Congenital Disorders of Glycosylation from a Neurological Perspective
Abstract
:1. Introduction
- -
- disorders of N-glycosylation
- -
- disorders of O-glycosylation
- -
- disorders of glycosylphosphatidylinositol (GPI) anchor and glycolipid anchor
- -
- various disorders of glycosylation pathways (disorders of O-mannosylation, follicular transport)
- -
- psychomotor retardation/intellectual disability (ID) (90–96%)
- -
- ataxia/cerebellar syndrome (96%)
- -
- cerebellar atrophy (95%)
- -
- hypotonia with frequent hyporeflexia (92%)
- -
- strabismus (84%)
- -
- ESe (11–12%), abnormal EEG findings (69%)
- -
- peripheral neuropathy (53%)
- -
- retinitis pigmentosa (22%)
- -
- nystagmus (9.5%)
- -
- thrombotic episodes: 89.3%-patients under ten years of age, 68% at least one stroke incident (provoking factors: fever, head injury)
2. Epileptic Encephalopathies
- -
- a disturbed balance between excitatory and inhibitory neuronal activity (improper function of the voltage-gated ion-channels proteins within the cell membrane connected with lack of N-glycans: improper folding, shifted gating),
- -
- defective glycosylation of signal transducers such as receptors,
- -
- in specific CDG subtypes: mutations in the X-linked UDP-Galactose transporter SLC35A2, in the UDP-GlcNAc transporter SLC35A3, decreased localized production of the protein-free GAG hyaluronan, deletions in glycoprotein neurexin1 (NRXN1),
- -
- congenital structural brain abnormalities most frequently connected with neuronal migration disorders (disturbed O-mannosylation of dystroglycans, different proteins like cadherin, abolishing polysialic acid, which presents on N-glycans in NCAM),
- -
- regulation of GABAAR function (ALG13-CDG)
2.1. Epileptic Spasms(ESp)/West Syndrome
2.1.1. ALG1-CDG
2.1.2. ALG3-CDG
2.1.3. ALG11-CDG
2.1.4. ALG13-CDG
2.1.5. DOLK-CDG
2.1.6. DPAGT1-CDG
2.1.7. MPDU1-CDG
2.1.8. ST3GAL3-CDG
2.1.9. SLC35A2
2.1.10. RFT1-CDG
2.1.11. PIGA-CDG
2.1.12. PIGW-CDG
2.1.13. PIGN-CDG
2.1.14. ST3GAL5
2.2. Ohtahara Syndrome
2.3. Early Myoclonic Encephalopathy of Infancy (EMEI)
- PIGA-CDG, Kato [27]
- ALG3-CDG, Fiumara et al. [35]
- ALG6-CDG, Fiumara et al. [35]
- DPM2-CDG, Fiumara et al. [35]
2.4. Epilepsy of Infancy with Migrating Focal Seizures
3. Brain Congenital Abnormalities
4. Microcephaly
5. Developmental Delay (DD) and Intellectual Disability (DD/ID)
6. Ataxia
7. Neuromuscular Presentation
8. Spasticity
9. Peripheral Neuropathy
10. Movement Disorders
11. Stroke-Like Episodes (SLEs)
12. Autistic Spectrum Disorder
13. Retinitis Pigmentosa
14. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jaeken, J.; Peanne, R. What is new in CDG? J. Inherit. Metab. Dis. 2017, 40, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Francisco, R.; Marques-da-Silva, D.; Brasil, S.; Pascoal, C.; Dos Reis Ferreira, V.; Morava, E.; Jaeken, J. The challenge of CDG diagnosis. Mol. Genet. Metab. 2019, 126, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.; Miao, H.; Lam, C. Congenital disorders of glycosylation. Ann. Transl. Med. 2018, 6, 477. [Google Scholar] [CrossRef]
- Péanne, R.; de Lonlay, P.; Foulquier, F.; Kornak, U.; Lefeber, D.J.; Morava, E.; Pérez, B.; Seta, N.; Thiel, C.; Van Schaftingen, E.; et al. Congenital disorders of glycosylation (CDG): Quo vadis? Eur. J. Med. Genet. 2018, 61, 643–663. [Google Scholar] [CrossRef] [PubMed]
- Pearl Phillip, L. Inherited Metabolic Epilepsies, 2nd ed.; Springer Publishing Company: Berlin/Heidelberg, Germany, 2018; pp. 432–433. [Google Scholar]
- Gardeitchik, T.; Wyckmans, J.; Morava, E. Complex phenotypes in inborn errors of metabolism. Pediatr. Clin. 2018, 65, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Schiff, M.; Roda, C.; Monin, M.L.; Arion, A.; Barth, M.; Bednarek, N.; Bidet, M.; Bloch, C.; Boddaert, N.; Borgel, D.; et al. Clinical, laboratory and molecular findings and long-term follow-up data in 96 French patients with PMM2-CDG (phosphomannomutase 2-congenital disorder of glycosylation) and review of the literature. J. Med. Genet. 2017, 54, 843–851. [Google Scholar] [CrossRef]
- Berg, A.T.; Berkovic, S.F.; Brodie, M.J.; Buchhalter, J.; Cross, J.H.; van Emde Boas, W.; Engel, J.; Glauser, T.A.; Mathern, G.W.; Moshe, S.L.; et al. Revised terminology and concepts for organization of seizures and epilepsy: Report of the ILAE Commission on Classification and Terminology. Epilepsia 2010, 51, 676–685. [Google Scholar] [CrossRef]
- Stafstrom, C.E.; Kossoff, E.H. Epileptic encephalopathy in infants and children. Epilepsy Curr. 2016, 16, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Fiumara, A.; Barone, R.; Del Campo, G.; Striano, P.; Jaeken, J. Early-Onset Epileptic Encephalopathy in infants with different forms of Congenital Disorders of Glycosylation (CDG). Brain Dev. 2017, 39, 366–367. [Google Scholar] [CrossRef]
- Huo, J.; Ren, S.; Gao, P.; Wan, D.; Rong, S.; Li, X.; Liu, S.; Xu, S.; Sun, K.; Guo, B.; et al. ALG13 participates in epileptogenesis via regulation of GABA A receptors in mouse models. Cell Death Discov. 2020, 6, 87. [Google Scholar] [CrossRef] [PubMed]
