Cold-Blooded and on Purpose: A Review of the Biology of Proactive Aggression
Abstract
:1. Introduction
2. Measures of Proactive Aggression
3. Article Screening
4. Psychophysiology
4.1. Studies of Children
4.2. Adolescent Findings
4.3. Adult Findings
4.4. Psychophysiology Conclusions
5. Hormones
5.1. Cortisol
5.1.1. Child Findings
5.1.2. Adolescent and Young Adult Findings
5.1.3. Cortisol Conclusions
5.2. Testosterone
5.2.1. Child and Adolescent Findings
5.2.2. Adult Findings
5.3. Other Hormones
6. Twin Studies
7. Molecular Genetic Studies
8. Neurophysiology
9. Neuroimaging
9.1. PET
9.2. Structural MRI
9.3. Functional MRI Studies
9.4. 1H-MRS Studies
9.5. Imaging Conclusions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Coccaro, E.F.; McCloskey, M.S. Aggression: Clinical Features and Treatment across the Diagnostic Spectrum; American Psychiatric Publishing: Washington, DC, USA, 2018. [Google Scholar]
- Geen, R.G. Human Aggression; Brooks/Cole Publishing Company: Pacific Grove, CA, USA, 1990. [Google Scholar]
- Brenner, M.H. Estimating the Social Costs of National Economic Policy: Implications for Mental and Physical Health, and Criminal Aggression: A Study Prepared for the Use of the Joint Economic Committee; US Government Printing Office: Washington, DC, USA, 1976.
- Dodge, K.A.; Coie, J.D. Social-information-processing factors in reactive and proactive aggression in children’s peer groups. J. Pers. Soc. Psychol. 1987, 53, 1146–1158. [Google Scholar] [CrossRef]
- Dodge, K.A. The Structure and Function of Reactive and Proactive Aggression. In The Development and Treatment of Childhood Aggression; Pepler, D.J., Rubin, K.H., Eds.; Psychology Press: New York, NY, USA, 1991; pp. 201–218. [Google Scholar]
- Kempes, M.; Matthys, W.; De Vries, H.; Van Engeland, H. Reactive and proactive aggression in children A review of theory, findings and the relevance for child and adolescent psychiatry. Eur. Child Adolesc. Psychiatry 2005, 14, 11–19. [Google Scholar] [CrossRef]
- Blair, R. The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain Cogn. 2004, 55, 198–208. [Google Scholar] [CrossRef]
- Meloy, J.R. Empirical basis and Forensic Application of Affective and Predatory Violence. Aust. N. Z. J. Psychiatry 2006, 40, 539–547. [Google Scholar] [CrossRef]
- Poulin, F.; Boivin, M. Reactive and proactive aggression: Evidence of a two-factor model. Psychol. Assess. 2000, 12, 115–122. [Google Scholar] [CrossRef]
- Urben, S.; Habersaat, S.; Pihet, S.; Suter, M.; De Ridder, J.; Stéphan, P. Specific Contributions of Age of Onset, Callous-Unemotional Traits and Impulsivity to Reactive and Proactive Aggression in Youths with Conduct Disorders. Psychiatr. Q. 2017, 89, 1–10. [Google Scholar] [CrossRef]
- Raine, A.; Dodge, K.; Loeber, R.; Gatzke-Kopp, L.; Lynam, D.; Reynolds, C.; Stouthamer-Loeber, M.; Liu, J. The reactive–proactive aggression questionnaire: Differential correlates of reactive and proactive aggression in adolescent boys. Aggress. Behav. 2006, 32, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Kuroki, N.; Kashiwagi, H.; Ota, M.; Ishikawa, M.; Kunugi, H.; Sato, N.; Hirabayashi, N.; Ota, T. Brain structure differences among male schizophrenic patients with history of serious violent acts: An MRI voxel-based morphometric study. BMC Psychiatry 2017, 17, 105. [Google Scholar] [CrossRef] [Green Version]
- Kolla, N.J.; Dunlop, K.; Meyer, J.H.; Downar, J. Corticostriatal Connectivity in Antisocial Personality Disorder by MAO-A Genotype and Its Relationship to Aggressive Behavior. Int. J. Neuropsychopharmacol. 2018, 21, 725–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dambacher, F.; Schuhmann, T.; Lobbestael, J.; Arntz, A.; Brugman, S.; Sack, A.T. Reducing proactive aggression through non-invasive brain stimulation. Soc. Cogn. Affect. Neurosci. 2015, 10, 1303–1309. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, J.A.; McAuliffe, M.D.; Morrow, M.T.; Romano, L.J. Reactive and Proactive Aggression in Childhood and Adolescence: Precursors, Outcomes, Processes, Experiences, and Measurement. J. Pers. 2010, 78, 95–118. [Google Scholar] [CrossRef]
- Nelson, R.J.; Trainor, B. Neural mechanisms of aggression. Nat. Rev. Neurosci. 2007, 8, 536–546. [Google Scholar] [CrossRef]
- Wrangham, R.W. Two types of aggression in human evolution. Proc. Natl. Acad. Sci. USA 2017, 115, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Pechorro, P.; Kahn, R.E.; Ray, J.V.; Raine, A.; Gonçalves, R.A. Psychometric Properties of the Reactive-Proactive Aggression Questionnaire Among a Sample of Detained and Community Girls. Crim. Justice Behav. 2017, 44, 531–550. [Google Scholar] [CrossRef]
- Fossati, A.; Raine, A.; Borroni, S.; Bizzozero, A.; Volpi, E.; SantaLucia, I.; Maffei, C. A cross-cultural study of the psychometric properties of the Reactive–Proactive Aggression Questionnaire among Italian nonclinical adolescents. Psychol. Assess. 2009, 21, 131–135. [Google Scholar] [CrossRef]
- Morales, J.R.; Crick, N.R. Self-Report Measure of Aggression and Victimization. Unpublished Measure; University of Minnesota, Twin Cities Campus: Minneapolis, MN, USA, 1998. [Google Scholar]
- Crick, N.R. Relational aggression: The role of intent attributions, feelings of distress, and provocation type. Dev. Psychopathol. 1995, 7, 313–322. [Google Scholar] [CrossRef]
- Crick, N.R.; Grotpeter, J. Relational Aggression, Gender, and Social-Psychological Adjustment. Child Dev. 1995, 66, 710–722. [Google Scholar] [CrossRef]
- Farmer, C.A.; Aman, M.G. Development of the Children’s Scale of Hostility and Aggression: Reactive/Proactive (C-SHARP). Res. Dev. Disabil. 2009, 30, 1155–1167. [Google Scholar] [CrossRef]
- Polman, H.; De Castro, B.; Thomaes, S.; Van Aken, M. New Directions in Measuring Reactive and Proactive Aggression: Validation of a Teacher Questionnaire. J. Abnorm. Child Psychol. 2008, 37, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Wang, H.; Xia, L.-X. An experimental task to measure proactive aggression under incentive condition: A Reward-Interference Task. Pers. Individ. Differ. 2019, 149, 273–285. [Google Scholar] [CrossRef]
- Taylor, S.P. Aggressive behavior and physiological arousal as a function of provocation and the tendency to inhibit aggression1. J. Pers. 1967, 35, 297–310. [Google Scholar] [CrossRef]
- Cherek, D.R. Effects of smoking different doses of nicotine on human aggressive behavior. Psychopharmacology 1981, 75, 339–345. [Google Scholar] [CrossRef]
- Tedeschi, J.T.; Quigley, B.M. Limitations of laboratory paradigms for studying aggression. Aggress. Violent Behav. 1996, 1, 163–177. [Google Scholar] [CrossRef]
- McCarthy, R.J.; Elson, M. A Conceptual Review of Lab-Based Aggression Paradigms. Collabra Psychol. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Amore, M.; Menchetti, M.; Tonti, C.; Scarlatti, F.; Lundgren, E.; Esposito, W.; Berardi, D. Predictors of violent behavior among acute psychiatric patients: Clinical study. Psychiatry Clin. Neurosci. 2008, 62, 247–255. [Google Scholar] [CrossRef]
- Brendgen, M.; Vitaro, F.; Tremblay, R.E.; Lavoie, F. Reactive and Proactive Aggression: Predictions to Physical Violence in Different Contexts and Moderating Effects of Parental Monitoring and Caregiving Behavior. J. Abnorm. Child Psychol. 2001, 29, 293–304. [Google Scholar] [CrossRef]
- Vitaro, F.; Gendreau, P.L.; Tremblay, R.E.; Oligny, P. Reactive and proactive aggression differentially predict later conduct problems. J. Child Psychol. Psychiatry 1998, 39, 377–385. [Google Scholar] [CrossRef]
- Swogger, M.T.; Walsh, Z.; Christie, M.; Priddy, B.M.; Conner, K.R. Impulsive versus premeditated aggression in the prediction of violent criminal recidivism. Aggress. Behav. 2014, 41, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Crozier, J.C.; Dodge, K.A.; Fontaine, R.G.; Lansford, J.E.; Bates, J.E.; Pettit, G.S.; Levenson, R.W. Social information processing and cardiac predictors of adolescent antisocial behavior. J. Abnorm. Psychol. 2008, 117, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Scarpa, A.; Haden, S.C.; Tanaka, A. Being hot-tempered: Autonomic, emotional, and behavioral distinctions between childhood reactive and proactive aggression. Biol. Psychol. 2010, 84, 488–496. [Google Scholar] [CrossRef]
- Bobadilla, L.; Wampler, M.; Taylor, J. Proactive and Reactive Aggression are Associated with Different Physiological and Personality Profiles. J. Soc. Clin. Psychol. 2012, 31, 458–487. [Google Scholar] [CrossRef]
