Comparison of Smoothing Filters’ Influence on Quality of Data Recorded with the Emotiv EPOC Flex Brain–Computer Interface Headset during Audio Stimulation
Abstract
:1. Introduction
1.1. Study Background
1.2. Signal Processing of EEG Data
- low amplitude,
- strong non-stationary character, and
- narrow range of frequency band.
2. Materials and Methods
2.1. Carried out Experiments
- without an audio stimulation,
- with distracting sounds, and
- with concentration stimulating sounds.
- report of any physical or mental health problems,
- use any medication, and
- problems with sleep.
- age,
- gender,
- drugs taken, and
- their current mood (mental condition) in 0 to 10 scale.
2.2. Performed Data Analysis
- Filter 1—classic moving average “smooth” filter with defined by default smoothing parameter (span) set to 5,
- Filter 2—classic moving average “smooth” filter with defined smoothing parameter (span) set to 15,
- Filter 3—classic moving average “smooth” filter of the 2nd order, which uses Savitzky–Golay filter as a method,
- Filter 4—9th order one-dimensional median filter,
- Filter 5—Savitzky–Golay FIR smoothing filter of the 4th order and 27 frame length.
- order: 4th and
- frame length (framelen): 27.
3. Results
4. Discussion
5. Conclusions and Future Work
- 1.
- the parameters of the filters chosen for good performance when using on EEG data and
- 2.
- testing and comparison of various types of smoothing filters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCI | Brain–Computer Interfaces |
EEG | electroencephalography |
DSP | digital signal processing |
CNS | central nervous system |
S-G | Savitzky–Golay filter |
WCST | Wisconsin Card Sorting Test |
IGT | Iowa Gambling Task |
FIFO | First In, First Out |
References
- Jebelli, H.; Hwang, S.; Lee, S. EEG signal-processing framework to obtain high-quality brain waves from an off-the-shelf wearable EEG device. J. Comput. Civ. Eng. 2018, 32, 04017070. [Google Scholar] [CrossRef]
- Al-Shargie, F.; Kiguchi, M.; Badruddin, N.; Dass, S.C.; Hani, A.F.M.; Tang, T.B. Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomed. Opt. Express 2016, 7, 3882–3898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, B.; Singh, D.; Roy, P.P. EEG based emotion classification mechanism in BCI. Procedia Comput. Sci. 2018, 132, 752–758. [Google Scholar] [CrossRef]
- Jatupaiboon, N.; Pan-ngum, S.; Israsena, P. Real-time EEG-based happiness detection system. Sci. World J. 2013, 2013, 618649. [Google Scholar] [CrossRef] [PubMed]
- Al-Shargie, F.; Tang, T.B.; Badruddin, N.; Kiguchi, M. Towards multilevel mental stress assessment using SVM with ECOC: An EEG approach. Med. Biol. Eng. Comput. 2018, 56, 125–136. [Google Scholar]
- Namazi, H. Information-Based Classification of Electroencephalography (EEG) Signals for Healthy Adolescents and Adolescents with Symptoms of Schizophrenia. Fluct. Noise Lett. 2020, 2050033. [Google Scholar] [CrossRef]
- Emotiv. Emotiv Flex Website. 2020. Available online: https://www.emotiv.com/epoc-flex (accessed on 28 October 2020).