- Barone, R.; Aiello, C.; Race, V.; Morava, E.; Foulquier, F.; Riemersma, M.; Passarelli, C.; Concolino, D.; Carella, M.; Santorelli, F.; et al. DPM2-CDG: A muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann. Neurol 2012, 72, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Morava, E.; Tiemes, V.; Thiel, C.; Seta, N.; de Lonlay, P.; de Klerk, H.; Mulder, M.; Rubio-Gozalbo, E.; Visser, G.; van Hasselt, P.; et al. ALG6-CDG: A recognizable phenotype with epilepsy, proximal muscle weakness, ataxia and behavioral and limb anomalies. Inherit. Metab. Dis. 2016, 39, 713–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, A.G.; Bahi-Buisson, N.; Barnerias, C.; Boddaert, N.; Nabbout, R.; de Lonlay, P.; Kaminska, A.; Eisermann, M. Epileptic spasms in congenital disorders of glycosylation. Epileptic Disord. 2017, 19, 15–23. [Google Scholar] [CrossRef] [PubMed]
- de Koning, T.J.; Toet, M.; Dorland, L.; de Vries, L.S.; van den Berg, I.T. Recurrent nonimmune hydrops fetalis associated with carbohydrate-deficient glycoprotein syndrome. J. Inherit. Metab. Dis. 1998, 21, 681–682. [Google Scholar] [CrossRef] [PubMed]
- Kranz, C.; Sun, L.; Eklund, E.A.; Krasnewich, D.; Casey, J.R.; Freeze, H.H. CDG-Id in two siblings with partially different phenotypes. Am. J. Med. Genet. A 2007, 143A, 1414–1420. [Google Scholar] [CrossRef] [PubMed]
- Rind, N.; Schmeiser, V.; Thiel, C.; Absmanner, B.; Lübbehusen, J.; Hocks, J.; Apeshiotis, N.; Wilichowski, E.; Lehle, L.; Körner, C. A severe human metabolic disease caused by deficiency of the endoplasmatic mannosyltransferase hALG11 leads to congenital disorder of glycosylation-Ip. Hum. Mol. Genet. 2010, 19, 1413–1424. [Google Scholar] [CrossRef]
- Allen, A.S.; Berkovic, S.F.; Cossette, P.; Delanty, N.; Dlugos, D.; Eichler, E.E.; Epstein, M.P.; Glauser, T.; Goldstein, D.B.; Han, Y.; et al. De novo mutations in epileptic encephalopathies. Nature 2013, 501, 217–221. [Google Scholar]
- Helander, A.; Stödberg, T.; Jaeken, J.; Matthijs, G.; Eriksson, M.; Eggertsen, G. Dolichol kinase deficiency (DOLK-CDG) with a purely neurological presentation caused by a novel mutation. Mol. Genet. Metab. 2013, 110, 342–344. [Google Scholar] [CrossRef]
- Wu, X.; Rush, J.S.; Karaoglu, D.; Krasnewich, D.; Lubinsky, M.S.; Waechter, C.J.; Gilmore, R.; Freeze, H.H. Deficiency of UDP-GlcNAc: Dolichol phosphate N-acetylglucosamine-1 Phosphate transferase (DPAGT1) causes a novel congenital disorder of glycosylation type Ij. Hum. Mutat. 2003, 22, 144–150. [Google Scholar] [CrossRef]
- Schenk, B.; Imbach, T.; Frank, C.G.; Grubenmann, C.E.; Raymond, G.V.; Hurvitz, H.; Raas-Rotschild, A.; Luder, A.S.; Jaeken, J.; Berger, E.G.; et al. MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J. Clin. Investig. 2001, 108, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Edvardson, S.; Baumann, A.M.; Mühlenhoff, M.; Stephan, O.; Kuss, A.W.; Shaag, A.; He, L.; Zenvirt, S.; Tanzi, R.; Gerardy-Schahn, R.; et al. West syndrome caused by ST3Gal-III deficiency. Epilepsia 2013, 54, e24–e27. [Google Scholar] [CrossRef] [PubMed]
- Edvardson, S.; Ashikov, A.; Jalas, C.; Sturiale, L.; Shaag, A.; Fedick, A.; Treff, N.R.; Garozzo, D.; Gerardy-Schahn, R.; Elpeleg, O. Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis. J. Med. Genet. 2013, 50, 733–739. [Google Scholar] [CrossRef]
- Kodera, H.; Nakamura, K.; Osaka, H.; Maegaki, Y.; Haginoya, K.; Mizumoto, S.; Saitsu, H. De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Hum. Mutat. 2013, 34, 1708–1714. [Google Scholar] [CrossRef] [PubMed]
- Aeby, A.; Prigogine, C.; Vilain, C.; Malfilatre, G.; Jaeken, J.; Lederer, D.; Van Bogaert, P. RFT1-congenital disorder of glycosylation (CDG) syndrome: A cause of early-onset severe epilepsy. Epileptic Disord. 2016, 18, 92–96. [Google Scholar] [CrossRef]
- Kato, M.; Saitsu, H.; Murakami, Y.; Kikuchi, K.; Watanabe, S.; Iai, M.; Miya, K.; Matsuura, R.; Takayama, R.; Ohba, C.; et al. PIGA mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology 2014, 82, 1587–1596. [Google Scholar] [CrossRef]
- Chiyonobu, T.; Inoue, N.; Morimoto, M.; Kinoshita, T.; Murakami, Y. Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. J. Med. Genet. 2014, 51, 203–207. [Google Scholar] [CrossRef]
- Maydan, G.; Noyman, I.; Har-Zahav, A.; Ben Neriah, Z.; Pasmanik-Chor, M.; Yeheskel, A.; Albin-Kaplanski, A.; Maya, I.; Magal, N.; Birk, E.; et al. Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN. J. Med. Genet. 2011, 48, 383–389. [Google Scholar] [CrossRef]
- Simpson, M.A.; Cross, H.; Proukakis, C.; Priestman, D.A.; Neville, D.C.; Reinkensmeier, G.; Wang, H.; Wiznitzer, M.; Gurtz, K.; Verganelaki, A.; et al. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat. Genet. 2004, 36, 1225–1229. [Google Scholar] [CrossRef] [Green Version]
- Grubenmann, C.E.; Frank, C.G.; Hülsmeier, A.J.; Schollen, E.; Matthijs, G.; Mayatepek, E.; Berger, E.G.; Aebi, M.; Hennet, T. Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik. Hum. Mol. Genet. 2004, 13, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Kranz, C.; Denecke, J.; Lehle, L.; Sohlbach, K.; Jeske, S.; Meinhardt, F.; Rossi, R.; Gudowius, S.; Marquardt, T. Congenital disorder of glycosylation type Ik (CDG-Ik): A defect of mannosyltransferase I. Am. J. Hum. Genet. 2004, 74, 545–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupre, T.; Vuillaumier-Barrot, S.; Chantret, I.; Yayé, H.S.; Le Bizec, C.; Afenjar, A.; Altuzarra, C.; Barnérias, C.; Burglen, L.; de Lonlay, P.; et al. Guanosine diphosphatemannose: GlcNAc2-PP-dolichol mannosyltransferase deficiency. (congenital disorders of glycosylation type Ik): Five new patients and seven novel mutations. J. Med. Genet. 2010, 47, 729–735. [Google Scholar] [CrossRef] [PubMed]