- Murray-Close, D.; Rellini, A.H. Cardiovascular reactivity and proactive and reactive relational aggression among women with and without a history of sexual abuse. Biol. Psychol. 2012, 89, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Centifanti, L.C.M.; Kimonis, E.R.; Frick, P.J.; Aucoin, K.J. Emotional reactivity and the association between psychopathy-linked narcissism and aggression in detained adolescent boys. Dev. Psychopathol. 2013, 25, 473–485. [Google Scholar] [CrossRef] [Green Version]
- Portnoy, J.; Raine, A.; Chen, F.R.; Pardini, D.; Loeber, R.; Jennings, J.R. Heart rate and antisocial behavior: The mediating role of impulsive sensation seeking. Criminology 2014, 52, 292–311. [Google Scholar] [CrossRef]
- Raine, A.; Fung, A.L.C.; Portnoy, J.; Choy, O.; Spring, V.L. Low heart rate as a risk factor for child and adolescent proactive aggressive and impulsive psychopathic behavior. Aggress. Behav. 2014, 40, 290–299. [Google Scholar] [CrossRef]
- Xu, Y.; Raine, A.; Yu, L.; Krieg, A. Resting Heart Rate, Vagal Tone, and Reactive and Proactive Aggression in Chinese Children. J. Abnorm. Child Psychol. 2013, 42, 501–514. [Google Scholar] [CrossRef]
- Gao, Y.; Tuvblad, C.; Schell, A.; Baker, L.; Raine, A. Skin conductance fear conditioning impairments and aggression: A longitudinal study. Psychophysiology 2014, 52, 288–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, C.R.; Abaied, J.L. Relational victimization and proactive versus reactive relational aggression: The moderating effects of respiratory sinus arrhythmia and skin conductance. Aggress. Behav. 2015, 41, 566–579. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, Y. Interactive effects of social adversity and respiratory sinus arrhythmia activity on reactive and proactive aggression. Psychophysiology 2015, 52, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Schoorl, J.; Van Rijn, S.; De Wied, M.; Van Goozen, S.H.M.; Swaab, H. Variability in emotional/behavioral problems in boys with oppositional defiant disorder or conduct disorder: The role of arousal. Eur. Child Adolesc. Psychiatry 2015, 25, 821–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, C.R.; Abaied, J.L. Skin Conductance Level Reactivity Moderates the Association Between Parental Psychological Control and Relational Aggression in Emerging Adulthood. J. Youth Adolesc. 2016, 45, 687–700. [Google Scholar] [CrossRef]
- Murray-Close, D.; Holterman, L.A.; Breslend, N.L.; Sullivan, A. Psychophysiology of proactive and reactive relational aggression. Biol. Psychol. 2017, 130, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Kassing, F.; Lochman, J.E.; Glenn, A.L. Autonomic functioning in reactive versus proactive aggression: The influential role of inconsistent parenting. Aggress. Behav. 2018, 44, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.C.; Hubbard, J.; Morrow, M.T.; Barhight, L.R.; Lines, M.M.; Sallee, M.; Hyde, C.T. The simultaneous assessment of and relations between children’s sympathetic and parasympathetic psychophysiology and their reactive and proactive aggression. Aggress. Behav. 2018, 44, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Ungvary, S.; McDonald, K.L.; Gibson, C.E.; Glenn, A.L.; Reijntjes, A. Victimized by Peers and Aggressive: The Moderating Role of Physiological Arousal and Reactivity. Merrill-Palmer Q. 2018, 64, 70–100. [Google Scholar] [CrossRef]
- Armstrong, T.; Wells, J.; Boisvert, D.L.; Lewis, R.; Cooke, E.M.; Woeckener, M.; Kavish, N. Skin conductance, heart rate and aggressive behavior type. Biol. Psychol. 2018, 141, 44–51. [Google Scholar] [CrossRef]
- Thomson, N.D.; Beauchaine, T.P. Respiratory Sinus Arrhythmia Mediates Links Between Borderline Personality Disorder Symptoms and Both Aggressive and Violent Behavior. J. Pers. Disord. 2019, 33, 544–559. [Google Scholar] [CrossRef]
- Hagan, M.J.; Waters, S.F.; Holley, S.; Moctezuma, L.; Gentry, M. The interactive effect of family conflict history and physiological reactivity on different forms of aggression in young women. Biol. Psychol. 2020, 153, 107888. [Google Scholar] [CrossRef]
- Puhalla, A.A.; Kulper, D.A.; Fahlgren, M.K.; McCloskey, M.S. The Relationship Between Resting Heart Rate Variability, Hostility, and In Vivo Aggression Among Young Adults. J. Aggress. Maltreatment Trauma 2019, 29, 206–222. [Google Scholar] [CrossRef]
- Little, T.D.; Henrich, C.C.; Jones, S.M.; Hawley, P.H. Disentangling the “whys” from the “whats” of aggressive behaviour. Int. J. Behav. Dev. 2003, 27, 122–133. [Google Scholar] [CrossRef]
- Brown, K.; Atkins, M.S.; Osborne, M.L.; Milnamow, M. A revised teacher rating scale for Reactive and Proactive Aggression. J. Abnorm. Child Psychol. 1996, 24, 473–480. [Google Scholar] [CrossRef]
- Waschbusch, D.A.; Pelham, J.W.E.; Jennings, J.R.; Greiner, A.R.; Tarter, R.E.; Moss, H.B. Reactive Aggression in Boys with Disruptive Behavior Disorders: Behavior, Physiology, and Affect. J. Abnorm. Child Psychol. 2002, 30, 641–656. [Google Scholar] [CrossRef]
- Olweus, D.; Mattsson, Å.; Schalling, D.; Löw, H. Testosterone, Aggression, Physical, and Personality Dimensions in Normal Adolescent Males. Psychosom. Med. 1980, 42, 253–269. [Google Scholar] [CrossRef]
- Olweus, D.; Mattsson, A.; Schalling, D.; Löw, H. Circulating testosterone levels and aggression in adolescent males: A causal analysis. Psychosom. Med. 1988, 50, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabbs, J.M.; Carr, T.S.; Frady, R.L.; Riad, J.K. Testosterone, crime, and misbehavior among 692 male prison inmates. Pers. Individ. Differ. 1995, 18, 627–633. [Google Scholar] [CrossRef]
- Dabbs, J.M.; Riad, J.K.; Chance, S.E. Testosterone and ruthless homicide. Pers. Individ. Differ. 2001, 31, 599–603. [Google Scholar] [CrossRef]
- Van Bokhoven, I.; Van Goozen, S.H.M.; Van Engeland, H.; Schaal, B.; Arseneault, L.; Séguin, J.R.; Nagin, D.S.; Vitaro, F.; Tremblay, R.E. Salivary cortisol and aggression in a population-based longitudinal study of adolescent males. J. Neural Transm. 2004, 112, 1083–1096. [Google Scholar] [CrossRef] [PubMed]
- Kempes, M.; De Vries, H.; Matthys, W.; Van Engeland, H.; Van Hooff, J. Differences in cortisol response affect the distinction of observed reactive and proactive aggression in children with aggressive behaviour disorders. J. Neural Transm. 2007, 115, 139–147. [Google Scholar] [CrossRef]
- Lopez-Duran, N.L.; Olson, S.L.; Hajal, N.J.; Felt, B.T.; Vazquez, D. Hypothalamic Pituitary Adrenal Axis Functioning in Reactive and Proactive Aggression in Children. J. Abnorm. Child Psychol. 2008, 37, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Carré, J.M.; Gilchrist, J.D.; Morrissey, M.D.; McCormick, C.M. Motivational and situational factors and the relationship between testosterone dynamics and human aggression during competition. Biol. Psychol. 2010, 84, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Poustka, L.; Maras, A.; Hohm, E.; Fellinger, J.; Holtmann, M.; Banaschewski, T.; Lewicka, S.; Schmidt, M.H.; Esser, G.; Laucht, M. Negative association between plasma cortisol levels and aggression in a high-risk community sample of adolescents. J. Neural Transm. 2010, 117, 621–627. [Google Scholar] [CrossRef]
- Catherine, N.L.A.; Schonert-Reichl, K.A.; Hertzman, C.; Oberlander, T.F. Afternoon Cortisol in Elementary School Classrooms: Associations with Peer and Teacher Support and Child Behavior. Sch. Ment. Health 2012, 4, 181–192. [Google Scholar] [CrossRef]
- Dietrich, A.; Ormel, J.; Buitelaar, J.K.; Verhulst, F.C.; Hoekstra, P.J.; Hartman, C.A. Cortisol in the morning and dimensions of anxiety, depression, and aggression in children from a general population and clinic-referred cohort: An integrated analysis. The TRAILS study. Psychoneuroendocrinology 2013, 38, 1281–1298. [Google Scholar] [CrossRef]
- Johnson, M.M.; Caron, K.M.; Mikolajewski, A.J.; Shirtcliff, E.A.; Eckel, L.A.; Taylor, J. Psychopathic Traits, Empathy, and Aggression are Differentially Related to Cortisol Awakening Response. J. Psychopathol. Behav. Assess. 2014, 36, 380–388. [Google Scholar] [CrossRef]
- Stoppelbein, L.; Greening, L.; Luebbe, A.; Fite, P.; Becker, S.P. The role of cortisol and psychopathic traits in aggression among at-risk girls: Tests of mediating hypotheses. Aggress. Behav. 2013, 40, 263–272. [Google Scholar] [CrossRef]
- Oberle, E.; McLachlan, K.; Catherine, N.L.; Brain, U.; Schonert-Reichl, K.A.; Weinberg, J.; Oberlander, T. Afternoon cortisol provides a link between self-regulated anger and peer-reported aggression in typically developing children in the school context. Dev. Psychobiol. 2017, 59, 688–695. [Google Scholar] [CrossRef]
