Ability to Divide Attention While Walking. Phys. Ther. 2011, 91, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- Haines, D.E.; Mihailoff, G.A.; Bloedel, J.R. The cerebellum. In Fundamental Neuroscience; Haines, D.E., Ed.; Churchill Livingstone: New York, NY, USA, 2002; pp. 423–444. [Google Scholar]
- Morton, S.M.; Bastian, A.J. Mechanisms of cerebellar gait ataxia. Cerebellum 2007, 6, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Doya, K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks 1999, 12, 961–974. [Google Scholar] [CrossRef]
- Ilg, W.; Golla, H.; Thier, P.; Giese, M.A. Specific influences of cerebellar dysfunctions on gait. Brain 2007, 130, 786–798. [Google Scholar] [CrossRef]
- Palliyath, S.; Hallett, M.; Thomas, S.L.; Lebiedowska, M.K. Gait in patients with cerebellar ataxia. Mov. Disord. 1998, 13, 958–964. [Google Scholar] [CrossRef]
- Kafri, M.; Sasson, E.; Assaf, Y.; Balash, Y.; Aiznstein, O.; Hausdorff, J.M.; Giladi, N. High-level gait disorder: Associations with specific white matter changes observed on advanced diffusion imaging. J. Neuroimaging 2013, 23, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Cavallari, M.; Moscufo, N.; Skudlarski, P.; Meier, M.; Panzer, V.P.; Pearlson, G.D.; White, W.B.; Wolfson, L.; Guttmann, C.R.G. Mobility impairment is associated with reduced microstructural integrity of the inferior and superior cerebellar peduncles in elderly with no clinical signs of cerebellar dysfunction. NeuroImage: Clin. 2013, 2, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Van de Warrenburg, B.P.; Bakker, M.; Kremer, B.P.; Bloem, B.R.; Allum, J.H. Trunk sway in patients with spinocerebellar ataxia. Mov. Disord. 2005, 20, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Latash, M.L. The bliss (not the problem) of motor abundance (not redundancy). Exp. Brain Res. 2012, 217, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tassone, F.; Greco, C.M.; Hunsaker, M.R.; Seritan, A.L.; Berman, R.F.; Gane, L.W.; Jacquemont, S.; Basuta, K.; Jin, L.-W.; Hagerman, R.J. Neuropathological, clinical and molecular pathology in female fragile X premutation carriers with and without FXTAS. Genes, Brain Behav. 2012, 11, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Mora, M.I.; Rodriguez-Revenga, L.; Feliu, A.; Badenas, C.; Madrigal, I.; Mila, M. Skewed X Inactivation in Women Carrying the FMR1 Premutation and Its Relation with Fragile-X-Associated Tremor/Ataxia Syndrome. Neurodegener. Dis. 2016, 16, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Bastian, A.J. Mechanisms of Ataxia. Phys. Ther. 1997, 77, 672–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shickman, R.; Ms, J.F.; Tassone, F.; Leehey, M.; Ferrer, E.; Rivera, S.M.; Hessl, D. Age- and CGG repeat-related slowing of manual movement in fragile X carriers: A prodrome of fragile X-associated tremor ataxia syndrome? Mov. Disord. 2018, 33, 628–636. [Google Scholar] [CrossRef]
- Niu, Y.Q.; Yang, J.-C.; Hall, D.A.; Leehey, M.A.; Tassone, F.; Olichney, J.M.; Hagerman, R.J.; Zhang, L. Parkinsonism in fragile X-associated tremor/ataxia syndrome (FXTAS): Revisited. Park. Relat. Disord. 2014, 20, 456–459. [Google Scholar] [CrossRef] [Green Version]
- Trost, N.; Cook, M.; Hammersley, E.; Bui, M.Q.; Brotchie, P.; Burgess, T.; Loesch, D.Z. White matter changes in patients with Parkinson’s disease carrying small CGG expansion FMR1 alleles: A pilot study. Neurodegener. Dis. 2014, 14, 67–76. [Google Scholar] [CrossRef]
