MR Spectroscopy of the Insula: Within- and between-Session Reproducibility of MEGA-PRESS Measurements of GABA+ and Other Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Scanning Procedures
2.3. MRS Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Within and between Session Reproducibility
3.2. Voxel Overlap and Metabolite Concentration
3.3. FWHM, Signal-to-Noise Ratio, and Tissue Heterogeneity
3.4. Sex Differences
4. Discussion
4.1. Mean Concentration Values and CRLB
4.2. B2B Reproducibility
4.3. D2D Reproducibility
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Uddin, L.Q.; Nomi, J.S.; Hébert-Seropian, B.; Ghaziri, J.; Boucher, O. Structure and Function of the Human Insula. J. Clin. Neurophysiol. 2017, 34, 300–306. [Google Scholar] [CrossRef]
- Schür, R.R.; Draisma, L.W.; Wijnen, J.; Boks, M.; Koevoets, M.G.; Joels, M.; Klomp, D.W.; Kahn, R.S.; Vinkers, C.H. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of1H-MRS studies. Hum. Brain Mapp. 2016, 37, 3337–3352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delvecchio, G.; Stanley, J.A.; Altamura, A.C.; Brambilla, P. Metabolic alterations in generalised anxiety disorder: A review of proton magnetic resonance spectroscopic studies. Epidemiology Psychiatr. Sci. 2017, 26, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Karl, A.; Werner, A. The use of proton magnetic resonance spectroscopy in PTSD research—Meta-analyses of findings and methodological review. Neurosci. Biobehav. Rev. 2010, 34, 7–22. [Google Scholar] [CrossRef]
- Ramadan, S.; Lin, A.; Stanwell, P. Glutamate and glutamine: A review ofin vivoMRS in the human brain. NMR Biomed. 2013, 26, 1630–1646. [Google Scholar] [CrossRef] [Green Version]
- Ford, T.C.; Crewther, D.P. A Comprehensive Review of the 1H-MRS Metabolite Spectrum in Autism Spectrum Disorder. Front. Mol. Neurosci. 2016, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.R.; Denic, A.; Hinton, D.J.; Mishra, P.K.; Choi, D.-S.; Pirko, I.; Rodriguez, M.; Macura, S.I. Preclinical 1H-MRS neurochemical profiling in neurological and psychiatric disorders. Bioanalysis 2012, 4, 1787–1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellem, T.; Shi, X.; Latendresse, G.; Renshaw, P.F. The Utility of Magnetic Resonance Spectroscopy for Understanding Substance Use Disorders: A Systematic Review of the Literature. J. Am. Psychiatr. Nurses Assoc. 2015, 21, 244–275. [Google Scholar] [CrossRef] [Green Version]
- Licata, S.C.; Renshaw, P.F. Neurochemistry of drug action. Ann. N. Y. Acad. Sci. 2010, 1187, 148–171. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, N.H.; Rudrauf, D.; Damasio, H.; Bechara, A. Damage to the Insula Disrupts Addiction to Cigarette Smoking. Science 2007, 315, 531–534. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, C.; Rubin-Kahana, D.S.; Pushparaj, A.; Musiol, M.; Blumberger, D.M.; Daskalakis, Z.J.; Zangen, A.; Le Foll, B. The Insula: A Brain Stimulation Target for the Treatment of Addiction. Front. Pharmacol. 2019, 10, 720. [Google Scholar] [CrossRef]