- Chen, F.R.; Raine, A.; Granger, U.A. Testosterone and Proactive-Reactive Aggression in Youth: The Moderating Role of Harsh Discipline. J. Abnorm. Child Psychol. 2018, 46, 1599–1612. [Google Scholar] [CrossRef] [PubMed]
- Bakker-Huvenaars, M.; Greven, C.; Herpers, P.; Wiegers, E.; Jansen, A.; van der Steen, R.; van Herwaarden, A.; Baanders, A.; Nijhof, K.; Scheepers, F.; et al. Saliva oxytocin, cortisol, and testosterone levels in adolescent boys with autism spectrum disorder, oppositional defiant disorder/conduct disorder and typically developing individuals. Eur. Neuropsychopharmacol. 2018, 30, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.R.; Owens, S.A.; Schmalenberger, K.; Eisenlohr-Moul, T.A. Differential effects of the menstrual cycle on reactive and proactive aggression in borderline personality disorder. Aggress. Behav. 2020, 46, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, M.; Crombez, G.; Roeyers, H.; DeCastro, B.O. Psychometric evaluation of the Dutch version of the Aggression Rating Scale. Gedragstherapie 2003, 36, 33–43. [Google Scholar]
- Achenbach, T.M.; Rescorla, L. ASEBA School-Age Forms & Profiles; University of Vermont: Burlington, NJ, USA, 2001. [Google Scholar]
- Moffitt, T.; Silva, P.A. Self-Reported Delinquency, neuropsychological deficit, and history of attention deficit disorder. J. Abnorm. Child Psychol. 1988, 16, 553–569. [Google Scholar] [CrossRef] [PubMed]
- Brendgen, M.; Vitaro, F.; Boivin, M.; Dionne, G.; Pérusse, D. Examining genetic and environmental effects on reactive versus proactive aggression. Dev. Psychol. 2006, 42, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.A.; Raine, A.; Liu, J.; Jacobson, K.C. Differential Genetic and Environmental Influences on Reactive and Proactive Aggression in Children. J. Abnorm. Child Psychol. 2008, 36, 1265–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuvblad, C.; Raine, A.; Zheng, M.; Baker, L.A. Genetic and environmental stability differs in reactive and proactive aggression. Aggress. Behav. 2009, 35, 437–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezdjian, S.; Raine, A.; Baker, L.A.; Lynam, D. Psychopathic personality in children: Genetic and environmental contributions. Psychol. Med. 2010, 41, 589–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paquin, S.; Lacourse, E.; Brendgen, M.; Vitaro, F.; Dionne, G.; Tremblay, R.E.; Boivin, M. The Genetic-environmental Architecture of Proactive and Reactive Aggression Throughout Childhood. Mschr. Krim. 2014, 97, 398–420. [Google Scholar] [CrossRef]
- Paquin, S.; LaCourse, E.; Brendgen, M.; Vitaro, F.; Dionne, G.; Tremblay, R.E.; Boivin, M. Heterogeneity in the development of proactive and reactive aggression in childhood: Common and specific genetic—Environmental factors. PLoS ONE 2017, 12, e0188730. [Google Scholar] [CrossRef] [Green Version]
- Kuepper, Y.; Grant, P.; Wielpuetz, C.; Hennig, J. MAOA-uVNTR genotype predicts interindividual differences in experimental aggressiveness as a function of the degree of provocation. Behav. Brain Res. 2013, 247, 73–78. [Google Scholar] [CrossRef]
- Kolla, N.J.; Attard, S.; Craig, G.; Blackwood, N.; Hodgins, S. Monoamine oxidase a alleles in violent offenders with antisocial personality disorder: High activity associated with proactive aggression. Crim. Behav. Ment. Health 2014, 24, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Cherepkova, E.V.; Maksimov, V.N.; Aftanas, L.I.; Menshanov, P.N. Genotype and haplotype frequencies of the DRD4 VNTR polymorphism in the men with no history of ADHD, convicted of violent crimes. J. Crim. Justice 2015, 43, 464–469. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, C.; Wang, M.; Ji, L.; Cao, Y. Monoamine Oxidase A (MAOA) and Catechol-O-Methyltransferase (COMT) Gene Polymorphisms Interact with Maternal Parenting in Association with Adolescent Reactive Aggression but not Proactive Aggression: Evidence of Differential Susceptibility. J. Youth Adolesc. 2016, 45, 812–829. [Google Scholar] [CrossRef]
- Van Dongen, J.D.M.; van Schaik, R.H.N.; van Fessem, M.; van Marle, H.J.C. Association between the COMT Val158Met polymorphism and aggression in psychosis: Test of a moderated mediation model in a forensic inpatient sample. Psychol. Violence 2018, 8, 269–276. [Google Scholar] [CrossRef]
- Van Donkelaar, M.M.J.; Hoogman, M.; Pappa, I.; Tiemeier, H.; Buitelaar, J.K.; Franke, B.; Bralten, J. Pleiotropic Contribution of MECOM and AVPR1A to Aggression and Subcortical Brain Volumes. Front. Behav. Neurosci. 2018, 12, 61. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Ba, H.; Zhang, W.; Zhang, S.; Zhao, H.; Yu, H.; Gao, Z.; Wang, B. The association of 22 Y chromosome short tandem repeat loci with initiative–aggressive behavior. Gene 2018, 654, 10–13. [Google Scholar] [CrossRef]
- Fragkaki, I.; Cima, M.; Verhagen, M.; Maciejewski, D.F.; Boks, M.P.; Van Lier, P.A.C.; Koot, H.M.; Branje, S.J.T.; Meeus, W.H.J. Oxytocin Receptor Gene (OXTR) and Deviant Peer Affiliation: A Gene–Environment Interaction in Adolescent Antisocial Behavior. J. Youth Adolesc. 2018, 48, 86–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weidler, C.; Wagels, L.; Regenbogen, C.; Hofhansel, L.; Blendy, J.A.; Clemens, B.; Montag, C.; Habel, U. The influence of the OPRM1 (A118G) polymorphism on behavioral and neural correlates of aggression in healthy males. Neuropharmacology 2018, 156, 107467. [Google Scholar] [CrossRef]
- Van Donkelaar, M.M.; Hoogman, M.; Shumskaya, E.; Buitelaar, J.K.; Bralten, J.; Franke, B. Monoamine and neuroendocrine gene-sets associate with frustration-based aggression in a gender-specific manner. Eur. Neuropsychopharmacol. 2017, 30, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Stieglitz, R.-D. Das Freiburger-Persönlichkeitsinventar (FPI). Z. Klin. Psychol. Psychother. 2002, 31, 223–224. [Google Scholar] [CrossRef]
- Barratt, E.S.; Stanford, M.S.; Kent, T.; Alan, F. Neuropsychological and cognitive psychophysiological substrates of impulsive aggression. Biol. Psychiatry 1997, 41, 1045–1061. [Google Scholar] [CrossRef]
- Stanford, M.S.; Houston, R.J.; Villemarette-Pittman, N.R.; Greve, K.W. Premeditated aggression: Clinical assessment and cognitive psychophysiology. Pers. Individ. Differ. 2003, 34, 773–781. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Muggleton, N.G.; Juan, C.-H. Attentional biases to emotion in impulsive and instrumental violent offenders: An event-related potential study. J. Forensic Psychiatry Psychol. 2014, 26, 202–223. [Google Scholar] [CrossRef]
- Helfritz-Sinville, L.E.; Stanford, M.S. Looking for Trouble? Processing of Physical and Social Threat Words in Impulsive and Premeditated Aggression. Psychol. Rec. 2014, 65, 301–314. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chiou, C.-R.; Ko, C.-H. Juveniles with a history of violent behavior show cognitive performance and electrophysiology consistent with inhibitory control and emotional feedback processing problems. Aggress. Behav. 2018, 45, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Coccaro, E.F.; Berman, M.E.; Kavoussi, R.J. Assessment of life history of aggression: Development and psychometric characteristics. Psychiatry Res. 1997, 73, 147–157. [Google Scholar] [CrossRef]
- Stanford, M.S.; Houston, R.J.; Mathias, C.W.; Villemarette-Pittman, N.R.; Helfritz, L.E.; Conklin, S.M. Characterizing Aggressive Behavior. Assessment 2003, 10, 183–190. [Google Scholar] [CrossRef]
- Raine, A.; Meloy, J.R.; Bihrle, S.; Stoddard, J.; LaCasse, L.; Buchsbaum, M.S. Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behav. Sci. Law 1998, 16, 319–332. [Google Scholar] [CrossRef]
- Bobes, M.A.; Ostrosky, F.; Diaz, K.; Romero, C.; Borja, K.; Santos, Y.; Valdés-Sosa, M. Linkage of functional and structural anomalies in the left amygdala of reactive-aggressive men. Soc. Cogn. Affect. Neurosci. 2012, 8, 928–936. [Google Scholar] [CrossRef] [Green Version]
- White, S.F.; Brislin, S.; Sinclair, S.; Fowler, K.A.; Pope, K.; Blair, R.J.R. The relationship between large cavum septum pellucidum and antisocial behavior, callous-unemotional traits and psychopathy in adolescents. J. Child Psychol. Psychiatry 2012, 54, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Lozier, L.M.; Cardinale, E.M.; VanMeter, J.; Marsh, A.A. Mediation of the Relationship Between Callous-Unemotional Traits and Proactive Aggression by Amygdala Response to Fear Among Children With Conduct Problems. JAMA Psychiatry 2014, 71, 627–636. [Google Scholar] [CrossRef]