- Sawangjai, P.; Hompoonsup, S.; Leelaarporn, P.; Kongwudhikunakorn, S.; Wilaiprasitporn, T. Consumer grade EEG Measuring Sensors as Research Tools: A Review. IEEE Sens. J. 2019, 20, 3996–4024. [Google Scholar] [CrossRef]
- Kawala-Janik, A.; Pelc, M.; Podpora, M. Method for EEG signals pattern recognition in embedded systems. Elektron. Elektrotechnika 2015, 21, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Kawala-Sterniuk, A.; Podpora, M.; Pelc, M.; Blaszczyszyn, M.; Gorzelanczyk, E.J.; Martinek, R.; Ozana, S. Comparison of smoothing filters in analysis of EEG data for the medical diagnostics purposes. Sensors 2020, 20, 807. [Google Scholar] [CrossRef] [Green Version]
- Cimtay, Y.; Ekmekcioglu, E. Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition. Sensors 2020, 20, 2034. [Google Scholar] [CrossRef] [Green Version]
- Kurapa, A.; Rathore, D.; Edla, D.R.; Bablani, A.; Kuppili, V. A Hybrid Approach for Extracting EMG signals by Filtering EEG Data for IoT Applications for Immobile Persons. Wirel. Pers. Commun. 2020, 114, 3081–3101. [Google Scholar] [CrossRef]
- Epstein, R. The empty brain. Aeon May 2016, 18, 2016. [Google Scholar]
- Hassan, M.A.; Rizvi, Q.M. Computer Vs Human Brain: An Analytical Approach and Overview. Computer 2019, 6, 580–583. [Google Scholar]
- Kawala-Janik, A. Efficiency Evaluation of External Environments Control Using Bio-Signals. Ph.D. Thesis, University of Greenwich, London, UK, 2013. [Google Scholar]
- Stach, T.N.; Kawala-Janik, A. Initial Study on Using Emotiv EPOC+ Neuroheadset as a Control Device for Picture Script-Based Communicators. IFAC-PapersOnLine 2018, 51, 180–184. [Google Scholar] [CrossRef]
- Browarska, N.; Stach, T. System to Communicate Disabled People with Environment Using Brain-Computer Interfaces. In Proceedings of the International Scientific Conference BCI 2018 Opole, Opole, Poland, 13–14 March 2018; pp. 150–157. [Google Scholar]
- Cherng, F.Y.; Lee, Y.C.; King, J.T.; Lin, W.C. Measuring the Influences of Musical Parameters on Cognitive and Behavioral Responses to Audio Notifications Using EEG and Large-scale Online Studies. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Scotland, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Sakharov, D.; Davydov, V.; Pavlygina, R. Intercentral relations of the human EEG during listening to music. Hum. Physiol. 2005, 31, 392–397. [Google Scholar] [CrossRef]
- Dey, A.; Palit, S.K.; Bhattacharya, D.; Tibarewala, D.; Das, D. Study of the effect of music on central nervous system through long term analysis of EEG signal in time domain. Int. J. Eng. Sci. Emerg. Technol. 2013, 5, 59–67. [Google Scholar]
- Bitner, M.J. Servicescapes: The impact of physical surroundings on customers and employees. J. Mark. 1992, 56, 57–71. [Google Scholar] [CrossRef]
- Koelsch, S.; Siebel, W.A. Towards a neural basis of music perception. Trends Cogn. Sci. 2005, 9, 578–584. [Google Scholar] [CrossRef] [Green Version]
- Koelsch, S. Neural substrates of processing syntax and semantics in music. In Music That Works; Springer: Berlin/Heidelberg, Germany, 2009; pp. 143–153. [Google Scholar]
- Herrmann, C.S.; Grigutsch, M.; Busch, N.A. 11 EEG oscillations and wavelet analysis. In Event-Related Potentials: A Methods Handbook; The MIT Press: Cambridge, MA, USA, 2005; p. 229. [Google Scholar]
- Teplan, M.; Krakovska, A.; Štolc, S. EEG responses to long-term audio—Visual stimulation. Int. J. Psychophysiol. 2006, 59, 81–90. [Google Scholar] [CrossRef]