- Harris, R.E.; Sundgren, P.; Pang, Y.; Hsu, M.; Petrou, M.; Kim, S.-H.; McLean, S.; Gracely, R.H.; Clauw, D.J. Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia. Arthritis Rheum. 2008, 58, 903–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, K.; Carrete, H., Jr.; Lin, J.; Peruchi, M.M.; de Araújo Filho, G.M.; Guaranha, M.S.B.; Guilhoto, L.M.F.F.; Sakamoto, A.C.; Yacubian, E.M.T. Magnetic resonance spectroscopy reveals an epileptic network in juvenile myoclonic epilepsy. Epilepsia 2009, 50, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Capizzano, A.; Vermathen, P.; Laxer, K.D.; Matson, G.B.; Maudsley, A.; Soher, B.J.; Schuff, N.W.; Weiner, M.W. Multisection proton MR spectroscopy for mesial temporal lobe epilepsy. Am. J. Neuroradiol. 2002, 23, 1359–1368. [Google Scholar]
- Aitouche, Y.; Gibbs, S.A.; Gilbert, G.; Boucher, O.; Bouthillier, A.; Nguyen, D.K. Proton MR Spectroscopy in Patients with Nonlesional Insular Cortex Epilepsy Confirmed by Invasive EEG Recordings. J. Neuroimaging 2017, 27, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Wylie, K.P.; Tregellas, J.R. The role of the insula in schizophrenia. Schizophr. Res. 2010, 123, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Tükel, R.; Aydın, K.; Yüksel, C.; Ertekin, E.; Koyuncu, A. Proton Magnetic Resonance Spectroscopy in Social Anxiety Disorder. J. Neuropsychiatry Clin. Neurosci. 2016, 28, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.-H.; Kim, H.; Jeon, S.Y.; Kwon, J.M.; Lee, W.J.; Jang, J.H.; Lee, D.; Lee, Y.; Kang, D.-H. Peripheral and Central Metabolites Affecting Depression, Anxiety, Suicidal Ideation, and Anger in Complex Regional Pain Syndrome Patients Using a Magnetic Resonance Spectroscopy: A Pilot Study. Psychiatry Investig. 2018, 15, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Provencher, S.W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 1993, 30, 672–679. [Google Scholar] [CrossRef]
- Rosso, I.M.; Weiner, M.R.; Crowley, D.J.; Silveri, M.M.; Rauch, S.L.; Jensen, J.E.; Crowley, D.J. Insula and anterior cingulate gaba levels in posttraumatic stress disorder: Preliminary findings using magnetic resonance spectroscopy. Depress. Anxiety 2013, 31, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Gussew, A.; Rzanny, R.; Güllmar, D.; Scholle, H.-C.; Reichenbach, J.R. Withdrawn: Erratum to “1H-MR spectroscopic detection of metabolic changes in pain processing brain regions in the presence of non-specific chronic low back pain”. NeuroImage 2011, 54, 1315–1323. [Google Scholar] [CrossRef]
- Mescher, M.; Merkle, H.; Kirsch, J.; Garwood, M.; Gruetter, R. Simultaneous in vivo spectral editing and water suppression. NMR Biomed. Int. J. Devoted Dev. Appl. Magn. Reson. In Vivo 1998, 11, 266–272. [Google Scholar]
- Edden, R.A.; Puts, N.A.; Harris, A.D.; Barker, P.B.; Evans, C.J. Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra. J. Magn. Reson. Imaging 2014, 40, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Dhamala, E.; Abdelkefi, I.; Nguyen, M.; Hennessy, T.J.; Nadeau, H.; Near, J. Validation of in vivo MRS measures of metabolite concentrations in the human brain. NMR Biomed. 2019, 32, e4058. [Google Scholar] [CrossRef] [PubMed]
- Duda, J.M.; Moser, A.D.; Zuo, C.S.; Du, F.; Chen, X.; Perlo, S.; Richards, C.E.; Nascimento, N.; Ironside, M.; Crowley, D.J.; et al. Repeatability and reliability of GABA measurements with magnetic resonance spectroscopy in healthy young adults. Magn. Reson. Med. 2021, 85, 2359–2369. [Google Scholar] [CrossRef] [PubMed]