- Pardini, D.A.; Raine, A.; Erickson, K.; Loeber, R. Lower Amygdala Volume in Men is Associated with Childhood Aggression, Early Psychopathic Traits, and Future Violence. Biol. Psychiatry 2013, 75, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Joshi, S.H.; Jahanshad, N.; Thompson, P.; Baker, L.A. Neural correlates of proactive and reactive aggression in adolescent twins. Aggress. Behav. 2016, 43, 230–240. [Google Scholar] [CrossRef]
- Farah, T.; Ling, S.; Raine, A.; Yang, Y.; Schug, R. Alexithymia and reactive aggression: The role of the amygdala. Psychiatry Res. Neuroimaging 2018, 281, 85–91. [Google Scholar] [CrossRef]
- Craig, M.; Mulder, L.M.; Zwiers, M.P.; Sethi, A.; Hoekstra, P.J.; Dietrich, A.; Baumeister, S.; Aggensteiner, P.M.; Banaschewski, T.; Brandeis, D.; et al. Distinct associations between fronto-striatal glutamate concentrations and callous-unemotional traits and proactive aggression in disruptive behavior. Cortex 2019, 121, 135–146. [Google Scholar] [CrossRef]
- Siep, N.; Tonnaer, F.; Van De Ven, V.; Arntz, A.; Raine, A.; Cima, M. Anger provocation increases limbic and decreases medial prefrontal cortex connectivity with the left amygdala in reactive aggressive violent offenders. Brain Imaging Behav. 2018, 13, 1311–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Zhou, X.; Xia, L.-X. Brain structures and functional connectivity associated with individual differences in trait proactive aggression. Sci. Rep. 2019, 9, 7731. [Google Scholar] [CrossRef] [PubMed]
- Naaijen, J.; Mulder, L.M.; Ilbegi, S.; de Bruijn, S.; Kleine-Deters, R.; Dietrich, A.; Hoekstra, P.J.; Marsman, J.-B.C.; Aggensteiner, P.M.; Holz, N.E.; et al. Specific cortical and subcortical alterations for reactive and proactive aggression in children and adolescents with disruptive behavior. NeuroImage Clin. 2020, 27, 102344. [Google Scholar] [CrossRef] [PubMed]
- Werhahn, J.E.; Mohl, S.; Willinger, D.; Smigielski, L.; Roth, A.; Hofstetter, C.; Stämpfli, P.; Naaijen, J.; Mulder, L.M.; Glennon, J.C.; et al. Aggression subtypes relate to distinct resting state functional connectivity in children and adolescents with disruptive behavior. Eur. Child Adolesc. Psychiatry 2020, 30, 1237–1249. [Google Scholar] [CrossRef]
- Porges, S.W. Emotion: An Evolutionary By-Product of the Neural Regulation of the Autonomic Nervous System. Ann. N. Y. Acad. Sci. 1997, 807, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef]
- Hirsch, J.A.; Bishop, B. Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate. Am. J. Physiol. Circ. Physiol. 1981, 241, H620–H629. [Google Scholar] [CrossRef] [Green Version]
- Saul, J. Beat-To-Beat Variations of Heart Rate Reflect Modulation of Cardiac Autonomic Outflow. Physiology 1990, 5, 32–37. [Google Scholar] [CrossRef]
- Beauchaine, T. Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Dev. Psychopathol. 2001, 13, 183–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, B.H.; Thayer, J.F. Autonomic balance revisited: Panic anxiety and heart rate variability. J. Psychosom. Res. 1998, 44, 133–151. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Gyurak, A.; Ayduk, Ö. Resting respiratory sinus arrhythmia buffers against rejection sensitivity via emotion control. Emotion 2008, 8, 458–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarpa, A.; Raine, A. Psychophysiology of anger and violent behavior. Psychiatr. Clin. N. Am. 1997, 20, 375–394. [Google Scholar] [CrossRef]
- Eysenck, H.J. Personality and the Biosocial Model of Anti-Social and Criminal Behaviour. In Biosocial Bases of Violence; Raine, A., Brennan, P.A., Farrington, D.P., Mednick, S.A., Eds.; Springer: Boston, MA, USA, 1997; pp. 21–37. [Google Scholar] [CrossRef]
- Quay, H.C. Psychopathic personality as pathological stimulation-seeking. Am. J. Psychiatry 1965, 122, 180–183. [Google Scholar] [CrossRef]
- Raine, A. The Psychopathology of Crime: Criminal Behavior as a Clinical Disorder; Academic Press: San Diego, CA, USA, 1993. [Google Scholar] [CrossRef]
- Lykken, D.T. The Antisocial Personalities; Lawrence Erlbaum Associates, Publishers: Hillsdale, MI, USA, 1995. [Google Scholar] [CrossRef]
- Scarpa, A.; Raine, A. The Psychophysiology of Child Misconduct. Pediatr. Ann. 2004, 33, 296–304. [Google Scholar] [CrossRef]
- Raine, A.; Reynolds, G.; Sheard, C. Neuroanatomical Correlates of Skin Conductance Orienting in Normal Humans: A Magnetic Resonance Imaging Study. Psychophysiology 1991, 28, 548–558. [Google Scholar] [CrossRef]
- Tranel, D. Electrodermal Activity in Cognitive Neuroscience: Neuroanatomical and Neurophychological Correlates. Cognitive Neuroscience of Emotion; Lane, R.D., Nadel, L., Eds.; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Ellis, B.J.; Boyce, W.T. Biological Sensitivity to Context. Curr. Dir. Psychol. Sci. 2008, 17, 183–187. [Google Scholar] [CrossRef]
- Raine, A.; Lencz, T.; Bihrle, S.; Lacasse, L.; Colletti, P. Reduced Prefrontal Gray Matter Volume and Reduced Autonomic Activity in Antisocial Personality Disorder. Arch. Gen. Psychiatry 2000, 57, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlov, I.P. Conditioned Reflexes. In An Investigation of the Physiological Activity of the Cerebral Cortex; Anrep, V., Ed.; Dover Publications: New York, NY, USA, 1927. [Google Scholar]
- Gao, Y.; Raine, A.; Venables, P.H.; Dawson, M.E.; Mednick, S.A. Reduced electrodermal fear conditioning from ages 3 to 8 years is associated with aggressive behavior at age 8 years. J. Child Psychol. Psychiatry 2009, 51, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Fairchild, G.; Van Goozen, S.H.; Stollery, S.J.; Goodyer, I.M. Fear Conditioning and Affective Modulation of the Startle Reflex in Male Adolescents with Early-Onset or Adolescence-Onset Conduct Disorder and Healthy Control Subjects. Biol. Psychiatry 2008, 63, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, K.A.; Pincus, A.L. Interpersonal Analysis of Grandiose and Vulnerable Narcissism. J. Pers. Disord. 2003, 17, 188–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raine, A. Biosocial Studies of Antisocial and Violent Behavior in Children and Adults: A Review. J. Abnorm. Child Psychol. 2002, 30, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Sijtsema, J.J.; Shoulberg, E.K.; Murray-Close, D. Physiological reactivity and different forms of aggression in girls: Moderating roles of rejection sensitivity and peer rejection. Biol. Psychol. 2011, 86, 181–192. [Google Scholar] [CrossRef]
- Miller, J.D.; Lynam, D. Reactive and proactive aggression: Similarities and differences. Pers. Individ. Differ. 2006, 41, 1469–1480. [Google Scholar] [CrossRef]
- Ulrich-Lai, Y.; Herman, J. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, J. Hormones and aggression in childhood and adolescence. Aggress. Violent Behav. 2003, 8, 621–644. [Google Scholar] [CrossRef] [Green Version]
- Fries, E.; Dettenborn, L.; Kirschbaum, C. The cortisol awakening response (CAR): Facts and future directions. Int. J. Psychophysiol. 2009, 72, 67–73. [Google Scholar] [CrossRef]
- Santiago, L.B.; Jorge, S.M.; Moreira, A.C. Longitudinal evaluation of the development of salivary cortisol circadian rhythm in infancy. Clin. Endocrinol. 1996, 44, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Laudat, M.H.; Cerdas, S.; Fournier, C.; Guiban, D.; Guilhaume, B.; Luton, J.P. Salivary Cortisol Measurement: A Practical Approach to Assess Pituitary-Adrenal Function. J. Clin. Endocrinol. Metab. 1988, 66, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.; Greco, S.; Nguyen, H.H.T.; Ho, J.T.; Lewis, J.G.; Torpy, D.J.; Inder, W.J. Plasma, salivary and urinary cortisol levels following physiological and stress doses of hydrocortisone in normal volunteers. BMC Endocr. Disord. 2014, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirtcliff, E.A.; Vitacco, M.J.; Graf, A.R.; Gostisha, A.J.; Merz, J.L.; Zahn-Waxler, C. Neurobiology of empathy and callousness: Implications for the development of antisocial behavior. Behav. Sci. Law 2009, 27, 137–171. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, K.D.; Troop-Gordon, W.; Granger, D.A. Individual differences in biological stress responses moderate the contribution of early peer victimization to subsequent depressive symptoms. Psychopharmacology 2010, 214, 209–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barzman, D.H.; Mossman, D.; Appel, K.; Blom, T.J.; Strawn, J.R.; Ekhator, N.N.; Patel, B.; DelBello, M.P.; Sorter, M.; Klein, D.; et al. The Association Between Salivary Hormone Levels and Children’s Inpatient Aggression: A Pilot Study. Psychiatr. Q. 2013, 84, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Gordis, E.B.; Granger, D.A.; Susman, E.J.; Trickett, P.K. Asymmetry between salivary cortisol and α-amylase reactivity to stress: Relation to aggressive behavior in adolescents. Psychoneuroendocrinology 2006, 31, 976–987. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh, M.; Erath, S.A.; Buckhalt, J.A.; Granger, U.A.; Mize, J. Cortisol and Children’s Adjustment: The Moderating Role of Sympathetic Nervous System Activity. J. Abnorm. Child Psychol. 2008, 36, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Schulz, K.M.; Molenda-Figueira, H.A.; Sisk, C.L. Back to the future: The organizational–activational hypothesis adapted to puberty and adolescence. Horm. Behav. 2009, 55, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phoenix, C.H.; Goy, R.W.; Gerall, A.A.; Young, W.C. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea PIG1. Endocrinology 1959, 65, 369–382. [Google Scholar] [CrossRef]