- aeken, J. Congenital disorders of glycosylation. Ann. NY ACADSci. 2010, 1214, 190–198. [Google Scholar]
- Fiumara, A.; Barone, R.; Del Campo, G.; Striano, P.; Jaeken, J. Electroclinical Features of Early-Onset Epileptic Encephalopathies in Congenital Disorders of Glycosylation (CDGs). JIMD Rep. 2016, 27, 93–99. [Google Scholar]
- Morava, E.; Vodopiutz, J.; Lefeber, D.J.; Janecke, A.R.; Schmidt, W.M.; Lechner, S.; Item, C.B.; Sykut-Cegielska, J.; Adamowicz, M.; Wierzba, J.; et al. Defining the phenotype in congenital disorder of glycosylation due to ALG1 mutations. Pediatrics 2012, 130, e1034-9. [Google Scholar] [CrossRef] [Green Version]
- Ng, B.G.; Shiryaev, S.A.; Rymen, D.; Eklund, E.A.; Raymond, K.; Kircher, M.; Abdenur, J.E.; Alehan, F.; Midro, A.T.; Bamshad, M.J.; et al. ALG1-CDG: Clinical and molecular characterization of 39 unreported patients. Hum. Mutat. 2016, 37, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Himmelreich, N.; Dimitrov, B.; Geiger, V.; Zielonka, M.; Hutter, A.M.; Beedgen, L.; Hüllen, A.; Breuer, M.; Peters, V.; Thiemann, K.C.; et al. Novel variants and clinical symptoms in four new ALG3-CDG patients, review of the literature, and identification of AAGRP-ALG3 as a novel ALG3 variant with alanine and glycine-rich N-terminus. Hum. Mutat. 2019, 40, 938–951. [Google Scholar] [CrossRef]
- Paketci, C.; Edem, P.; Hiz, S.; Sonmezler, E.; Soydemir, D.; Sarikaya Uzan, G.; Oktay, Y.; O’Heir, E.; Beltran, S.; Laurie, S.; et al. Successful treatment of intractable epilepsy with ketogenic diet therapy in twins with ALG3-CDG. Brain Dev. 2020, 42, 539–545. [Google Scholar] [CrossRef]
- Regal, L.; van Hasselt, P.M.; Foulquier, F.; Cuppen, I.; Prinsen, H.; Jansen, K.; Keldermans, L.; De Meirleir, L.; Matthijs, G.; Jaeken, J. ALG11-CDG: Three novel mutations and further characterization of the phenotype. Mol. Genet. Metab. Rep. 2014, 2, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Thiel, C.; Rind, N.; Popovici, D.; Hoffmann, G.F.; Hanson, K.; Conway, R.L.; Adamski, C.R.; Butler, E.; Scanlon, R.; Lambert, M.; et al. Improved diagnostics lead to identification of three new patients with congenital disorder of glycosylation-Ip. Hum. Mutat. 2012, 33, 485–487. [Google Scholar] [CrossRef]
- Teneiji, A.A.; Bruun, T.U.J.; Sidky, S.; Cordeiro, D.; Cohn, R.D.; Mendoza-Londono, R.; Moharir, M.; Raiman, J.; Siriwardena, K.; Kyriakopoulou, L.; et al. Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II. Mol. Genet. Metab. 2017, 120, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Haanpää, M.K.; Ng, B.G.; Gallant, N.M.; Singh, K.E.; Brown, C.; Kimonis, V.; Freeze, H.H. ALG11-CDG syndrome: Expanding the phenotype. Am. J. Med. Genet. A 2019, 179, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Michaud, J.L.; Lachance, M.; Hamdan, F.F.; Carmant, L.; Lortie, A.; Diadori, P.; Major, P.; Meijer, I.A.; Lemyre, E.; Cossette, P.; et al. The genetic landscape of infantile spasms. Hum. Mol. Genet. 2014, 23, 4846–4858. [Google Scholar] [CrossRef] [Green Version]
- Smith-Packard, B.; Myers, S.M.; Williams, M.S. Girls with seizures due to the c.320A>G variant in ALG13 do not show abnormal glycosylation pattern on standard testing. JIMD Rep. 2015, 22, 95–98. [Google Scholar] [PubMed] [Green Version]
- Dimassi, S.; Labalme, A.; Ville, D.; Calender, A.; Mignot, C.; Boutry-Kryza, N.; de Bellescize, J.; Rivier-Ringenbach, C.; Bourel-Ponchel, E.; Cheillan, D.; et al. Whole-exome sequencing improves the diagnosis yield in sporadic infantile spasm syndrome. Clin. Genet. 2016, 89, 198–204. [Google Scholar] [CrossRef]
- Timal, S.; Hoischen, A.; Lehle, L.; Adamowicz, M.; Huijben, K.; Sykut-Cegielska, J.; Paprocka, J.; Jamroz, E.; van Spronsen, F.J.; Körner, C.; et al. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing. Hum. Mol. Genet. 2012, 21, 4151–4161. [Google Scholar] [CrossRef] [Green Version]
- Galama, W.H.; Verhaagen-van den Akker, S.L.J.; Lefeber, D.J.; Feenstra, I.; Verrips, A. ALG13-CDG with Infantile Spasms in a Male Patient Due to a De Novo ALG13 Gene Mutation. JIMD Rep. 2018, 40, 11–16. [Google Scholar]
- Ng, B.G.; Eklund, E.A.; Shiryaev, S.A.; Dong, Y.Y.; Abbott, M.A.; Asteggiano, C.; Bamshad, M.J.; Barr, E.; Bernstein, J.A.; Chelakkadan, S.; et al. Predominant and novel de novo variants in 29 individuals with ALG13 deficiency: Clinical description, biomarker status, biochemical analysis, and treatment suggestions. J. Inherit. Metab. Dis. 2020, 43. [Google Scholar] [CrossRef]
- Ng, B.G.; Underhill, H.R.; Palm, L.; Bengtson, P.; Rozet, J.M.; Gerber, S.; Munnich, A.; Zanlonghi, X.; Stevens, C.A.; Kircher, M.; et al. DPAGT1 Deficiency with Encephalopathy (DPAGT1-CDG): Clinical and Genetic Description of 11 New Patients. JIMD Rep. 2019, 44, 85–92. [Google Scholar]
- van Tol, W.; Ashikov, A.; Korsch, E.; Abu Bakar, N.; Willemsen, M.A.; Thiel, C.; Lefeber, D.J. A mutation in mannose-phosphate-dolichol utilization defect 1 reveals clinical symptoms of congenital disorders of glycosylation type I and dystroglycanopathy. JIMD Rep. 2019, 50, 31–39. [Google Scholar]