- Loesch, D.; Tassone, F.; Mellick, G.; Horne, M.; Rubio, J.P.; Bui, M.Q.; Francis, D.; Storey, E. Evidence for the role ofFMR1gray zone alleles as a risk factor for parkinsonism in females. Mov. Disord. 2018, 33, 1178–1181. [Google Scholar] [CrossRef]
- Ariza, J.; Rogers, H.; Hartvigsen, A.; Snell, M.; Dill, M.; Judd, D.; Hagerman, P.; Martinez–Cerdeno, V. Iron accumulation and dysregulation in the putamen in fragile X-associated tremor/ataxia syndrome. Mov. Disord. 2017, 32, 585–591. [Google Scholar] [CrossRef]
- Healy, D.G.; Bressman, S.; Dickson, J.; Silveira-Moriyama, L.; Schneider, S.A.; Sullivan, S.S.; Massey, L.; Shaw, K.; Bhatia, K.P.; Bomanji, J.; et al. Evidence for pre and postsynaptic nigrostriatal dysfunction in the fragile X tremor-Ataxia syndrome. Mov. Disord. 2009, 24, 1245–1247. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Revenga, L.; Madrigal, I.; Pagonabarraga, J.; Xunclà, M.; Badenas, C.; Kulisevsky, J.; Gomez, B.; Mila, M. Penetrance of FMR1 premutation associated pathologies in fragile X syndrome families. Eur. J. Hum. Genet. 2009, 17, 1359–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storey, E.; Bui, M.Q.; Stimpson, P.; Tassone, F.; Atkinson, A.; Loesch, D. Relationships between motor scores and cognitive functioning in FMR1 female premutation X carriers indicate early involvement of cerebello–cerebral pathways. Res. Square 2020. [Google Scholar] [CrossRef]
- Galna, B.; Lord, S.; Rochester, L. Is gait variability reliable in older adults and Parkinson’s disease? Towards an optimal testing protocol. Gait Posture 2013, 37, 580–585. [Google Scholar] [CrossRef]
Characteristics | Controls (n = 16) | FXTAS− (n = 6) | FXTAS+ (n = 9) | F | p |
---|---|---|---|---|---|
Age (yr) | 53.13 (8.41) | 57.00 (6.20) | 63.33 (8.35) # | 4.645 | 0.018 * |
Height (cm) | 167.61 (7.77) | 167.38 (12.76) | 165.14 (5.09) | 0.269 | 0.766 |
Leg length (cm) | 86.31 (7.21) | 89.33 (5.78) | 85.93 (2.61) | 0.686 | 0.512 |
Weight (kg) | 80.77 (16.41) | 82.56 (26.42) | 83.77 (25.11) | 0.060 | 0.941 |
Male (n) φ | 8 | 2 | 3 | 0.883 | 0.643 |
Full scale IQ | 106.63 (14.15) | 99.50 (8.14) | 102.67 (16.73) | 0.622 | 0.544 |
CGG repeats | — | 74 (60–102) | 83 (58-107) | 0.416 | 0.531 |
ICARS speech | — | 0 (0) | 0 (0–2) | 1.493 | 0.245 |
ICARS kinetic | — | 0 (0) | 2 (1–7) † | 9.288 | 0.010 * |
ICARS oculomotor | — | 0.5 (0–1) | 0 (0–3) | 0.468 | 0.507 |
ICARS posture and gait | — | 1.5 (0–3) | 5 (1–7) † | 12.039 | 0.005 ** |
ICARS total | — | 2 (0–4) | 8 (2–19) † | 9.510 | 0.009 ** |
ID | Age | Sex | CGG | ICARS | T2 Scan | Neurological Exam | Clinical Classification | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Speech | Kinetic | Oculomotor | Gait Posture | Total | |||||||
1 | 55 | F | 87 | 0 | 0 | 1 | 1 | 2 | Generalized white matter lesion, cerebral atrophy type 1 | Tremor (−) Gait ataxia (−) | FXTAS− |
2 | 61 | F | 102 | 0 | 0 | 1 | 2 | 3 | Generalized white matter lesion, cerebral atrophy type 2 | Tremor (−) Gait ataxia (−) | FXTAS− |
3 | 58 | M | 60 | 0 | 0 | 1 | 3 | 4 | (−) | Tremor (−) Gait ataxia (−) | FXTAS− |
4 | 58 | M | 63 | 0 | 0 | 0 | 2 | 2 | (−) | Tremor (+) Gait ataxia (−) | FXTAS− |
5 | 46 | F | 68 | 0 | 0 | 0 | 0 | 0 | Mild white matter lesion, white matter hypersensitivity | Tremor (−) Gait ataxia (−) | FXTAS− |
6 | 64 | F | 80 | 0 | 0 | 0 | 1 | 1 | Mild white matter lesion, white matter hypersensitivity, cerebral atrophy type 2 | Tremor (−) Gait ataxia (−) | FXTAS− |