- Sasaki, M.; Iversen, J.; Callan, D.E. Music Improvisation is Characterized by Brain Related Increased Beta Band EEG. Front. Hum. Neurosci. 2019, 13, 435. [Google Scholar] [CrossRef]
- Spironelli, C.; Angrilli, A. EEG delta band as a marker of brain damage in aphasic patients after recovery of language. Neuropsychologia 2009, 47, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, M.; Majkowski, A.; Rak, R. A new method of feature extraction from EEG signal for brain-computer interface design. Przegląd Elektrotechniczny 2010, 86, 35–38. [Google Scholar]
- Bekkedal, M.Y.; Rossi, J., III; Panksepp, J. Human brain EEG indices of emotions: Delineating responses to affective vocalizations by measuring frontal theta event-related synchronization. Neurosci. Biobehav. Rev. 2011, 35, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Alarcao, S.M.; Fonseca, M.J. Emotions recognition using EEG signals: A survey. IEEE Trans. Affect. Comput. 2017, 10, 374–393. [Google Scholar] [CrossRef]
- Zhuang, N.; Zeng, Y.; Tong, L.; Zhang, C.; Zhang, H.; Yan, B. Emotion recognition from EEG signals using multidimensional information in EMD domain. BioMed. Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- van Lier, H.; Drinkenburg, W.H.; Van Eeten, Y.J.; Coenen, A.M. Effects of diazepam and zolpidem on EEG beta frequencies are behavior-specific in rats. Neuropharmacology 2004, 47, 163–174. [Google Scholar] [CrossRef]
- Yoshimura, M.; Koenig, T.; Irisawa, S.; Isotani, T.; Yamada, K.; Kikuchi, M.; Okugawa, G.; Yagyu, T.; Kinoshita, T.; Strik, W.; et al. A pharmaco-EEG study on antipsychotic drugs in healthy volunteers. Psychopharmacology 2007, 191, 995–1004. [Google Scholar] [CrossRef] [Green Version]
- Jaušovec, N.; Jaušovec, K.; Gerlič, I. Differences in event-related and induced EEG patterns in the theta and alpha frequency bands related to human emotional intelligence. Neurosci. Lett. 2001, 311, 93–96. [Google Scholar] [CrossRef]
- Zieliński, T.P. Cyfrowe Przetwarzanie Sygnałów: Od Teorii Do Zastosowań; Wydawnictwa Komunikacji ączności: Warszawa, Poland, 2005. [Google Scholar]
- Williams, N.S.; McArthur, G.M.; de Wit, B.; Ibrahim, G.; Badcock, N.A. A validation of Emotiv EPOC Flex saline for EEG and ERP research. PeerJ 2020, 8, e9713. [Google Scholar] [CrossRef]
- Alotaiby, T.; Abd El-Samie, F.E.; Alshebeili, S.A.; Ahmad, I. A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015, 2015, 66. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.; Shin, J.; Im, C.H. Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels. PLoS ONE 2020, 15, e0230491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurve, D.; Delisle-Rodriguez, D.; Romero-Laiseca, M.; Cardoso, V.; Loterio, F.; Bastos, T.; Krishnan, S. Subject-specific eeg channel selection using non-negative matrix factorization for lower-limb motor imagery recognition. J. Neural Eng. 2020, 17, 026029. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Lin, Z.C.; Gao, Y.X.; Zhang, J.X. A Robust Discriminant Framework Based on Functional Biomarkers of EEG and Its Potential for Diagnosis of Alzheimer’s Disease. Healthcare 2020, 8, 476. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Blanco, E.; Rivero, D.; Pazos, A. Convolutional neural networks for sleep stage scoring on a two-channel EEG signal. Soft Comput. 2020, 24, 4067–4079. [Google Scholar] [CrossRef]
- Xu, M.; Qi, H.; Ma, L.; Sun, C.; Zhang, L.; Wan, B.; Yin, T.; Ming, D. Channel selection based on phase measurement in P300-based brain-computer interface. PLoS ONE 2013, 8, e60608. [Google Scholar] [CrossRef] [Green Version]