- Indellicato, R.; Parini, R.; Domenighini, R.; Malagolini, N.; Iascone, M.; Gasperini, S.; Masera, N.; dall’Olio, F.; Trinchera, M. Total loss of GM3 synthase activity by a normally processed enzyme in a novel variant and in all ST3GAL5 variants reported to cause a distinct congenital disorder of glycosylation. Glycobiology 2019, 29, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Indellicato, R.; Domenighini, R.; Malagolini, N.; Cereda, A.; Mamoli, D.; Pezzani, L.; Iascone, M.; dall’Olio, F.; Trinchera, M. A novel nonsense and inactivating variant of ST3GAL3 in two infant siblings suffering severe epilepsy and expressing circulating CA19.9. Glycobiology 2020, 30, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Eggers, K.; Chen, W.; Garshasbi, M.; Motazacker, M.M.; Wrogemann, K.; Kahrizi, K.; Tzschach, A.; Hosseini, M.; Bahman, I.; et al. ST3GAL3 mutations impair the development of higher cognitive functions. Am. J. Hum. Genet. 2011, 89, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, B.G.; Sosicka, P.; Agadi, S.; Almannai, M.; Bacino, C.A.; Barone, R.; Botto, L.D.; Burton, J.E.; Carlston, C.; Chung, B.H.; et al. SLC35A2-CDG: Functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals. Hum. Mutat. 2019, 40, 908–925. [Google Scholar] [CrossRef]
- Vals, M.A.; Ashikov, A.; Ilves, P.; Loorits, D.; Zeng, Q.; Barone, R.; Huijben, K.; Sykut-Cegielska, J.; Diogo, L.; Elias, A.F.; et al. Clinical, neuroradiological, and biochemical features of SLC35A2-CDG patients. J. Inherit. Metab. Dis. 2019, 42, 553–564. [Google Scholar] [CrossRef]
- Clayton, P.T.; Grunewald, S. Comprehensive description of the phenotype of the first case of congenital disorder of glycosylation due to RFT1 deficiency (CDG In). J. Inherit. Dis. 2009, 32, S137–S139. [Google Scholar] [CrossRef]
- Jaeken, J.; Vleugels, W.; Régal, L.; Corchia, C.; Goemans, N.; Haeuptle, M.A.; Foulquier, F.; Hennet, T.; Matthijs, G.; Dionisi-Vici, C. RFT1-CDG: Deafness as a novel feature of congenital disorders of glycosylation. J. Inherit. Metab. Dis. 2009, 32 (Suppl. 1), S335–S338. [Google Scholar] [CrossRef] [Green Version]
- De Lonlay, P.; Seta, N.; Barrot, S.; Chabrol, B.; Drouin, V.; Gabriel, B.M.; Journel, H.; Kretz, M.; Laurent, J.; Le Merrer, M.; et al. A broad spectrum of clinical presentations in congenital disorders of glycosylation I: A series of 26 cases. J. Med. Genet. 2001, 38, 14–19. [Google Scholar] [CrossRef]
- Vleugels, W.; Haeuptle, M.A.; Ng, B.G.; Michalski, J.C.; Battini, R.; Dionisi-Vici, C.; Ludman, M.D.; Jaeken, J.; Foulquier, F.; Freeze, H.H.; et al. RFT1 deficiency in three novel CDG patients. Hum. Mutat. 2009, 30, 1428–1434. [Google Scholar] [CrossRef] [Green Version]
- Ondruskova, N.; Vesela, K.; Hansikova, H.; Magner, M.; Zeman, J.; Honzik, T. RFT1-CDG in adult siblings with novel mutations. Mol. Genet. Metab. 2012, 107, 760–762. [Google Scholar] [CrossRef]
- Bayat, A.; Knaus, A.; Pendziwiat, M.; Afenjar, A.; Barakat, T.S.; Bosch, F.; Callewaert, B.; Calvas, P.; Ceulemans, B.; Chassaing, N.; et al. Lessons learned from 40 novel PIGA patients and a review of the literature. Epilepsia 2020, 61, 1142–1155. [Google Scholar] [CrossRef] [PubMed]
- Peron, A.; Iascone, M.; Salvatici, E.; Cavirani, B.; Marchetti, D.; Corno, S.; Vignoli, A. PIGW-related glycosylphosphatidylinositol deficiency: Description of a new patient and review of the literature. Am. J. Med. Genet. A 2020, 182, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Xue, J.; Gong, P.; Bao, X.; Wu, Y.; Zhang, Y.; Jiang, Y.; Yang, Z. Analyzing clinical and genetic characteristics of a cohort with multiple congenital anomalies-hypotonia-seizures syndrome (MCAHS). Orphanet. J. Rare Dis. 2020, 15, 78. [Google Scholar] [CrossRef] [PubMed]
- Bowser, L.E.; Young, M.; Wenger, O.K.; Ammous, Z.; Brigatti, K.W.; Carson, V.J.; Moser, T.; Deline, J.; Aoki, K.; Morlet, T.; et al. Recessive GM3 synthase deficiency: Natural history, biochemistry, and therapeutic frontier. Mol. Genet. Metab. 2019, 126, 475–488. [Google Scholar] [CrossRef]
- Martin, H.C.; Kim, G.E.; Pagnamenta, A.T.; Murakami, Y.; Carvill, G.L.; Meyer, E.; Copley, R.R.; Rimmer, A.; Barcia, G.; Fleming, M.R.; et al. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum. Mol. Genet. 2014, 23, 3200–3211. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.J.; Gropman, A.L.; Sapp, J.C.; Teer, J.K.; Martin, J.M.; Liu, C.F.; Yuan, X.; Ye, Z.; Cheng, L.; Brodsky, R.A.; et al. The phenotype of a germline mutation in PIGA: The gene somatically mutated in paroxysmal nocturnal hemoglobinuria. Am. J. Hum. Genet. 2012, 90, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Swoboda, K.J.; Margraf, R.L.; Carey, J.C.; Zhou, H.; Newcomb, T.M.; Coonrod, E.; Durtschi, J.; Mallempati, K.; Kumanovics, A.; Katz, B.E.; et al. A Novel Germline PIGA Mutation in Ferro-Cerebro-Cutaneous Syndrome: A Neurodegenerative X-Linked Epileptic Encephalopathy with Systemic Iron-Overload. Am. J. Med. Genet. A 2014, 164A, 17–28. [Google Scholar] [CrossRef] [Green Version]
- van der Crabben, S.N.; Harakalova, M.; Brilstra, E.H.; van Berkestijn, F.M.C.; Hofstede, F.C.; van Vught, A.J.; Cuppen, E.; Kloosterman, W.; Ploos van Amstel, K.H.; van Haaften, G.; et al. Expanding the spectrum of phenotypes associated with germline PIGA mutations: A child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities. Am. J. Med. Genet. A 2014, 164A, 29–35. [Google Scholar] [CrossRef]