7 | 54 | F | 99 | 0 | 2 | 0 | 5 | 7 | Mild cerebellar features | Tremor (+): mild | Probable |
8 | 59 | F | 107 | 0 | 1 | 2 | 5 | 8 | Probable | ||
9 | 71 | M | 85 | 1 | 2 | 2 | 7 | 12 | Generalized white matter lesion, cerebral atrophy type 3 | Tremor (+) Gait ataxia (+) | Definite |
10 | 52 | F | 81 | 0 | 1 | 0 | 4 | 5 | Cerebral atrophy type 1 | Tremor (+) Gait ataxia (+) | Probable |
11 | 77 | F | 75 | 2 | 7 | 3 | 7 | 19 | Tremor (+) Gait ataxia (+) | Probable | |
12 | 67 | F | 62 | 0 | 1 | 0 | 1 | 2 | Mild white matter lesion, white matter hypersensitivity | Tremor (+) Gait ataxia (−) | Possible |
13 | 65 | M | 58 | 0 | 3 | 0 | 5 | 8 | (−) | Tremor (+) Gait ataxia (+) | Probable |
14 | 57 | M | 93 | 0 | 5 | 0 | 3 | 8 | Suspected middle cerebellar peduncle sign, cerebral atrophy type 1, fourth ventricle widening, atrophy of cerebellum and brainstem | Tremor (+) Gait ataxia (−) | Possible |
15 | 68 | F | (−) | Tremor (+) Gait ataxia (+) | Probable | ||||||
16 | 62 | F | 102 | 0 | 0 | 0 | 0 | 0 | Inconclusive | ||
17 | 70 | F | 90 | 0 | 2 | 2 | 2 | 6 | Tremor (+) Gait ataxia (−) | Inconclusive | |
18 | 61 | M | 64 | Inconclusive | |||||||
19 | 59 | F | 78 | Mild white matter lesion, white matter hypersensitivity | Inconclusive |
Control (n = 16) | FXTAS− (n = 6) | FXTAS+ (n = 9) | F | p | |
---|---|---|---|---|---|
Small box condition | |||||
Reaching duration (s) | 1.25 (0.33) | 1.35 (0.34) | 1.67 (0.40) | 4.047 | 0.029 |
Hand max velocity (cm/s) | 214.64 (45.18) | 203.57 (36.57) | 163.48 (29.08) # | 4.872 | 0.015 * |
Elbow max velocity (cm/s) | 147.50 (14.38) | 138.62 (17.49) | 115.54 (22.46) # | 8.991 | 0.001 ** |
Shoulder max velocity (cm/s) | 119.36 (11.69) | 114.83 (11.33) | 97.03 (19.92) # | 6.999 | 0.003 ** |
Hand acceleration time (s) φ | 1.65 (0.32) | 1.82 (0.28) | 2.33 (0.83) # | 4.974 | 0.014 * |
Elbow acceleration time (s) φ | 1.64 (0.37) | 1.79 (0.31) | 2.32 (0.88) # | 4.381 | 0.022 * |
Shoulder acceleration time (s) φ | 1.57 (0.36) | 1.70 (0.33) | 2.26 (0.93) # | 4.120 | 0.027 * |
Hand DSJP φ | 29.88 (10.21) | 34.49 (12.42) | 54.27 (18.85) † | 6.829 | 0.004 ** |
Elbow DSJP φ | 31.20 (14.00) | 33.46 (11.76) | 56.86 (24.89) # | 5.242 | 0.012 * |
Shoulder DSJP φ | 33.75 (15.44) | 35.11 (11.18) | 60.22 (26.87) # | 4.932 | 0.015 * |
Large box condition | |||||
Reaching duration (s) | 1.28 (0.33) | 1.48 (0.21) | 1.63 (0.44) | 3.124 | 0.060 |
Hand max velocity (cm/s) | 208.18 (43.89) | 212.05 (43.00) | 165.04 (31.73) | 3.801 | 0.035 |
Elbow max velocity (cm/s) | 145.93 (16.63) | 138.40 (1.683) | 115.83 (19.12) # | 8.697 | 0.001 ** |
Shoulder max velocity (cm/s) | 116.01 (13.71) | 117.59 (12.19) | 98.92 (17.40) # | 4.606 | 0.019 * |
Hand acceleration time (s) | 1.68 (0.42) | 1.77 (0.27) | 2.46 (0.57) † | 8.962 | 0.001 ** |
Elbow acceleration time (s) | 1.72 (0.43) | 1.73 (0.28) | 2.43 (0.58) † | 7.583 | 0.002 ** |
Shoulder acceleration time (s) | 1.61 (0.42) | 1.65 (0.28) | 2.37 (0.67) † | 7.687 | 0.002 ** |
Hand DSJP φ | 30.25 (9.54) | 37.26 (7.51) | 51.45 (21.53) # | 5.692 | 0.008 ** |
Elbow DSJP | 32.62 (15.35) | 40.17 (9.67) | 52.43 (29.28) | 2.916 | 0.071 |
Shoulder DSJP | 35.00 (16.41) | 40.66 (7.86) | 56.89 (29.19) | 3.429 | 0.044 |
Age | IQ | CGG Repeats | ICARS Posture Gait | ICARS Total | |
---|---|---|---|---|---|
FMR1 premutation carriers (n = 19) | |||||