- Krusienski, D.J.; Sellers, E.W.; McFarland, D.J.; Vaughan, T.M.; Wolpaw, J.R. Toward enhanced P300 speller performance. J. Neurosci. Methods 2008, 167, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, Z.; Hu, D. Gaze independent brain—Computer speller with covert visual search tasks. Clin. Neurophysiol. 2011, 122, 1127–1136. [Google Scholar] [CrossRef]
- Xue, J.Z.; Zhang, H.; Zheng, C.X.; Yan, X.G. Wavelet packet transform for feature extraction of EEG during mental tasks. In Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693); IEEE: Piscataway, PA, USA, 2003; Volume 1, pp. 360–363. [Google Scholar]
- Mahato, S.; Goyal, N.; Ram, D.; Paul, S. Detection of Depression and Scaling of Severity Using Six Channel EEG Data. J. Med. Syst. 2020, 44, 1–12. [Google Scholar] [CrossRef]
- Picard, R.W.; Vyzas, E.; Healey, J. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 1175–1191. [Google Scholar] [CrossRef] [Green Version]
- Browarska, N.; Kawala-Sterniuk, A.; Chechelski, P.; Zygarlicki, J. Analysis of brain waves changes in stressful situations based on horror game with the implementation of virtual reality and brain-computer interface system: A case study. Bio-Algorithms Med.-Syst. 2020, 1. [Google Scholar] [CrossRef]
- Wang, C.M.; Xiao, W.C. Second-order IIR Notch Filter Design and implementation of digital signal processing system. In Applied Mechanics and Materials; Trans Tech Publ.: Stafa-Zurich, Switzerland, 2013; Volume 347, pp. 729–732. [Google Scholar]
- Li, S.; Zhou, W.; Yuan, Q.; Liu, Y. Seizure prediction using spike rate of intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 880–886. [Google Scholar] [CrossRef]
- Srinivasan, R.; Nunez, P.L.; Tucker, D.M.; Silberstein, R.B.; Cadusch, P.J. Spatial sampling and filtering of EEG with spline laplacians to estimate cortical potentials. Brain Topogr. 1996, 8, 355–366. [Google Scholar] [CrossRef]
- Jadav, G.M.; Lerga, J.; Štajduhar, I. Adaptive filtering and analysis of EEG signals in the time-frequency domain based on the local entropy. EURASIP J. Adv. Signal Process. 2020, 2020, 1–18. [Google Scholar]
- Issa, S.; Peng, Q.; You, X. Emotion Classification Using EEG Brain Signals and the Broad Learning System. IEEE Trans. Syst. Man Cybern. Syst. 2020. [Google Scholar] [CrossRef]
- Gupta, G.S.; Bhatnagar, M.; Kumar, S.; Sinha, R.K. A comparative study of application of different non-conventional filters on electroencephalogram. Biomed. Res. (0970-938X) 2020, 31, 1–9. [Google Scholar]
- Grzechca, D.; Szczeponik, A. Comparison of Filtering Methods for Enhanced Reliability of a Train Axle Counter System. Sensors 2020, 20, 2754. [Google Scholar] [CrossRef] [PubMed]
- Schafer, R.W. What is a Savitzky-Golay filter?[lecture notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Acabchuk, R.L.; Simon, M.A.; Low, S.; Brisson, J.M.; Johnson, B.T. Measuring Meditation Progress with a Consumer-Grade EEG Device: Caution from a Randomized Controlled Trial. Mindfulness 2020, 1–14. [Google Scholar] [CrossRef]
- Ratti, E.; Waninger, S.; Berka, C.; Ruffini, G.; Verma, A. Comparison of medical and consumer wireless EEG systems for use in clinical trials. Front. Hum. Neurosci. 2017, 11, 398. [Google Scholar] [CrossRef] [Green Version]
- Maskeliunas, R.; Damasevicius, R.; Martisius, I.; Vasiljevas, M. Consumer-grade EEG devices: Are they usable for control tasks? PeerJ 2016, 4, e1746. [Google Scholar] [CrossRef]