- Tarailo-Graovac, M.; Sinclair, G.; Stockler-Ipsiroglu, S.; Van Allen, M.; Rozmus, J.; Shyr, C.; Biancheri, R.; Oh, T.; Sayson, B.; Lafek, M.; et al. The genotypic and phenotypic spectrum of PIGA deficiency. Orphanet. J. Rare Dis. 2015, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.O.; Yang, J.H.; Park, C.; Kim, S.K.; Kim, M.K.; Shin, M.G.; Woo, Y.J. A novel PIGA mutation in a family with X-linked, early-onset epileptic encephalopathy. Brain Dev. 2016, 38, 750–754. [Google Scholar] [CrossRef]
- Olson, H.E.; Kelly, M.K.; LaCoursiere, C.M.; Pinsky, R.; Tambunan, D.; Shain, C.; Ramgopal, S.; Takeoka, M.; Libenson, M.H.; Julich, K.; et al. Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann. Neurol. 2017, 81, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tong, L.; Song, S.; Niu, Y.; Li, J.; Wu, X.; Zhang, J.; Zai, C.C.; Luo, F.; Wu, J.; et al. Novel and de novo mutations in pediatric refractory epilepsy. Mol. Brain 2018, 11, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeze, H.H.; Eklund, E.A.; Ng, B.G.; Patterson, M.C. Neurology of inherited glycosylation disorders. Lancet Neurol. 2012, 11, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Barba, C.; Darra, F.; Cusmai, R.; Procopio, E.; Dionisi Vici, C.; Keldermans, L.; Vuillaumier-Barrot, S.; Lefeber, D.J.; Guerrini, R.; CDG Group. Congenital disorders of glycosylation presenting as epileptic encephalopathy with migrating partial seizures in infancy. Dev. Med. Child. Neurol. 2016, 58, 1085–1091. [Google Scholar] [CrossRef]
- Dwyer, C.A.; Esko, J.D. Glycan susceptibility factors in autism spectrum disorders. Mol. Asp. Med. 2016, 51, 104–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiller, S.; Rosewich, H.; Grünewald, S.; Gärtner, J. Inborn errors of metabolism leading to neuronal migration defects. J. Inherit. Metab. Dis. 2020, 43, 145–155. [Google Scholar] [CrossRef] [Green Version]
- van Dijk, T.; Baas, F.; Barth, P.G.; Poll-The, B.T. What’s new in pontocerebellar hypoplasia? An update on genes and subtypes. Orphanet. J. Rare Dis. 2018, 13, 92. [Google Scholar] [CrossRef]
- Devisme, L.; Bouchet, C.; Gonzalès, M.; Alanio, E.; Bazin, A.; Bessières, B.; Bigi, N.; Blanchet, P.; Bonneau, D.; Bonnières, M.; et al. Cobblestone lissencephaly: Neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 2012, 135 Pt 2, 469–482. [Google Scholar] [CrossRef]
- Chan, Y.M.; Keramaris-Vrantsis, E.; Lidov, H.G.; Norton, J.H.; Zinchenko, N.; Gruber, H.E.; Thresher, R.; Blake, D.J.; Ashar, J.; Rosenfeld, J.; et al. Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies. Hum. Mol. Genet. 2010, 19, 3995–4006. [Google Scholar] [CrossRef] [Green Version]
- Barone, R.; Fiumara, A.; Jaeken, J. Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin. Neurol. 2014, 34, 357–366. [Google Scholar] [CrossRef]
- Feraco, P.; Mirabelli-Badenier, M.; Severino, M.; Alpigiani, M.G.; Di Rocco, M.; Biancheri, R.; Rossi, A. The shrunken, bright cerebellum: A characteristic MRI finding in congenital disorders of glycosylation type 1a. AJNR Am. J. Neuroradiol. 2012, 33, 2062–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedberg, C.; Oldfors, A.; Darin, N. B3GALNT2 is a gene associated with congenital muscular dystrophy with brain malformations. Eur. J. Hum. Genet. 2014, 22, 707–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, K.B.; Bayat, A.; Møller, R.S.; Maroun, L.L.; Lund, E.L. First report of the neuropathological findings in a patient with leukodystrophy and compound heterozygous variants in the PIGT gene. Neuropathol. Appl. Neurobiol. 2019, 45, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Mierzewska, H.; Jezela-Stanek, A. Is leucodystrophy really a feature of PIGT-CDG? Neuropathol. Appl. Neurobiol. 2020, 46, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Mandel, H.; Kfir, N.C.; Ayalla Fedida, A.; Biton, E.S.; Odeh, M.; Kalfon, L.; Ben-Harouch, S.; Sheffer, F.V.; Hoffman, Y.; Goldberg, Y.; et al. COG6-CDG: Expanding the phenotype with emphasis on glycosylation defects involved in the causation of male disorders of sex development. Clin. Genet. 2020, 98, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xu, Y.; Hu, X.; Li, N.; Yao, R.; Yu, T.; Wang, X.; Guo, W.; Wang, J. Compound heterozygous variants of the COG6 gene in a Chinese patient with deficiency of subunit 6 of the conserved oligomeric Golgi complex (COG6-CDG). Eur. J. Med. Genet. 2019, 62, 44–46. [Google Scholar] [CrossRef]
- Bryant, E.M.; Millichap, J.J.; Spinelli, E.; Calhoun, J.D.; Miller, C.; Giannelli, J.; Wolak, J.; Sanders, V.; Carvill, G.L.; Charrow, J. Oligosaccharyltransferase complex-congenital disorders of glycosylation: A novel congenital disorder of glycosylation. Am. J. Med. Genet. A 2020, 182, 1460–1465. [Google Scholar] [CrossRef]
- Kodera, H.; Ando, N.; Yuasa, I.; Wada, Y.; Tsurusaki, Y.; Nakashima, M.; Miyake, N.; Saitoh, S.; Matsumoto, N.; Saitsu, H. Mutations in COG2 encoding a subunit of the conserved oligomeric golgi complex cause a congenital disorder of glycosylation. Clin. Genet. 2015, 87, 455–460. [Google Scholar] [CrossRef]
- Mulkey, S.B.; Ng, B.G.; Vezina, G.L.; Bulas, D.I.; Wolfe, L.A.; Freeze, H.H.; Ferreira, C.R. Arrest of Fetal Brain Development in ALG11-Congenital Disorder of Glycosylation. Pediatr. Neurol. 2019, 94, 64–69. [Google Scholar] [CrossRef]
- Ondruskova, N.; Honzik, T.; Vondrackova, A.; Tesarova, M.; Zeman, J.; Hansikova, H. Glycogen storage disease-like phenotype with central nervous system involvement in a PGM1-CDG patient. Neuro Endocrinol. Lett. 2014, 35, 137–141. [Google Scholar]