- Giammanco, M.; Tabacchi, G.; Giammanco, S.; Di Majo, D.; La Guardia, M. Testosterone and aggressiveness. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2005, 11, RA136–RA145. [Google Scholar]
- Simpson, K. The Role of Testosterone in Aggression. McGill J. Med. 2001, 6. [Google Scholar] [CrossRef]
- Book, A.S.; Starzyk, K.B.; Quinsey, V.L. The relationship between testosterone and aggression: A meta-analysis. Aggress. Violent Behav. 2001, 6, 579–599. [Google Scholar] [CrossRef]
- Fung, A.L.-C.; Raine, A.; Gao, Y. Cross-Cultural Generalizability of the Reactive–Proactive Aggression Questionnaire (RPQ). J. Pers. Assess. 2009, 91, 473–479. [Google Scholar] [CrossRef]
- Landén, M.; Nissbrandt, H.; Allgulander, C.; Sörvik, K.; Ysander, C.; Eriksson, E.; Land, M. Placebo-controlled trial comparing intermittent and continuous paroxetine in premenstrual dysphoric disorder. Neuropsychopharmacology 2006, 32, 153–161. [Google Scholar] [CrossRef]
- LaCourse, E.; Boivin, M.; Brendgen, M.; Petitclerc, A.; Girard, A.; Vitaro, F.; Paquin, S.; Ouellet-Morin, I.; Dionne, G.; Tremblay, R.E. A longitudinal twin study of physical aggression during early childhood: Evidence for a developmentally dynamic genome. Psychol. Med. 2014, 44, 2617–2627. [Google Scholar] [CrossRef]
- Porsch, R.M.; Middeldorp, C.M.; Cherny, S.S.; Krapohl, E.; van Beijsterveldt, C.E.M.; Loukola, A.; Korhonen, T.; Pulkkinen, L.; Corley, R.; Rhee, S.; et al. Longitudinal heritability of childhood aggression. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016, 171, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Jacquard, A. Heritability: One Word, Three Concepts. Biometrics 1983, 39, 465. [Google Scholar] [CrossRef] [PubMed]
- Neale, M.C.; Cardon, L.R. Methodology for Genetic Studies of Twins and Families; Springer Science and Business Media: Dordrecht, The Netherlands, 1992. [Google Scholar] [CrossRef]
- Kolla, N.J.; Bortolato, M. The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: A tale of mice and men. Prog. Neurobiol. 2020, 194, 101875. [Google Scholar] [CrossRef]
- Bortolato, M.; Chen, K.; Shih, J.C. Monoamine oxidase inactivation: From pathophysiology to therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1527–1533. [Google Scholar] [CrossRef] [Green Version]
- Grimsby, J.; Chen, K.; Wang, L.J.; Lan, N.C.; Shih, J.C. Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc. Natl. Acad. Sci. USA 1991, 88, 3637–3641. [Google Scholar] [CrossRef] [Green Version]
- Sabol, S.Z.; Hu, S.; Hamer, D. A functional polymorphism in the monoamine oxidase a gene promoter. Qual. Life Res. 1998, 103, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Deckert, J.; Catalano, M.; Syagailo, Y.V.; Bosi, M.; Okladnova, O.; Di Bella, D.; Nöthen, M.; Maffei, P.; Franke, P.; Fritze, J.; et al. Excess of High Activity Monoamine Oxidase A Gene Promoter Alleles in Female Patients with Panic Disorder. Hum. Mol. Genet. 1999, 8, 621–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denney, R.; Koch, H.; Craig, I. Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Qual. Life Res. 1999, 105, 542–551. [Google Scholar] [CrossRef]
- Caspi, A.; McClay, J.; Moffitt, T.E.; Mill, J.; Martin, J.; Craig, I.W.; Taylor, A.; Poulton, R. Role of Genotype in the Cycle of Violence in Maltreated Children. Science 2002, 297, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Byrd, A.L.; Manuck, S.B. MAOA, Childhood Maltreatment, and Antisocial Behavior: Meta-analysis of a Gene-Environment Interaction. Biol. Psychiatry 2013, 75, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Manuck, S.B.; Flory, J.D.; Ferrell, R.E.; Mann, J.; Muldoon, M.F. A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res. 2000, 95, 9–23. [Google Scholar] [CrossRef]
- Gorodetsky, E.; Bevilacqua, L.; Carli, V.; Sarchiapone, M.; Roy, A.; Goldman, D.; Enoch, M.-A. The interactive effect ofMAOA-LPR genotype and childhood physical neglect on aggressive behaviors in Italian male prisoners. Genes Brain Behav. 2014, 13, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Qayyum, A.; Zai, C.C.; Hirata, Y.; Tiwari, A.K.; Cheema, S.; Nowrouzi, B.; Beitchman, J.H.; Kennedy, J.L. The Role of the Catechol-o-Methyltransferase (COMT) GeneVal158Met in Aggressive Behavior, a Review of Genetic Studies. Curr. Neuropharmacol. 2015, 13, 802–814. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Lipska, B.K.; Halim, N.; Ma, Q.D.; Matsumoto, M.; Melhem, S.; Kolachana, B.S.; Hyde, T.M.; Herman, M.M.; Apud, J.; et al. Functional Analysis of Genetic Variation in Catechol-O-Methyltransferase (COMT): Effects on mRNA, Protein, and Enzyme Activity in Postmortem Human Brain. Am. J. Hum. Genet. 2004, 75, 807–821. [Google Scholar] [CrossRef] [Green Version]
- Lachman, H.M.; Papolos, D.F.; Saito, T.; Yu, Y.-M.; Szumlanski, C.L.; Weinshilboum, R.M. Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996, 6, 243–250. [Google Scholar] [CrossRef]
- Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 2004, 5, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Boutwell, B.B.; Beaver, K.M. A biosocial explanation of delinquency abstention. Crim. Behav. Ment. Health 2008, 18, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Mrzljak, L.; Bergson, C.; Pappy, M.; Huff, R.; Levenson, R.; Goldman-Rakic, P.S. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 1996, 381, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Van Tol, H.H.M.; Wu, C.M.; Guan, H.-C.; Ohara, K.; Bunzow, J.R.; Civelli, O.; Kennedy, J.; Seeman, P.; Niznik, H.B.; Jovanovic, V. Multiple dopamine D4 receptor variants in the human population. Nature 1992, 358, 149–152. [Google Scholar] [CrossRef]
- Roussos, P.; Giakoumaki, S.; Bitsios, P. Cognitive and emotional processing in high novelty seeking associated with the L-DRD4 genotype. Neuropsychologia 2009, 47, 1654–1659. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Macbeth, A.H.; Pagani, J.H.; Young, W.S. Oxytocin: The great facilitator of life. Prog. Neurobiol. 2009, 88, 127–151. [Google Scholar] [CrossRef] [Green Version]
- Løseth, G.; Eellingsen, D.-M.; Eleknes, S. State-dependent µ-opioid modulation of social motivation. Front. Behav. Neurosci. 2014, 8, 430. [Google Scholar] [CrossRef]
- Zubieta, J.-K.; Smith, Y.R.; Bueller, J.A.; Xu, Y.; Kilbourn, M.R.; Jewett, D.M.; Meyer, C.R.; Koeppe, R.A.; Stohler, C.S. μ-Opioid Receptor-Mediated Antinociceptive Responses Differ in Men and Women. J. Neurosci. 2002, 22, 5100–5107. [Google Scholar] [CrossRef]
- Visscher, P.M.; Brown, M.A.; McCarthy, M.; Yang, J. Five Years of GWAS Discovery. Am. J. Hum. Genet. 2012, 90, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Kayser, M.; Sajantila, A. Mutations at Y-STR loci: Implications for paternity testing and forensic analysis. Forensic Sci. Int. 2001, 118, 116–121. [Google Scholar] [CrossRef]
- Roewer, L.; Kayser, M.; de Knijff, P.; Anslinger, K.; Betz, A.; Caglià, A.; Corach, D.; Füredi, S.; Henke, L.; Hidding, M.; et al. A new method for the evaluation of matches in non-recombining genomes: Application to Y-chromosomal short tandem repeat (STR) haplotypes in European males. Forensic Sci. Int. 2000, 114, 31–43. [Google Scholar] [CrossRef]
- Karkanaki, A.; Praras, N.; Katsikis, I.; Kita, M.; Panidis, D. Is the Y chromosome all that is required for sex determination? Hippokratia 2007, 11, 120–123. [Google Scholar]