- Browarska, N.; Kawala-Sterniuk, A.; Zygarlicki, J. Initial study on changes in activity of brain waves during audio stimulation using noninvasive brain—Computer interfaces: Choosing the appropriate filtering method. Bio-Algorithms Med.-Syst. 2020, 1. [Google Scholar] [CrossRef]
- Diker, A.; Avci, E.; Tanyildizi, E.; Gedikpinar, M. A novel ECG signal classification method using DEA-ELM. Med. Hypotheses 2020, 136, 109515. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Haque, M.M.; Anjum, A.; Mollah, M.N.; Ahmad, M. Classification of motor imagery events from prefrontal hemodynamics for BCI application. In Proceedings of International Joint Conference on Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2020; pp. 11–23. [Google Scholar]
- Yadava, M.; Kumar, P.; Saini, R.; Roy, P.P.; Dogra, D.P. Analysis of EEG signals and its application to neuromarketing. Multimed. Tools Appl. 2017, 76, 19087–19111. [Google Scholar] [CrossRef]
- Acharya, D.; Rani, A.; Agarwal, S.; Singh, V. Application of adaptive Savitzky–Golay filter for EEG signal processing. Perspect. Sci. 2016, 8, 677–679. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Rani, A.; Singh, V.; Mittal, A.P. EEG signal enhancement using cascaded S-Golay filter. Biomed. Signal Process. Control 2017, 36, 194–204. [Google Scholar] [CrossRef]
- Khng, K.H.; Mane, R. Beyond BCI—Validating a wireless, consumer-grade EEG headset against a medical-grade system for evaluating EEG effects of a test anxiety intervention in school. Adv. Eng. Inf. 2020, 45, 101106. [Google Scholar] [CrossRef]
- Kawala-Sterniuk, A.; Browarska, N.; Al-Bakri, A.F.; Pelc, M.; Zygarlicki, J.; Sidikova, M.; Martinek, R.; Gorzelanczyk, E.J. Summary of over Fifty Years with Brain-Computer Interfaces–A Review. Brain Sci. 2021, 1. in press. [Google Scholar]
- Gorzelańczyk, E.J.; Podlipniak, P.; Walecki, P.; Karpiński, M.; Tarnowska, E. Pitch Syntax violations are linked to greater skin conductance changes, relative to timbral violations—The predictive role of the reward system in perspective of cortico—Subcortical loops. Front. Psychol. 2017, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Shuaib, H.; Anthony, R.J.; Pelc, M. A Framework for Certifying Autonomic Computing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2012. [Google Scholar]
- Schembri, P.; Pelc, M.; Ma, J. Comparison between a Passive and Active response task and their effect on the Amplitude and Latency of the P300 component for Visual Stimuli while using Low Fidelity Equipment. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4566–4571. [Google Scholar]
- Pelc, M.; Galus, D.; Zolubak, M.; Ozana, S.; Chlewicki, W.; Cichon, K.; Podpora, M.; Kawala-Sterniuk, A. Behavioural Approach to Network Anomaly Detection for Resource-Constrained System—Presentation of the Novel Solution–Preliminary Study. IFAC-PapersOnLine 2019, 52, 121–126. [Google Scholar] [CrossRef]
- Nguyen, T.; Khosravi, A.; Creighton, D.; Nahavandi, S. EEG signal classification for BCI applications by wavelets and interval type-2 fuzzy logic systems. Expert Syst. Appl. 2015, 42, 4370–4380. [Google Scholar] [CrossRef]
- Herman, P.A.; Prasad, G.; McGinnity, T.M. Designing an interval type-2 fuzzy logic system for handling uncertainty effects in brain—Computer interface classification of motor imagery induced EEG patterns. IEEE Trans. Fuzzy Syst. 2016, 25, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Matiko, J.W.; Beeby, S.P.; Tudor, J. Fuzzy logic based emotion classification. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 4389–4393. [Google Scholar]