- Gadomski, T.E.; Bolton, M.; Alfadhel, M.; Dvorak, C.; Ogunsakin, O.A.; Nelson, S.L.; Morava, E. ALG13-CDG in a male with seizures, normal cognitive development, and normal transferrin isoelectric focusing. Am. J. Med. Genet. A 2017, 173, 2772–2775. [Google Scholar] [CrossRef]
- Vals, M.-A.; Morava, E.; Teeäär, K.; Zordania, R.; Pajusalu, S.; Lefeber, D.J.; Õunap, K. Three families with mild PMM2-CDG and normal cognitive development. Am. J. Med. Genet. A 2017, 173, 1620–1624. [Google Scholar] [CrossRef] [PubMed]
- de la Morena-Barrio, M.E.; Sabater, M.; de la Morena-Barrio, B.; Ruhaak, R.L.; Miñano, A.; Padilla, J.; Toderici, M.; Roldán, V.; Gimeno, J.R.; Vicente, V.; et al. ALG12-CDG: An unusual patient without intellectual disability and facial dysmorphism, and with a novel variant. Mol. Genet. Genomic. Med. 2020, 8, e1304. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Serra, M.; Martínez-Monseny, A.F.; López, L.; Carrillo-García, J.; Edo, A.; Ortigoza-Escobar, J.D.; García, Ó.; Cancho-Candela, R.; Carrasco-Marina, M.L.; Gutiérrez-Solana, L.G.; et al. Stroke-Like Episodes and Cerebellar Syndrome in Phosphomannomutase Deficiency (PMM2-CDG): Evidence for Hypoglycosylation-Driven Channelopathy. Int. J. Mol. Sci. 2018, 19, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Monseny, A.F.; Bolasell, M.; Callejón-Póo, L.; Cuadras, D.; Freniche, V.; Itzep, D.C.; Gassiot, S.; Arango, P.; Casas-Alba, D.; de la Morena, E.; et al. AZATAX: Acetazolamide safety and efficacy in cerebellar syndrome in PMM2 congenital disorder of glycosylation (PMM2-CDG). Ann. Neurol. 2019, 85, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.C.; Ng, B.G.; Moore, S.A.; Rush, J.; Waechter, C.J.; Raymond, K.M.; Willer, T.; Campbell, K.P.; Freeze, H.H.; Mehta, L. Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Mol. Genet. Metab. 2013, 110, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Cossins, J.; Belaya, K.; Hicks, D.; Salih, M.A.; Finlayson, S.; Carboni, N.; Liu, W.W.; Maxwell, S.; Zoltowska, K.; Farsani, G.T.; et al. Congenital myasthenic syndromes due to a mutations in ALG2 and ALG14. Brain J. Neurol. 2013, 136, 944–956. [Google Scholar] [CrossRef] [Green Version]
- Schorling, D.C.; Rost, S.; Lefeber, D.J.; Brady, L.; Müller, C.R.; Korinthenberg, R.; Tarnopolsky, M.; Bönnemann, C.G.; Rodenburg, R.J.; Bugiani, M.; et al. Early and lethal neurodegeneration with myasthenic and myopathic features: A new ALG14-CDG. Neurology 2017, 89, 657–664. [Google Scholar] [CrossRef]
- Trinchera, M.; Parini, R.; Indellicato, R.; Domenighini, R.; dall’Oli, F. Diseases of ganglioside biosynthesis: An expanding group of congenital disorders of glycosylation. Mol. Genet. Metab. 2018, 124, 230–237. [Google Scholar] [CrossRef]
- Altassan, R.; Péanne, R.; Jaeken, J.; Barone, R.; Bidet, M.; Borgel, D.; Brasil, S.; Cassiman, D.; Cechova, A.; Coman, D. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: Diagnosis, treatment and follow up. Inherit. Metab. Dis. 2019, 42, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Freeze, H.H.; Eklund, E.A.; Ng, B.G.; Patterson, M.C. Neurological aspects of human glycosylation disorders. Annu. Rev. Neurosci. 2015, 38, 105–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, M.P.; Ardinger, H.H.; Pagon, R.A.; Wallace, S.E.; Bean, L.J.H.; Stephens, K.; Amemiya, A. (Eds.) GeneReviews®; University of Washington, Seattle: Seattle, WA, USA, 2018; pp. 1993–2020. [Google Scholar]
- Mostile, G.; Barone, R.; Nicoletti, A.; Rizzo, R.; Martinelli, D.; Sturiale, L.; Fiumara, A.; Jankovic, J.; Zappia, M. Hyperkinetic movement disorders in congenital disorders of glycosylation. Eur. J. Neurol. 2019, 26, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Boccuto, L.; Aoki, K.; Flanagan-Steet, H.; Chen, C.F.; Fan, X.; Bartel, F.; Petukh, M.; Pittman, A.; Saul, R.; Chaubey, A.; et al. A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt and pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum. Mol. Genet. 2014, 23, 418–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, C.; Ferreira, C.; Krasnewich, D.; Toro, C.; Latham, L.; Zein, W.M.; Lehky, T.; Brewer, C.; Baker, E.H.; Thurm, A.; et al. Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of deglycosylation. Genet. Med. 2017, 19, 160–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Medina Escobar, A.; Ameghino, L.; Merello, M. Expanding the phenotype of phosphomannomutase-2 gene congenital disorder of glycosylation: Cervical dystonia. J. Neurol. Sci. 2017, 378, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Ng, B.G.; Freeze, H.H. Perspectives on glycosylation and its congenital disorders. Trends Genet. 2018, 34, 466–476. [Google Scholar] [CrossRef]
- Lo Barco, T.; Osanni, E.; Bordugo, A.; Rodella, G.; Iascone, M.; Tenconi, R.; Barone, R.; Dalla Bernardina, B.; Cantalupo, G. Epilepsy and movement disorders in CDG: Report on the oldest-known MOGS-CDG patient. Am. J. Med. Genet. A 2021, 185, 219–222. [Google Scholar] [CrossRef]
- Linssen, M.; Mohamed, M.; Wevers, R.A.; Lefeber, D.J.; Morava, E. Thrombotic complications in patients with PMM2-CDG. Mol. Genet. Metab. 2013, 109, 107–111. [Google Scholar] [CrossRef]
- El-Hattab, A.W.; Adesina, A.M.; Jones, J.; Scaglia, F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol. Genet. Metab. 2015, 116, 4–12. [Google Scholar] [CrossRef]
- American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013.