- Baeshen, A.; Wyss, P.O.; Henning, A.; O’Gorman, R.L.; Piccirelli, M.; Kollias, S.; Michels, L. Test–Retest Reliability of the Brain Metabolites GABA and Glx With JPRESS, PRESS, and MEGA-PRESS MRS Sequences in vivo at 3T. J. Magn. Reson. Imaging 2020, 51, 1181–1191. [Google Scholar] [CrossRef]
- Bottomley, P.A. Spatial Localization in NMR Spectroscopy in Vivo. Ann. N. Y. Acad. Sci. 1987, 508, 333–348. [Google Scholar] [CrossRef]
- Mullins, P.G.; McGonigle, D.J.; O’Gorman, R.L.; Puts, N.A.; Vidyasagar, R.; Evans, C.J.; Edden, R.A. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage 2014, 86, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Van Veenendaal, T.M.; Backes, W.H.; van Bussel, F.C.; Edden, R.A.; Puts, N.A.; Aldenkamp, A.P.; Jansen, J.F. Glutamate quantification by PRESS or MEGA-PRESS: Validation, repeatability, and concordance. Magn. Reson. Imaging 2018, 48, 107–114. [Google Scholar] [CrossRef]
- Truong, P.; Sailasuta, N.; Chavez, S. Test-retest Reproducibility of in vivo cortical GABA and Glx measurements with MEGA-PRESS: Comparing 32-channel and 8-channel head coils. In Proceedings of the International Society of Magnetic Resonance in Medicine (ISMRM), virtual, 8–14 August 2020. [Google Scholar]
- Haase, A.; Frahm, J.; Hanicke, W.; Matthaei, D. 1H NMR chemical shift selective (CHESS) imaging. Phys. Med. Biol. 1985, 30, 341–344. [Google Scholar] [CrossRef]
- Provencher, S.W. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001, 14, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.; Devenyi, G.A.; Jezzard, P.; Hennessy, T.J.; Near, J. Advanced processing and simulation of MRS data using the FID appliance (FID-A)-An open source, MATLAB-based toolkit. Magn. Reason. Med. 2017, 77, 23–33. [Google Scholar] [CrossRef]
- Gasparovic, C.; Song, T.; Devier, D.; Bockholt, H.J.; Caprihan, A.; Mullins, P.; Posse, S.; Jung, R.E.; Morrison, L. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn. Reson. Med. 2006, 55, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Woolrich, M.W.; Jbabdi, S.; Patenaude, B.; Chappell, M.; Makni, S.; Behrens, T.; Beckmann, C.F.; Jenkinson, M.; Smith, S. Bayesian analysis of neuroimaging data in FSL. NeuroImage 2009, 45, S173–S186. [Google Scholar] [CrossRef] [PubMed]
- Kurcyus, K.; Annac, E.; Hanning, N.M.; Harris, A.D.; Oeltzschner, G.; Edden, R.; Riedl, V. Opposite Dynamics of GABA and Glutamate Levels in the Occipital Cortex during Visual Processing. J. Neurosci. 2018, 38, 9967–9976. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graf, C.; MacMillan, E.L.; Fu, E.; Harris, T.; Traboulsee, A.; Vavasour, I.M.; MacKay, A.L.; Madler, B.; Li, D.K.B.; Laule, C. Intra- and inter-site reproducibility of human brain single-voxel proton MRS at 3 T. NMR Biomed. 2019, 32, e4083. [Google Scholar] [CrossRef]
- O’Gorman, R.L.; Michels, L.; Edden, R.A.; Murdoch, J.B.; Martin, E. In vivo detection of GABA and glutamate with MEGA-PRESS: Reproducibility and gender effects. J. Magn. Reason. Imaging 2011, 33, 1262–1267. [Google Scholar] [CrossRef] [Green Version]
- Lally, N.; An, L.; Banerjee, D.; Niciu, M.J.; Luckenbaugh, D.A.; Richards, E.M.; Roiser, J.P.; Shen, J.; Zarate, C.A.Z., Jr.; Nugent, A. Reliability of 7T1H-MRS measured human prefrontal cortex glutamate, glutamine, and glutathione signals using an adapted echo time optimized PRESS sequence: A between- and within-sessions investigation. J. Magn. Reson. Imaging 2016, 43, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Tayoshi, S.; Sumitani, S.; Taniguchi, K.; Shibuya-Tayoshi, S.; Numata, S.; Iga, J.-I.; Nakataki, M.; Ueno, S.-I.; Harada, M.; Ohmori, T. Metabolite changes and gender differences in schizophrenia using 3-Tesla proton magnetic resonance spectroscopy (1H-MRS). Schizophr. Res. 2009, 108, 69–77. [Google Scholar] [CrossRef]