- Yang, C.; Ba, H.; Cao, Y.; Dong, G.; Zhang, S.; Gao, Z.; Zhao, H.; Zhou, X. Linking Y-chromosomal short tandem repeat loci to human male impulsive aggression. Brain Behav. 2017, 7, e00855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, D.; Patrick, C.J.; Kennealy, P.J. Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress. Violent Behav. 2008, 13, 383–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.X. Analyzing Neural Time Series Data: Theory and Practice; MIT Press: Caimbridge, MA, USA, 2014. [Google Scholar]
- Woodman, G.F. A brief introduction to the use of event-related potentials in studies of perception and attention. Atten. Percept. Psychophys. 2010, 72, 2031–2046. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Raine, A. P3 event-related potential impairments in antisocial and psychopathic individuals: A meta-analysis. Biol. Psychol. 2009, 82, 199–210. [Google Scholar] [CrossRef]
- Folstein, J.R.; Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology 2007, 45, 152–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahlund, K.; Kristiansson, M. Aggression, psychopathy and brain imaging—Review and future recommendations. Int. J. Law Psychiatry 2009, 32, 266–271. [Google Scholar] [CrossRef]
- Salmivalli, C.; Nieminen, E. Proactive and reactive aggression among school bullies, victims, and bully-victims. Aggress. Behav. 2001, 28, 30–44. [Google Scholar] [CrossRef]
- Lobbestael, J.; Cima, M.; Lemmens, A. The relationship between personality disorder traits and reactive versus proactive motivation for aggression. Psychiatry Res. 2015, 229, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Coccaro, E.F.; McCloskey, M.; Fitzgerald, D.A.; Phan, K.L. Amygdala and Orbitofrontal Reactivity to Social Threat in Individuals with Impulsive Aggression. Biol. Psychiatry 2007, 62, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.L.; Boutros, N.N.; Mendez, M.F. The Brain and Behavior: An Introduction to Behavioral Neuroanatomy, 4th ed.; Cambridge University Press: Caimbridge, UK, 2018. [Google Scholar] [CrossRef]
- Dodge, K.A.; Lochman, J.E.; Harnish, J.D.; Bates, J.E.; Pettit, G.S. Reactive and proactive aggression in school children and psychiatrically impaired chronically assaultive youth. J. Abnorm. Psychol. 1997, 106, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, J.A.; Dodge, K.A.; Cillessen, A.H.N.; Coie, J.D.; Schwartz, D. The dyadic nature of social information processing in boys’ reactive and proactive aggression. J. Pers. Soc. Psychol. 2001, 80, 268–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.D. (How do you feel—Now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Coccaro, E.F.; Fitzgerald, D.A.; Lee, R.; McCloskey, M.; Phan, K.L. Frontolimbic Morphometric Abnormalities in Intermittent Explosive Disorder and Aggression. Biol. Psychiatry: Cogn. Neurosci. Neuroimaging 2015, 1, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Roberton, T.; Daffern, M.; Bucks, R. Emotion regulation and aggression. Aggress. Violent Behav. 2012, 17, 72–82. [Google Scholar] [CrossRef]
- Botvinick, M.M. Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cogn. Affect. Behav. Neurosci. 2007, 7, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Morrell, M.J.; Vogt, B.A. Contributions of anterior cingulate cortex to behaviour. Brain 1995, 118, 279–306. [Google Scholar] [CrossRef] [PubMed]
- Ducharme, S.; Hudziak, J.J.; Botteron, K.N.; Ganjavi, H.; Lepage, C.; Collins, D.L.; Albaugh, M.D.; Evans, A.C.; Karama, S. Right Anterior Cingulate Cortical Thickness and Bilateral Striatal Volume Correlate with Child Behavior Checklist Aggressive Behavior Scores in Healthy Children. Biol. Psychiatry 2011, 70, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Boes, A.D.; Tranel, D.; Anderson, S.W.; Nopoulos, P. Right anterior cingulate: A neuroanatomical correlate of aggression and defiance in boys. Behav. Neurosci. 2008, 122, 677–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuliani, N.R.; Drabant, E.M.; Gross, J.J. Anterior cingulate cortex volume and emotion regulation: Is bigger better? Biol. Psychol. 2011, 86, 379–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarwar, M. The septum pellucidum: Normal and abnormal. Am. J. Neuroradiol. 1989, 10, 989–1005. [Google Scholar] [PubMed]
- Greicius, M.D.; Krasnow, B.; Reiss, A.L.; Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 2002, 100, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leech, R.; Sharp, D.J. The role of the posterior cingulate cortex in cognition and disease. Brain 2013, 137, 12–32. [Google Scholar] [CrossRef] [Green Version]
- Raichle, M.E. The Brain’s Default Mode Network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, R.; Gan, G.; Zhang, J.; Ming, Q.; Jiang, Y.; Gao, Y.; Wang, X.; Yao, S. MAOA genotype modulates default mode network deactivation during inhibitory control. Biol. Psychol. 2018, 138, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Umbach, R.H.; Tottenham, N. Callous-unemotional traits and reduced default mode network connectivity within a community sample of children. Dev. Psychopathol. 2020, 1–14. [Google Scholar] [CrossRef]
- Craig, A.D. Once an island, now the focus of attention. Brain Struct. Funct. 2010, 214, 395–396. [Google Scholar] [CrossRef] [Green Version]
- Schurz, M.; Radua, J.; Aichhorn, M.; Richlan, F.; Perner, J. Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 2014, 42, 9–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, H.L.; Frith, C. Functional imaging of ‘theory of mind’. Trends Cogn. Sci. 2003, 7, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, S.M.; Kongerslev, M.T.; Sharp, C.; Bo, S.; Abu-Akel, A.M. Does Affective Theory of Mind Contribute to Proactive Aggression in Boys with Conduct Problems and Psychopathic Tendencies? Child Psychiatry Hum. Dev. 2018, 49, 906–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renouf, A.; Brendgen, M.; Seguin, J.; Vitaro, F.; Boivin, M.; Dionne, G.; Tremblay, R.E.; Pérusse, D. Interactive Links Between Theory of Mind, Peer Victimization, and Reactive and Proactive Aggression. J. Abnorm. Child Psychol. 2010, 38, 1109–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trucco, E.M.; Cope, L.M.; Burmeister, M.; Zucker, R.A.; Heitzeg, M.M. Pathways to Youth Behavior: The Role of Genetic, Neural, and Behavioral Markers. J. Res. Adolesc. 2018, 28, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Hardee, J.E.; Cope, L.M.; Martz, M.E.; Heitzeg, M.M. Review of Neurobiological Influences on Externalizing and Internalizing Pathways to Alcohol Use Disorder. Curr. Behav. Neurosci. Rep. 2018, 5, 249–262. [Google Scholar] [CrossRef]
- Cooney, R.E.; Joormann, J.; Eugène, F.; Dennis, E.L.; Gotlib, I.H. Neural correlates of rumination in depression. Cogn. Affect. Behav. Neurosci. 2010, 10, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Hein, G.; Knight, R.T. Superior Temporal Sulcus—It’s My Area: Or Is It? J. Cogn. Neurosci. 2008, 20, 2125–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ende, G.; Cackowski, S.; Van Eijk, J.; Sack, M.; Demirakca, T.; Kleindienst, N.; Bohus, M.; Sobanski, E.; Krause-Utz, A.; Schmahl, C. Impulsivity and Aggression in Female BPD and ADHD Patients: Association with ACC Glutamate and GABA Concentrations. Neuropsychopharmacology 2015, 41, 410–418. [Google Scholar] [CrossRef] [Green Version]
- Gleich, T.; Lorenz, R.C.; Pöhland, L.; Raufelder, D.; Deserno, L.; Beck, A.; Heinz, A.; Kühn, S.; Gallinat, J. Frontal glutamate and reward processing in adolescence and adulthood. Brain Struct. Funct. 2014, 220, 3087–3099. [Google Scholar] [CrossRef] [PubMed]
- Balleine, B.W.; Delgado, M.R.; Hikosaka, O. The Role of the Dorsal Striatum in Reward and Decision-Making. J. Neurosci. 2007, 27, 8161–8165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smaragdi, A.; Chavez, S.; Lobaugh, N.J.; Meyer, J.H.; Kolla, N.J. Differential levels of prefrontal cortex glutamate+glutamine in adults with antisocial personality disorder and bipolar disorder: A proton magnetic resonance spectroscopy study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 93, 250–255. [Google Scholar] [CrossRef]
- Spreng, R.N.; Mar, R.A.; Kim, A.S.N. The Common Neural Basis of Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A Quantitative Meta-analysis. J. Cogn. Neurosci. 2009, 21, 489–510. [Google Scholar] [CrossRef]