- Chelune, G.J.; Baer, R.A. Developmental norms for the Wisconsin Card Sorting test. J. Clin. Exp. Neuropsychol. 1986, 8, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Barry, D.; Petry, N.M. Predictors of decision-making on the Iowa Gambling Task: Independent effects of lifetime history of substance use disorders and performance on the Trail Making Test. Brain Cogn. 2008, 66, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, A.R. Scoring the Stroop test. Acta Psychol. 1965, 24, 398–408. [Google Scholar] [CrossRef]
- Rutkowski, T.M.; Mori, H. Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users. J. Neurosci. Methods 2015, 244, 45–51. [Google Scholar] [CrossRef]
- Rutkowski, T.M. Robotic and virtual reality BCIs using spatial tactile and auditory oddball paradigms. Front. Neurorobot. 2016, 10, 20. [Google Scholar] [CrossRef] [Green Version]
No. | Task | Duration | Description |
---|---|---|---|
1 | Device configuration | 20 min | General rules discussion. Cap and electrodes placement. |
2 | Relax | 3 min | Relax with eyes closed. Relaxing sounds stimuli (nature, waves, etc.) |
3 | Focus | 7 min | Solving easy visual task (word search) without any audio stimulation. |
4 | Relax | 3 min | Relax with eyes closed. Relaxing sounds stimuli (nature, waves, etc.) |
5 | Focus | 7 min | Solving easy visual task (word search) with distraction sounds of electric drill, baby crying. |
6 | Relax | 3 min | Relax with eyes closed. Relaxing sounds stimuli (nature, waves, etc.) |
7 | Focus | 7 min | Solving easy visual task (word search) with stimuli 14 Hz sounds. |
No. | Age | Gender | Drugs Taken | Current Mood (0–10) |
---|---|---|---|---|
1 | 26 | f | no | 7 |
2 | 30 | m | no | 2 |
3 | 22 | m | no | 7 |
4 | 48 | m | no | 6 |
5 | 35 | m | no | 4 |
6 | 42 | m | no | 5 |
7 | 38 | m | no | 6 |
8 | 30 | m | no | 10 |
9 | 41 | m | no | 4 |
10 | 36 | f | no | 2 |
Filter Number | Peak Coverage Accuracy % |
---|---|
Filter 1 | 65.16 |
Filter 2 | 64.92 |
Filter 3 | 91.14 |
Filter 4 | 43.06 |
Filter 5 | 48.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Browarska, N.; Kawala-Sterniuk, A.; Zygarlicki, J.; Podpora, M.; Pelc, M.; Martinek, R.; Gorzelańczyk, E.J. Comparison of Smoothing Filters’ Influence on Quality of Data Recorded with the Emotiv EPOC Flex Brain–Computer Interface Headset during Audio Stimulation. Brain Sci. 2021, 11, 98. https://doi.org/10.3390/brainsci11010098
Browarska N, Kawala-Sterniuk A, Zygarlicki J, Podpora M, Pelc M, Martinek R, Gorzelańczyk EJ. Comparison of Smoothing Filters’ Influence on Quality of Data Recorded with the Emotiv EPOC Flex Brain–Computer Interface Headset during Audio Stimulation. Brain Sciences. 2021; 11(1):98. https://doi.org/10.3390/brainsci11010098
Chicago/Turabian StyleBrowarska, Natalia, Aleksandra Kawala-Sterniuk, Jaroslaw Zygarlicki, Michal Podpora, Mariusz Pelc, Radek Martinek, and Edward Jacek Gorzelańczyk. 2021. "Comparison of Smoothing Filters’ Influence on Quality of Data Recorded with the Emotiv EPOC Flex Brain–Computer Interface Headset during Audio Stimulation" Brain Sciences 11, no. 1: 98. https://doi.org/10.3390/brainsci11010098
APA StyleBrowarska, N., Kawala-Sterniuk, A., Zygarlicki, J., Podpora, M., Pelc, M., Martinek, R., & Gorzelańczyk, E. J. (2021). Comparison of Smoothing Filters’ Influence on Quality of Data Recorded with the Emotiv EPOC Flex Brain–Computer Interface Headset during Audio Stimulation. Brain Sciences, 11(1), 98. https://doi.org/10.3390/brainsci11010098