- Salem, D.B.; Walker, P.M.; Bejot, Y.; Aho, S.-L.; Tavernier, B.; Rouaud, O.; Ricolfi, F.; Brunotte, F. N-Acetylaspartate/Creatine and Choline/Creatine Ratios in the Thalami, Insular Cortex and White Matter as Markers of Hypertension and Cognitive Impairment in the Elderly. Hypertens. Res. 2008, 31, 1851–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyss, P.O.; Bianchini, C.; Scheidegger, M.; Giapitzakis, I.A.; Hock, A.; Fuchs, A.; Henning, A. In vivo estimation of transverse relaxation time constant (T2) of 17 human brain metabolites at 3T. Magn. Reson. Med. 2018, 80, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.; Boudes, E.S.; Loo, R.S.; Barker, G.J.; Lythgoe, D.; Edden, R.A.; Lebel, R.M.; Wilson, M.; Harris, A.D. In vivo Glx and Glu measurements from GABA-edited MRS at 3 T. NMR Biomed. 2021, 34, e4245. [Google Scholar] [CrossRef]
- Brix, M.K.; Ersland, L.; Hugdahl, K.; Dwyer, G.; Grüner, R.; Noeske, R.; Beyer, M.K.; Craven, A.R. Within- and between-session reproducibility of GABA measurements with MR spectroscopy. J. Magn. Reson. Imaging 2017, 46, 421–430. [Google Scholar] [CrossRef] [PubMed]
Scan Parameters | PRESS | MEGA-PRESS |
---|---|---|
Echo Time (TE) | 35 ms | 68 ms |
Repetition time (TR) | 1500 ms | 1500 ms |
Number of Acquisitions | 128 | 256 |
Number if Excitations (NEX) | 8 | 8 |
Number of Points | 4096 | 4096 |
Spectral Width | 5000 Hz | 5000 Hz |
Scan Time | 3 min 36 s | 6 min 46 s |
B2B | Metabolite | n | r [% Difference from Day1] | CV% M (SD) | ICC [% Difference from Day1] | ||||
---|---|---|---|---|---|---|---|---|---|
Day1 | Ins | 17 | 27 | 0.59 * | 0.83 ** | 5.30 (4.98) | 5.85 (3.60) | 0.57 ** | 0.84 ** |
Glx | 17 | 25 | 0.88 ** | 0.66 ** | 2.63 (1.87) | 7.19 (4.29) | 0.87 ** | 0.64 ** | |
tNAA | 17 | 27 | 0.71 ** | 0.93 ** | 3.23 (2.48) | 2.59 (2.21) | 0.69 ** | 0.91 ** | |
tCho | 17 | 27 | 0.64 ** | 0.91 ** | 5.50 (6.00) | 4.55 (3.79) | 0.60 ** | 0.87 ** | |
tCr | 17 | 27 | 0.74 ** | 0.95 ** | 4.33 (4.03) | 2.74 (2.50) | 0.70 ** | 0.93 ** | |
GABA+ | -- | 27 | -- | 0.20 | -- | 8.41 (6.84) | -- | 0.19 | |
Day2 | Ins | 17 | 26 | 0.79 ** [↑ 34%] | 0.70 ** [↓ 16%] | 4.10 (2.21) | 6.92 (5.55) | 0.74 ** [↑ 29%] | 0.70 ** [↓ 17%] |
Glx | 17 | 24 | 0.73 ** [↓ 17%] | 0.79 ** [↑ 17%] | 3.09 (2.25) | 5.70 (3.90) | 0.81 ** [↓ 7%] | 0.74 ** [↑ 16%] | |
tNAA | 17 | 27 | 0.87 ** [↑ 23%] | 0.89 ** [↓ 17%] | 2.72 (1.85) | 3.01 (2.30) | 0.84 ** [↑ 22%] | 0.88 ** [↓ 3%] | |
tCho | 17 | 27 | 0.80 ** [↑ 25%] | 0.91 ** [↑ 0%] | 3.70 (2.95) | 3.95 (4.31) | 0.74 ** [↑ 23%] | 0.89 ** [↑ 2%] | |
tCr | 17 | 27 | 0.83 ** [↑ 12%] | 0.94 ** [↓ 1%] | 3.35 (1.98) | 2.82 (2.95) | 0.73 ** [↑ 4%] | 0.92 ** [↓ 1%] | |
GABA+ | -- | 27 | -- | 0.65 ** | -- | 7.18 (5.47) | -- | 0.62 ** |
D2D | Metabolite | n | CV% | r | ICC | |||
---|---|---|---|---|---|---|---|---|
Mean (SD) | Range | Min. | Max. | Min. | Max | |||
PRESS | Ins | 17 | 5.73 (1.15) | 4.76–7.39 | 0.48 * | 0.62 ** | 0.46 * | 0.62 ** |