- Kolla, N.J.; Chiuccariello, L.; Wilson, A.A.; Houle, S.; Links, P.; Bagby, R.M.; McMain, S.; Kellow, C.; Patel, J.; Rekkas, P.V.; et al. Elevated Monoamine Oxidase-A Distribution Volume in Borderline Personality Disorder Is Associated With Severity Across Mood Symptoms, Suicidality, and Cognition. Biol. Psychiatry 2014, 79, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Okubo, Y.; Suhara, T.; Suzuki, K.; Kobayashi, K.; Inoue, O.; Terasaki, O.; Someya, Y.; Sassa, T.; Sudo, Y.; Matsushima, E.; et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 1997, 385, 634–636. [Google Scholar] [CrossRef] [PubMed]
- Potkin, S.G.; Alva, G.; Fleming, K.; Anand, R.; Keator, D.; Carreon, D.; Doo, M.; Jin, Y.; Wu, J.C.; Fallon, J.H. A PET Study of the Pathophysiology of Negative Symptoms in Schizophrenia. Am. J. Psychiatry 2002, 159, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Kapur, S.; Zipursky, R.; Jones, C.; Remington, G.; Houle, S. Relationship Between Dopamine D2 Occupancy, Clinical Response, and Side Effects: A Double-Blind PET Study of First-Episode Schizophrenia. Am. J. Psychiatry 2000, 157, 514–520. [Google Scholar] [CrossRef]
- Cannon, D.M.; Ichise, M.; Rollis, D.; Klaver, J.M.; Gandhi, S.K.; Charney, D.S.; Manji, H.K.; Drevets, W.C. Elevated Serotonin Transporter Binding in Major Depressive Disorder Assessed Using Positron Emission Tomography and [11C]DASB; Comparison with Bipolar Disorder. Biol. Psychiatry 2007, 62, 870–877. [Google Scholar] [CrossRef]
- Madsen, K.; Torstensen, E.; Holst, K.; Haahr, M.E.; Knorr, U.; Frokjaer, V.; Brandt-Larsen, M.; Iversen, P.; Fisher, P.; Knudsen, G.M. Familial Risk for Major Depression is Associated with Lower Striatal 5-HT4 Receptor Binding. Int. J. Neuropsychopharmacol. 2014, 18, pyu034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balia, C.; Carucci, S.; Coghill, D.; Zuddas, A. The pharmacological treatment of aggression in children and adolescents with conduct disorder. Do callous—Unemotional traits modulate the efficacy of medication? Neurosci. Biobehav. Rev. 2018, 91, 218–238. [Google Scholar] [CrossRef] [PubMed]
- Rosell, D.R.; Siever, L.J. The neurobiology of aggression and violence. CNS Spectrums 2015, 20, 254–279. [Google Scholar] [CrossRef]
- Takahashi, A.; Miczek, K.A. Neurogenetics of Aggressive Behavior: Studies in Rodents. Curr. Top. Behav. Neurosci. 2013, 17, 3–44. [Google Scholar] [CrossRef] [Green Version]
- Lukas, M.; de Jong, T.R. Conspecific Interactions in Adult Laboratory Rodents: Friends or Foes? Curr. Top. Behav. Neurosci. 2015, 30, 3–24. [Google Scholar] [CrossRef]
- Weierstall, R.; Elbert, T. The Appetitive Aggression Scale—Development of an instrument for the assessment of human’s attraction to violence. Eur. J. Psychotraumatol. 2011, 2, 8430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masi, G.; Milone, A.; Manfredi, A.; Pari, C.; Paziente, A.; Millepiedi, S. Effectiveness of Lithium in Children and Adolescents with Conduct Disorder: A retrospective naturalistic study. CNS Drugs 2009, 23, 59–69. [Google Scholar] [CrossRef]
Study | Year | n | Age | Sex | Region | PA Instrument | RHR | HRR | HRV | RSC | SCR | RRSA | RSAR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crozier et al. [34] | 2008 | 585 | 17 | M/F | North America | RPQ | r = −0.15 (M) r = 0.11 (F) | r = 0.14 (M) r = 0.09 (F) | |||||
Hubbard et al. [15] | 2010 | 36 | 10 | M/F | North America | Paradigm task | r = −0.35 | r = −0.58 | |||||
Scarpa et al. [35] | 2010 | 42 | 10 | M/F | North America | R-PRPA | β = 0.02 d = 0.03 | β = 0.43 d = 0.65 | β = 0.46 d = 0.69 | ||||
Bobadilla et al. [36] | 2012 | 122 | 19 | M/F | North America | TAP | β = −0.23 | ||||||
Murray-Close and Rellini [37] | 2012 | 83 | 22 | F | North America | SRASBM | r = −0.14 | r = 0.13 | |||||
Muñoz Centifanti et al. [38] | 2013 | 85 | 16 | M | North America | CRTT | r = −0.06 | r = −0.13 | r = 0.12 | ||||
Portnoy et al. [39] | 2014 | 335 | 16 | M | North America | RPQ | r = −0.13 | r = −0.11 | |||||
Raine et al. [40] | 2014 | 334 | 13 | M/F | Asia | RPQ | r = −0.18 | ||||||
Xu et al. [41] | 2014 | 183 | 8 | M/F | Asia | TRI | r = −0.27 | r = 0.03 | |||||
Gao et al. [42] | 2015 | 329 | 17 | M/F | North America | RPQ | d = −0.47 | ||||||
Wagner and Abaied [43] | 2015 | 168 | 19 | M/F | North America | SRASBM | r = −0.08 | r = −0.12 | |||||
Zhang and Gao [44] | 2015 | 84 | 22 | M/F | North America | RPQ | β = 0.12 | β = −0.08 | |||||
Schoorl et al. [45] | 2016 | 102 | 10 | M | Europe | IRPA | β = −0.38 | β = −0.48 | β = 0.41 | β = −0.10 | β = −0.34 | ||
Wagner and Abaied [46] | 2016 | 180 | 20 | M/F | North America | SRASBM | b = −0.02 | ||||||
Murray-Close et al. [47] | 2017 | 247 | 19 | M/F | North America | SRASBM | b = 0.02 | b = 2.02 | |||||
Kassing et al. [48] | 2018 | 188 | 11 | M/F | North America | TRI | β = 0.00 | β = 0.00 | |||||
Moore et al. [49] | 2018 | 35 | 11 | M/F | North America | Paradigm task | β = −0.46 | β = -1.26 | β = −0.02 | β = 0.11 | |||
Ungvary et al. [50] | 2018 | 58 | 14 | M/F | North America | 36-itemself-report § | β = 0.04 | β = −0.13 | |||||
Armstrong et al. [51] | 2019 | 509 | 20 | M/F | North America | RPQ | r = −0.03 (M) r = 0.13 (F) | r = 0.00 (M) r = −0.11 (F) | r = −0.06 (M) r = 0.15 (F) | r = −0.18 (M) r = 0.09 (F) | |||
Thomson and Beauchaine [52] | 2019 | 104 | 20 | M/F | Europe | RPQ | b = 0.16 | ||||||
Hagan et al. [53] | 2020 | 178 | 22 | F | North America | RPQ | β = 0.10 | ||||||
Puhalla et al. [54] | 2020 | 81 | 22 | M/F | North America | TAP | r = −0.23 | r = 0.09 |
Study | Year | n | Age | Sex | Region | PA Instrument | Hormone | Sample | Correlation/ Regression Coefficient | Findings |
---|---|---|---|---|---|---|---|---|---|---|
Olweus et al. [58] | 1980 | 58 | 16 | M | Europe | Peer-rated PA | Testosterone | Plasma | r = 0.16 | PA was weakly correlated with plasma testosterone. |
Olweus et al. [59] | 1988 | 58 | 16 | M | Europe | Peer-rated PA | Testosterone | Plasma | r = 0.21 | PA was weakly correlated with plasma testosterone but no direct relationship was identified by path analysis. |
Dabbs et al. [60] | 1995 | 692 | 20 | M | North America | Offending record | Testosterone | Saliva | na | More covert crimes (e.g., theft or drug offences) were associated with lower testosterone. |
Dabbs et al. [61] | 2001 | 230 | 20 | M | North America | Offending record | Testosterone | Saliva | r = 0.35 | Higher testosterone was associated with premediated crimes, where the victim was known ahead of time. |
van Bokhoven et al. [62] | 2005 | 96 | 13, 16, 21 | M | North America | TRI | Testosterone | Saliva | na | Analysis of variance determined testosterone was greater in high-PA boys (versus low-PA boys) at 16 years of age, but not at 13 or 21 years. |
Kempes et al. [63] | 2006 | 78 | 10 | M/F | Europe | Dyadic play sessions and parent-report | Cortisol | Saliva | na | No significant association with PA. |
Lopez-Duran et al. [64] | 2009 | 73 | 7 | M/F | North America | TRI | Cortisol | Saliva | β = −1.16 | No significant association with PA. |
Carré et al. [65] | 2010 | 151 | 20 | M | North America | PSAP | Testosterone | Saliva | r = 0.22 | No significant association with PA. |
Poustka et al. [66] | 2010 | 245 | 15 | M/F | Europe | VIRA-R | Cortisol | Plasma | r = −0.23 (M) r = −0.06 (F) | Cortisol was negatively associated with PA in males. |
Catherine et al. [67] | 2012 | 89 | 10 | M/F | North America | TRI | Cortisol | Saliva | r = −0.38 | Peer-nominated PA was negatively associated with afternoon cortisol. |
Dietrich et al. [68] | 2013 | 1961 | 11 | M/F | Europe | YSR and ASBQ | Cortisol | Saliva | β = 0.10 | No significant association with PA. |
Johnson et al. [69] | 2014 | 57 | 19 | M/F | North America | SRASBM | Cortisol | Saliva | r = 0.05 | No significant association with PA. |
Stoppelbein et al. [70] | 2014 | 158 | 10 | F | North America | TRI | Cortisol | Plasma | r = −0.17 β = −0.11 | Cortisol was negatively correlated with PA but path analysis determined no significant association. |
Oberle et al. [71] | 2017 | 151 | 11 | M/F | North America | TRI and peer nominations | Cortisol | Saliva | β = −0.12 | Afternoon cortisol negatively predicted PA. |
Chen et al. [72] | 2018 | 445 | 12 | M/F | North America | RPQ | Testosterone | Saliva | β = 0.05 (M) β = 0.05 (F) | No significant association with PA. |
Ungvary et al. [50] | 2018 | 58 | 14 | M/F | North America | 36-item self-report § | Cortisol | Saliva | β = 0.24 | Cortisol was positively associated with PA when subjects were anticipating peer rejection. |