Stride length (mm) | r = −0.517, p = 0.028 * | r = −0.206, p = 0.411 | r = −0.225, p = 0.386 | rho = −0.689, p = 0.009 ** | rho = 0.609, p = 0.027 * |
Stride velocity (mm/s) | r = −0.286, p = 0.250 | r = −0.248, p = 0.321 | r = −0.143, p = 0.585 | rho = −0.697, p = 0.008 ** | rho = −0.575, p = 0.040 * |
Pct. double support time (%) | r = 0.126, p = 0.619 | r = 0.246, p = 0.325 | r = 0.288, p = 0.262 | rho = 0.667, p = 0.013 * | rho = 0.559, p = 0.047 * |
Cadence CoV (steps/min) | r = 0.539, p = 0.021 * | r = 0.306, p = 0.217 | r = 0.161, p = 0.538 | rho = 0.761, p = 0.003 ** | rho = 0.672, p = 0.012 * |
Step COM SD (mm) | r = 0.179, p = 0.477 | r = 0.143, p = 0.595 | r = −0.006, p = 0.982 | rho = 0.644, p = 0.017 * | rho = 0.573, p = 0.041 * |
Controls (n = 16) | |||||
Stride length (mm) | r = 0.145, p = 0.592 | r = 0.456, p = 0.076 | — | — | — |
Stride velocity (mm/s) | r = 0.075, p = 0.783 | r = 0.461, p = 0.072 | — | — | — |
Pct. double support time (%) | r = 0.156, p = 0.565 | r = −0.046, p = 0.865 | — | — | — |
Cadence CoV (steps/min) | r = 0.035, p = 0.897 | r = −0.694, p = 0.003 ** | — | — | — |
Step COM SD (mm) | r = −0.033, p = 0.902 | r = −0.501, p = 0.048 * | — | — | — |
ICARS Kinetic | ICARS Total | |
---|---|---|
Small box condition | ||
Hand max velocity | rho = −0.510, p = 0.044 * | rho = −0.651, p = 0.006 ** |
Elbow max velocity | rho = −0.535, p = 0.033 * | rho = −0.756, p = 0.001 ** |
Shoulder max velocity | rho = −0.562, p = 0.023 * | rho = −0.816, p = 0.000 ** |
Hand acceleration time | rho = 0.244, p = 0.362 | rho = 0.417, p = 0.108 |
Elbow acceleration time | rho = 0.253, p = 0.344 | rho = 0.400, p = 0.125 |
Shoulder acceleration time | rho = 0.343, p = 0.193 | rho = 0.542, p = 0.030 * |
Hand DSJP | rho = 0.532, p = 0.034 * | rho = 0.534, p = 0.033 * |
Elbow DSJP | rho = 0.476, p = 0.062 | rho = 0.551, p = 0.027 * |
Shoulder DSJP | rho = 0.417, p = 0.108 | rho = 0.552, p = 0.027 * |
Large box condition | ||
Elbow max velocity | rho = −0.599, p = 0.014 * | rho = −0.783, p = 0.000 ** |
Shoulder max velocity | rho = −0.507, p=.045 * | rho = −0.691, p = 0.003 ** |
Hand acceleration time | rho = 0.547, p= 0.028 * | rho = 0.632, p = 0.009 ** |
Elbow acceleration time | rho = 0.454, p = 0.077 | rho = 0.499, p = 0.049 * |
Shoulder acceleration time | rho = 0.624, p = 0.010 ** | rho = 0.709, p = 0.002 ** |
Hand DSJP | rho = 0.368, p = 0.161 | rho = 0.577, p = 0.019 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Lane, C.; Terza, M.; Khemani, P.; Lui, S.; McKinney, W.S.; Mosconi, M.W. Upper and Lower Limb Movement Kinematics in Aging FMR1 Gene Premutation Carriers. Brain Sci. 2021, 11, 13. https://doi.org/10.3390/brainsci11010013
Wang Z, Lane C, Terza M, Khemani P, Lui S, McKinney WS, Mosconi MW. Upper and Lower Limb Movement Kinematics in Aging FMR1 Gene Premutation Carriers. Brain Sciences. 2021; 11(1):13. https://doi.org/10.3390/brainsci11010013
Chicago/Turabian StyleWang, Zheng, Callie Lane, Matthew Terza, Pravin Khemani, Su Lui, Walker S. McKinney, and Matthew W. Mosconi. 2021. "Upper and Lower Limb Movement Kinematics in Aging FMR1 Gene Premutation Carriers" Brain Sciences 11, no. 1: 13. https://doi.org/10.3390/brainsci11010013
APA StyleWang, Z., Lane, C., Terza, M., Khemani, P., Lui, S., McKinney, W. S., & Mosconi, M. W. (2021). Upper and Lower Limb Movement Kinematics in Aging FMR1 Gene Premutation Carriers. Brain Sciences, 11(1), 13. https://doi.org/10.3390/brainsci11010013