Glx | 17 | 3.75 (0.49) | 3.06–4.20 | 0.66 ** | 0.79 ** | 0.66 ** | 0.79 ** | |
tNAA | 17 | 4.16 (0.34) | 3.90–4.65 | 0.52 * | 0.60 * | 0.51 * | 0.61 * | |
tCho | 17 | 6.05 (0.80) | 4.91–6.63 | 0.55 * | 0.75 ** | 0.46 * | 0.70 ** | |
tCr | 17 | 5.42 (0.85) | 4.8–5.18 | 0.56 * | 0.64 ** | 0.47 * | 0.59 * | |
MEGA-PRESS | Ins | 26 | 7.24 (0.94) | 5.83–7.84 | 0.58 * | 0.73 ** | 0.58 * | 0.74 ** |
Glx | 24 | 6.87 (0.20) | 6.63–7.12 | 0.54 * | 0.71 ** | 0.55 * | 0.67 ** | |
tNAA | 27 | 4.47 (0.60) | 3.81–5.26 | 0.64 ** | 0.74 ** | 0.65 * | 0.75 ** | |
tCho | 27 | 7.52 (0.37) | 7.08–7.96 | 0.53 * | 0.58 ** | 0.51 * | 0.58 * | |
tCr | 27 | 4.66 (0.28) | 4.35–5.02 | 0.81 ** | 0.84 ** | 0.77 ** | 0.84 ** | |
GABA+ | 27 | 9.24 (1.24) | 7.69–10.32 | 0.41 * | 0.41 * | 0.38 | 0.38 |
Metabolite | PRESS | MEGA-PRESS | |
---|---|---|---|
Day1 Average | Ins | 8.88 (0.91) | 6.42 (1.00) |
Glx | 25.42 (2.09) | 9.85 (1.29) | |
tNAA | 16.52 (1.10) | 14.87 (1.61) | |
tCho | 3.58 (0.42) | 2.70 (0.40) | |
tCr | 11.60 (1.17) | 10.50 (1.35) | |
GABA+ | -- | 1.48 (0.09) | |
Day2 Average | Ins | 8.96 (0.74) | 6.39 (0.94) |
Glx | 25.79 (2.00) | 9.85 (1.22) | |
tNAA | 16.70 (1.27) | 15.06 (1.56) | |
tCho | 3.52 (0.29) | 2.71 (0.46) | |
tCr | 11.64 (0.81) | 10.59 (1.46) | |
GABA+ | -- | 1.50 (0.20) |
FWHM (ppm) | SNR | CRLB% | CSF | GM | WM | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ins | Glx | tNAA | tCho | tCr | ||||||
PRESS (n = 17) | 0.05 (0.01) | 34.29 (3.04) | 4.0 (0.4) | 4.0 (0.4) | 2.0 (0.0) | 2.0 (0.0) | 2.0 (0.3) | 0.17 (0.03) | 0.63 (0.03) | 0.19 (0.03) |
MEGA-PRESS (n = 27) | 0.04 (0.01) | 21.90 (5.66) | 9.0 (1.3) | 8.0 (1.7) | 2.0 (0.3) | 3.0 (0.3) | 2.0 (0.4) | 0.18 (0.03) | 0.63 (0.04) | 0.18 (0.03) |
MEGA-PRESS | ||||||
---|---|---|---|---|---|---|
Metabolite | n | r | p (2-Tailed) | CV% M (SD) | ICC | |
D2D 13.5 min | Ins | 26 | 0.74 ** | <0.001 | 6.13 (4.24) | 0.75 ** |
Glx | 24 | 0.74 ** | <0.001 | 5.06 (3.75) | 0.74 ** | |
tNAA | 27 | 0.74 ** | <0.001 | 4.09 (3.21) | 0.74 ** | |
tCho | 27 | 0.58 ** | 0.002 | 6.64 (6.68) | 0.58 ** | |
tCr | 27 | 0.84 ** | <0.001 | 4.03 (3.07) | 0.85 ** | |
GABA Ave | 27 | 0.43 * | 0.024 | 7.15 (4.03) | 0.41 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shyu, C.; Elsaid, S.; Truong, P.; Chavez, S.; Le Foll, B. MR Spectroscopy of the Insula: Within- and between-Session Reproducibility of MEGA-PRESS Measurements of GABA+ and Other Metabolites. Brain Sci. 2021, 11, 1538. https://doi.org/10.3390/brainsci11111538
Shyu C, Elsaid S, Truong P, Chavez S, Le Foll B. MR Spectroscopy of the Insula: Within- and between-Session Reproducibility of MEGA-PRESS Measurements of GABA+ and Other Metabolites. Brain Sciences. 2021; 11(11):1538. https://doi.org/10.3390/brainsci11111538
Chicago/Turabian StyleShyu, Claire, Sonja Elsaid, Peter Truong, Sofia Chavez, and Bernard Le Foll. 2021. "MR Spectroscopy of the Insula: Within- and between-Session Reproducibility of MEGA-PRESS Measurements of GABA+ and Other Metabolites" Brain Sciences 11, no. 11: 1538. https://doi.org/10.3390/brainsci11111538
APA StyleShyu, C., Elsaid, S., Truong, P., Chavez, S., & Le Foll, B. (2021). MR Spectroscopy of the Insula: Within- and between-Session Reproducibility of MEGA-PRESS Measurements of GABA+ and Other Metabolites. Brain Sciences, 11(11), 1538. https://doi.org/10.3390/brainsci11111538