Bakker-Huvenaars et al. [73] | 2020 | 114 | 15 | M | Europe | RPQ | Cortisol Testosterone Oxytocin | Saliva | r = 0.02 r = 0.16 r = 0.02 | No significant association with PA. |
Peters et al. [74] | 2020 | 15 | 32 | F | North America | RPQ | Progesterone | Saliva | na | PA was highest in the follicular and ovulatory cycle phases when progesterone was lowest. |
Study | Year | n | Age(s) | Sex | Region | PA Instrument | PA Genetic Contribution | Findings |
---|---|---|---|---|---|---|---|---|
Brendgen et al. [78] | 2006 | 344 | 6 | M/F | North America | TRI | 41% | The majority of genetic effects (34%) were due to physical aggression, which was common to PA and RA; genetic influences specific to PA were limited. |
Baker et al. [79] | 2008 | 1219 | 10 | M/F | North America | RPQ | 0% to 50% | PA exerted a greater genetic influence than RA, and child-report PA data showed the greatest fit among report types. Male PA scores were higher than female scores across all report types. |
Tuvblad et al. [80] | 2009 | 1241 | 10, 12 | M/F | North America | RPQ | 32% to 48% | PA becomes increasingly stable over time, compared to RA, which appears to be influenced more strongly by environmental factors. |
Bezdjian et al. [81] | 2011 | 1219 | 10 | M/F | North America | RPQ | 18% to 37% | PA was associated with psychopathic traits, but only for child-reported measures. Both heritable and non-shared environmental influences were found for PA and psychopathic traits, suggesting etiological differences in young twins. |
Paquin et al. [82] | 2014 | 1110 | 6, 7, 9, 10, 12 | M/F | North America | TRI | 39% to 45% | The contributions of unique PA influences were limited (0.2% to 9.4%), but factors common to PA and RA showed persistent associations during childhood. |
Paquin et al. [83] | 2017 | 1110 | 6, 7, 9, 10, 12 | M/F | North America | TRI | 47% to 64% | Genetic factors that influence baseline and developmental PA are independent of each other. |
Study | Year | n | Age | Sex | Region | PA Instrument | Gene(s) | Correlation/ Regression Coefficient | Findings |
---|---|---|---|---|---|---|---|---|---|
Kuepper et al. [84] | 2013 | 239 | 23 | M/F | Europe | FPI and Modified TAP | MAOA | na | No significant association between PA and uVNTR. |
Kolla et al. [85] | 2014 | 31 | 38 | M | North America | RPQ | MAOA | β = 4.4 | PA was positively associated with MAOA-H. |
Cherepkova et al. [86] | 2015 | 586 | 39 | M | Eurasia | Offending record | DRD4 | τ(16) = 1.00 | PA was associated with 5R/7R and 7R/7R DRD4 genotypes. |
Zhang et al. [87] | 2016 | 1399 | 12 | M/F | Asia | RPQ | MAOA COMT | |β|s ≤ 0.07 | No significant association with PA. |
Kolla et al. [13] | 2018 | 40 | 35 | M | North America | RPQ | MAOA | na | PA was positively associated with MAOA-L. |
van Dongen et al. [88] | 2018 | 71 | 38 | M | Europe | RPQ | COMT | r = 0.35 | No significant association with PA. |
van Donkelaar et al. [89] | 2018 | 501 | 25 | M/F | Europe | RPQ | GWAS | r ≤ 0.74 | No significant associations with PA. |
Yang et al. [90] | 2018 | 763 | 32 | M | Asia | Offending record | Y chromosome STR loci | na | PA was positively associated with STR loci DYS533 (14 repeats) and DYS437 (14 repeats). |
Fragkaki et al. [91] | 2019 | 323 | 13 | M/F | Europe | SRASBM | OXTR | b = 221.4 | PA was not significantly associated with the OXTR A118G polymorphism. |
Weidler et al. [92] | 2019 | 59 | 25 | M | Europe | RPQ | OPRM1 | na | No significant association with PA. |
van Donkelaar et al. [93] | 2020 | 395 | 24 | M/F | Europe | RPQ | Gene-set association | na | No significant association with PA. |
Study | Year | n | Age | Sex | Region | PA Instrument | Wave | Correlation Coefficient/ Effect Size | Findings |
---|---|---|---|---|---|---|---|---|---|
Barratt et al. [95] | 1997 | 101 | 26 | M | North America | Offending record and semi-structured interview | P3 | na | P3 amplitudes differed between impulsive and non-impulsive offender groups, but the groups did not differ in clinically-rated impulsivity. |
Stanford et al. [96] | 2003 | 28 | 33 | M/F | North America | Offendingrecord | P3 | na | P3 amplitudes for the PA group took marginally longer to peak in response to auditory stimuli. |
Chen et al. [97] | 2015 | 24 | 30 | M | Asia | Offending record | P3 | d = 1.33 | P3 amplitudes in the PA group showed less interference to sad cues. |
Helfritz-Sinville and Stanford [98] | 2015 | 58 | 19 | M | North America | LHAQ IPAS | P3 | na | P3 amplitudes showed less efficient processing of threat cues for the PA group. |
Chen et al. [99] | 2019 | 38 | 17 | M | Asia | RPQ TAP | N2 | r = 0.52 r = 0.12 | PA was associated with reduced N2 wave during the decision phase of the TAP. |
Study | Year | n | Age | Sex | Region | PA Instrument | Brain Region/ Structure | Modality | Findings |
---|---|---|---|---|---|---|---|---|---|
Raine et al. [102] | 1998 | 65 | 33 | M | North America | Offending record | Prefrontal, subcortical | PET | Predatory and affective murderers showed increased right subcortical glucose metabolism, compared to the non-offender control group. |
Bobes et al. [103] | 2013 | 54 | 29 | M | North America | RPQ | Amygdala | sMRI fMRI | PA was negatively associated with right amygdala volume. |
White et al. [104] | 2013 | 59 | 14 | M/F | North America | TRI | CSP | sMRI | PA was unrelated to CSP size. |
Lozier et al. [105] | 2014 | 46 | 14 | M/F | North America | RPQ | Amygdala | fMRI | Right amygdala responses to fearful expressions negatively predicted PA in youths with high callous and unemotional traits. |
Pardini et al. [106] | 2014 | 56 | 26 | M | North America | RPQ | Amygdala | sMRI | Low amygdala volumes were longitudinally associated with the development of PA starting in childhood. |
Kuroki et al. [12] | 2017 | 57 | 40 | M | Asia | Offending record | Insula, planum polare, precueus | sMRI | Lower brain volumes were linked to a history of premediated violent acts among males with schizophrenia. This association may be related to psychotic symptomatology and not PA. |
Yang et al. [107] | 2017 | 106 | 14 | M/F | North America | RPQ | ACC | sMRI | Left ACC volume was negatively associated with PA. |
Farah et al. [108] | 2018 | 156 | 35 | M | North America | RPQ | Amygdala, ACC, insula | sMRI | PA was positively associated with right amygdala and left ACC volumes but unrelated to insular volume. |
Kolla et al. [13] | 2018 | 40 | 35 | M | North America | RPQ | Precuneus, angular gyrus | fMRI | PA was negatively correlated with connectivity between the precuneus and angular gyrus among MAOA-L subjects. Both regions are nodes of the default mode network. |
Craig et al. [109] | 2019 | 233 | 13 | M/F | Europe | RPQ | Left dorsal striatum | MRS | Glutamate concentration in the left dorsal striatum was inversely related to PA. |
Siep et al. [110] | 2019 | 36 | 36 | M | Europe | RPQ | MPFC, STS | fMRI | PA was positively associated with connectivity in the MPFC and negatively with BOLD activity of the STS. |
Zhu et al. [111] | 2019 | 155 | 20 | M/F | Asia | RPQ | Bilateral DLPFC, PCC, bilateral IPL, MPFC/ACC, precuneus | sMRI fMRI | PA was positively linked to GMD in bilateral DLPFC and negatively to GMD in the PCC. PA was negatively related to DLPFC and bilateral IPL connectivity as well as connectivity between PCC and other structures, such as MPFC/ACC, bilateral IPL, and precuneus. |
Naaijen et al. [112] | 2020 | 254 | 13 | M/F | Europe | RPQ | Insula | sMRI | PA was negatively associated with amygdala volume. |
Werhahn et al. [113] | 2020 | 207 | 13 | M/F | Europe | RPQ | Amygdala, precuneus | fMRI | PA was positively related to connectivity between the amygdala and precuneus. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belfry, K.D.; Kolla, N.J. Cold-Blooded and on Purpose: A Review of the Biology of Proactive Aggression. Brain Sci. 2021, 11, 1412. https://doi.org/10.3390/brainsci11111412
Belfry KD, Kolla NJ. Cold-Blooded and on Purpose: A Review of the Biology of Proactive Aggression. Brain Sciences. 2021; 11(11):1412. https://doi.org/10.3390/brainsci11111412
Chicago/Turabian StyleBelfry, Kimberly D., and Nathan J. Kolla. 2021. "Cold-Blooded and on Purpose: A Review of the Biology of Proactive Aggression" Brain Sciences 11, no. 11: 1412. https://doi.org/10.3390/brainsci11111412
APA StyleBelfry, K. D., & Kolla, N. J. (2021). Cold-Blooded and on Purpose: A Review of the Biology of Proactive Aggression. Brain Sciences, 11(11), 1412. https://doi.org/10.3390/brainsci11111412