- Taylor, R.L.; Arno, G.; Poulter, J.A.; Khan, K.N.; Morarji, J.; Hull, S.; Pontikos, N.; Martin, R.; Smith, K.R.; Ali, M.; et al. UK Inherited Retinal Disease Consortium and the 100,000 Genomes Project. Association of Steroid 5α-Reductase Type 3 Congenital Disorder of Glycosylation with Early-Onset Retinal Dystrophy. JAMA Ophthalmol. 2017, 135, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Sabry, S.; Vuillaumier-Barrot, S.; Mintet, E.; Fasseu, M.; Valayannopoulos, V.; Héron, D.; Dorison, N.; Mignot, C.; Seta, N.; Chantret, I.; et al. A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet. J. Rare Dis. 2016, 11, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeken, J. Congenital disorders of glycosylation. Handb. Clin. Neurol. 2013, 113, 1737–1743. [Google Scholar] [PubMed]
- Morava, E.; Wosik, H.N.; Sykut-Cegielska, J.; Adamowicz, M.; Guillard, M.; Wevers, R.A.; Lefeber, D.J.; Cruysberg, J.R. Ophthalmological abnormalities in children with congenital disorders of glycosylation type I. Br. J. Ophthalmol. 2009, 93, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Andréasson, S.; Blennow, G.; Ehinger, B.; Strömland, K. Full-field electroretinograms in patients with the carbohydrate-deficient glycoprotein syndrome. Am. J. Ophthalmol. 1991, 112, 83–86. [Google Scholar] [CrossRef]
- Wang, N.H.; Chen, S.J.; Yang, C.F.; Chen, H.W.; Chuang, H.P.; Lu, Y.H.; Chen, C.H.; Wu, J.Y.; Niu, D.M.; Chen, Y.T. Homozygosity Mapping and Whole-Genome Sequencing Links a Missense Mutation in POMGNT1 to Autosomal Recessive Retinitis Pigmentosa. Invest. Ophthalmol. Vis. Sci. 2016, 57, 3601–3609. [Google Scholar] [CrossRef] [Green Version]
- Funke, S.; Gardeitchik, T.; Kouwenberg, D.; Mohamed, M.; Wortmann, S.B.; Korsch, E.; Adamowicz, M.; Al-Gazali, L.; Wevers, R.A.; Horvath, A.; et al. Perinatal and early infantile symptoms in congenital disorders of glycosylation. Am. J. Med. Genet. A 2013, 161A, 578–584. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Altassan, R.; Marques-Da-Silva, D.; Francisco, R.; Jaeken, J.; Morava, E. Recognizable phenotypes in CDG. J. Inherit. Metab. Dis. 2018, 41, 541–553. [Google Scholar] [CrossRef]
- Gilflix, B.M. Congenital disorders of glycosylation and the challenge of rare diseases. Hum. Mutat. 2019, 40, 1010–1012. [Google Scholar]
- Bellai-Dussault, K.; Nguyen, T.T.M.; Baratang, N.V.; Jimenez-Cruz, D.A.; Campeau, P.M. Clinical variability in inherited glycosylphosphatidylinositol deficiency disorders. Clin. Genet. 2019, 95, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Jezela-Stanek, A.; Mierzewska, H.; Szczepanik, E. Vertical nystagmus as a feature of PIGN-related glycosylphosphatidylinositol biosynthesis defects. Clin. Neurol. Neurosurg. 2020, 196, 106033. [Google Scholar] [CrossRef]
- Abstracts from the 53rd European Society of Human Genetics (ESHG) Conference: E-Posters. Eur. J. Hum. Genet. 2020, 28, 798–1016. [CrossRef] [PubMed]
Disorder, #OMIM | Gene, Early Infantile Epileptic Encephalopathy (EIEE) | Enzyme | First Description of West Syndrome/Epileptic Spasms |
---|---|---|---|
N-linked pathway or multiple | |||
ALG1-CDG, #605907 | ALG1 | β1,4 mannosyltransferase | de Koning et al., 1998 [16] |
ALG3-CDG, #608750 | ALG3 | α1,3 mannosyltranferase | Kranz et al., 2007 [17] |
ALG11-CDG, #613661 | ALG11 | asparagine-linked glycosylation protein 11 | Rind et al., 2010 [18] |
ALG13-CDG, #300884 | ALG13,EIEE-36 | GlcNAc transferase | Allen et al., 2013 [19] |
DOLK—CDG, #610768 | DOLK | Dolichol kinase | Helander et al., 2013 [20] |
DPAGT1-CDG, #608093 | DPAGT1 | UDP-N-acetylglucosamine—dolichyl-phosphate N-acetylglucosaminephosphotransferase | Wu et al., 2003 [21] |
MPDU1-CDG, # 609180 | MPDU1 | Mannose-P-dolichol synthase | Schenk et al., 2001 [22] |
ST3GAL3-CDG, #615006 | ST3GAL3, EIEE-15 | β-galactoside α-2,3-sialyltransferase 3 | Edvardson et al., 2013b [23,24] |
SLC35A2-CDG, #300896 | SLC35A2,EIEE-22 | UDP-GlcNAc transporter | Kodera et al., 2013 [25] |
RFT1-CDG, #612015 | RFT1 | Putative flippase involved in Man5GlcNAc2-PP-Dol transfer | Aeby et al., 2016 [26] |
GPI anchor synthesis | |||
Multiple congenital anomalies-hypotonia-seizures syndrome 2, # 300868 | PIGA | Phosphatidylinositol N-acetylglucosaminyltransferase subunit A | Kato et al., 2014 [27] |
Hyperphosphatasia intellectual disability syndrome 1, #239300 | PIGV | Mannosyltransferase | Chiyonobu et al., 2014 [28] |
Multiple congenital anomalies-hypotonia-seizures syndrome 1, # 614080 | PIGN | GPI ethanolamine phosphate transferase | Maydan et al., 2011 [29] |
Others | |||
Salt and pepper developmental regression syndrome, #609056 | ST3GAL5 | sialyltransferase | Simpson et al., 2004 [30] |
Cortical Malformations | Midline Brain Structures Anomalies | Brain Volume Anomalies | Myelinization Disorders | Venous Sinus Thrombosis | |||||
---|---|---|---|---|---|---|---|---|---|
Pachygyria | Polymicrogyria | Lissencephaly | Cortical Dysplasia, Heterotopia | Corpus Callosum (CC) Anomalies | Pontocerebellar Hypoplasia | Nrain Atrophy | Ventriculomegaly and Hydrocephaly | ||
ATP6V0A2/Cutis laxa, autosomal recessive, type IIA FKRP/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 5 FKTN/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 LARGE/Muscular dystrophy-dystroglycanopathy (congenital with intellectual disability), type B, 6 POMGNT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 3 POMT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 1 POMT2/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 [especially frontoparietal]TMEM5/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 10 | B3GALNT2/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 11 POMGNT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 3 POMT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 1 POMT2/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 | B3GALNT2/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 11 (cobblestone) FKRP/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 5 (cobblestone) FKTN/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 ISPD/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 7 (cobblestone) POMGNT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 3 POMT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 1 (cobblestone) POMT2/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 (cobblestone) TMEM5/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 10 (cobblestone) | ISPD/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 7 (heterotopia) POMGNT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 3 (dysplasia) POMT2/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 (heterotopia) | ALG3 ALG6 COG2 (thin CC) COG4 (thin CC) FKRP/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 5 FKTN/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 ISPD/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 7 [atrophy] MOGS [small] NANS/Spondyloepimetaphyseal dysplasia, Camera-Genevieve type PGAP1 PIGA/Multiple congenital anomalies-hypotonia-seizures syndrome 2 [thin] PIGG [thin] PIGP [thin] POMGNT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 3 POMT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 1 POMT2/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 (aplasia)andMuscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 2 SLC35A2 (thin CC) SSR4 (thin CC) VPS13B/Cohen syndrome | B3GALNT2/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 11 PMM2 | ALG1 ALG9 B4GALNT1/Spastic paraplegia 26, autosomal recessive(cortical) B3GALTL/Peters-plus syndrome COG1 (cotrex) COG2 COG4 COG5 (cerebellum and cotrex) COG7 COG8 DPAGT1 DPM1 FKTN/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 (cortical) MOGS NANS/Spondyloepimetaphyseal dysplasia, Camera-Genevieve type NUS1 (cortical) PGAP2/Hyperphosphatasia with mental retardation syndrome 3 PIGG PIGN/Multiple congenital anomalies-hypotonia-seizures syndrome 1 PIGT/Multiple congenital anomalies-hypotonia-seizures syndrome 3 POMT2/Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 2 SLC35A2 SLC35C1 SLC39A8 SRD5A3 ST3GAL5/Salt and pepper developmental regression syndrome (cortical) STT3A STT3B TMEM5/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 10 TRAPPC11/Muscular dystrophy, limb-girdle, type 2S | ALG12 (widening of the lateral ventricles) ALG13 hydrocephalus B3GALNT2/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 11(hydrocephalus)? FKRP/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 5 (both) FKTN/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 (hydrocephalus) ISPD/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 7 (both) NANS/Spondyloepimetaphyseal dysplasia, Camera-Genevieve type (hydrocephalus) POMGNT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 3 (both) POMT2/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 (hydrocephalus) | ALG2 (delayed) ALG9 (delayed) ALG13/Epileptic encephalopathy, early infantile, 36 DDOST DPM1 PGAP1 (delayed) PGM3/Immunodeficiency 23 PIGA/Multiple congenital anomalies-hypotonia-seizures syndrome 2 (delayed) SLC35A2 (delayed) | PGM1 PMM2 |
Cerebellar Atrophy | Cerebellar Hypoplasia | Cerebellar Cysts |
---|---|---|
ALG1 ALG3 ALG6 ALG8 ALG9 COG8 DPM1 FKRP/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 5 FKTN/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 PIGN/Multiple congenital anomalies-hypotonia-seizures syndrome 1 PMM2 SLC35A2 SLC39A8 SRD5A3 STT3A STT3B TRAPPC11/Muscular dystrophy, limb-girdle, type 2S | ALG1 ALG3 DPM2 GMPPB/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 14 and Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 14 ISPD/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 7 PGAP1 PIGA PIGG PIGT/Multiple congenital anomalies-hypotonia-seizures syndrome 3 PMM2 POMGNT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 3 and Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 3 POMT1 /Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 1 and Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 1 POMT2/ Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 and Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 2 VPS13B/Cohen syndrome | B3GALNT2 FKRP/ Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 5 and Muscular dystrophy-dystroglycanopathy (congenital with or without mental retardation), type B, 5 FKTN/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 POMGNT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 3 and Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 3 POMT1/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 1 POMT2/Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 2 SRD5A3 |
Disorder, #OMIM | Chorea | Athetosis | Dystonia | Stereotypies | Tremor |
---|---|---|---|---|---|
N-linked pathway | |||||
PMM2, #212065 | + | + | + | + | + |
ALG3-CDG, #601110 | + | ||||
ALG6-CDG, #603147 | + | + | + | + | + |
ALG8-CDG, #608104 | + | ||||
ALG13-CDG, #300884 | + | ||||
MGAT2-CDG, #212066 | + | ||||
DPAGT1, #608093 | + | ||||
DDOST-CDG, #614507 | + | ||||
COG5-CDG, #613612 | + | + | |||
MOGS-CDG, #606056 | + | ||||
SRD5A3-CDG, # 612379 | + | ||||
N-and O-linked pathways | |||||
TRAPPC11-CDG, # 615356 (Muscular dystrophy, limb-girdle, autosomal recessive 18) | + | + | |||
GPI anchor synthesis | |||||
PGAP1-CDG, # 615802 | + | ||||
PIGN-CDG, #614080 | + | + | |||
PIGV-CDG, #239300 | + | + | |||
Others | |||||
ST3GAL5, #609056 | + | + | + | ||
B4GALNT1, #609195 | + | ||||
Disorder of deglycosylation | |||||
NGLY1-CDDG, #615273 | + | + | + | + |
Gene | Clinical Characteristics |
---|---|
ALG6 | autistic features (abnormal communication, difficulties with social interaction, recurrent episodes of repetitive behavior) in 14/41 patients with a diagnosis of autism in five |
DOLK | intellectual disability and an autism spectrum disorder in one (female) from affected siblings |
SLC35A3 | Mutation in this genewas identified in one large kindred displaying eight individuals with epilepsy, arthrogryposis, developmental delay and autism spectrum disorders [23]. |
Gene/Disease | Clinical Characteristics |
---|---|
ALG6 | The second largest subtype of CDG, characterized by psychomotor retardation with delayed walking and speech, hypotonia, ESe and sometimes protein-losing enteropathy. Atrophic retinal pigmentation, decreased retinal vascularization were also reported. |
DHDDS/Retinitis pigmentosa 59 | First described in patients with a confirmed diagnosis of CDG in 2016. All previously known individuals with mutations in the DHDDS gene presented with a mild clinical picture restricted to retinitis pigmentosa [114]. |
PMM2 | The data by Andréasson et al. suggested that patients with CDG have a progressive tapetoretinal degenerative disorder of the retinitis pigmentosa type with defined alterations in the ERG [117]. |
POMGNT1/Retinitis pigmentosa 76 | In 2016 Wang et al. presented evidence of the involvement of O-mannosyl glycosylation in isolated retinitis pigmentosa (shows an instance of POMGNT1 mutation that does not involve muscular dystrophy) [118]. The gene, which encodes a glycosyltransferase in O-mannosyl glycosylation, was before found to be responsible for a group of congenital muscular dystrophies called dystroglycanopathies. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paprocka, J.; Jezela-Stanek, A.; Tylki-Szymańska, A.; Grunewald, S. Congenital Disorders of Glycosylation from a Neurological Perspective. Brain Sci. 2021, 11, 88. https://doi.org/10.3390/brainsci11010088
Paprocka J, Jezela-Stanek A, Tylki-Szymańska A, Grunewald S. Congenital Disorders of Glycosylation from a Neurological Perspective. Brain Sciences. 2021; 11(1):88. https://doi.org/10.3390/brainsci11010088
Chicago/Turabian StylePaprocka, Justyna, Aleksandra Jezela-Stanek, Anna Tylki-Szymańska, and Stephanie Grunewald. 2021. "Congenital Disorders of Glycosylation from a Neurological Perspective" Brain Sciences 11, no. 1: 88. https://doi.org/10.3390/brainsci11010088
APA StylePaprocka, J., Jezela-Stanek, A., Tylki-Szymańska, A., & Grunewald, S. (2021). Congenital Disorders of Glycosylation from a Neurological Perspective. Brain Sciences, 11(1), 88. https://doi.org/10.3390/brainsci11010088