Hepatitis C Virus-Related Central and Peripheral Nervous System Disorders
Abstract
:1. Introduction
Search Strategy
2. HCV and Metabolic Alterations
3. HCV and the Central Nervous System
4. HCV and Stroke
5. HCV and Cryoglobulinemic Vasculitis
6. HCV and Peripheral Nervous System
7. HCV and Neurodegeneration
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houghton, M. The long and winding road leading to the identification of the hepatitis C virus. J. Hepatol. 2009, 51, 939–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, B.H.; A Myers, G.S.; Howard, C.; Brettin, T.; Bukh, J.; Gaschen, B.; Gojobori, T.; Maertens, G.; Mizokami, M.; Nainan, O.V.; et al. Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: Proposals for standardization. Arch. Virol. 1998, 143, 2493–2503. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO|Hepatitis C; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Moosavy, S.H.; Davoodian, P.; Nazarnezhad, M.A.; Nejatizaheh, A.; Ephtekhar, E.; Mahboobi, H. Epidemiology, transmission, diagnosis, and outcome of Hepatitis C virus infection. Electron. Physician 2017, 9, 5646–5656. [Google Scholar] [CrossRef] [Green Version]
- Pawlotsky, J.-M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H. EASL Recommendations on Treatment of Hepatitis C 2018. J. Hepatol. 2018, 69, 461–511. [Google Scholar] [CrossRef] [Green Version]
- Adinolfi, L.E.; Nevola, R.; Lus, G.; Restivo, L.; Guerrera, B.; Romano, C.; Zampino, R.; Rinaldi, L.; Sellitto, A.; Giordano, M.; et al. Chronic hepatitis C virus infection and neurological and psychiatric disorders: An overview. World J. Gastroenterol. 2015, 21, 2269–2280. [Google Scholar] [CrossRef]
- Wack, A.; Soldaini, E.; Tseng, C.-T.K.; Nuti, S.; Klimpel, G.R.; Abrignani, S. Binding of the hepatitis C virus envelope protein E2 to CD81 provides a co-stimulatory signal for human T cells. Eur. J. Immunol. 2001, 31, 166–175. [Google Scholar] [CrossRef]
- Conca, P.; Tarantino, G. Hepatitis C virus lymphotropism and peculiar immunological phenotype: Effects on natural history and antiviral therapy. World J. Gastroenterol. 2009, 15, 2305–2308. [Google Scholar] [CrossRef]
- Chang, M.-L. Metabolic alterations and hepatitis C: From bench to bedside. World J. Gastroenterol. 2016, 22, 1461–1476. [Google Scholar] [CrossRef]
- Syed, G.H.; Amako, Y.; Siddiqui, A. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol. Metab. 2010, 21, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-L.; Tsou, Y.-K.; Hu, T.-H.; Lin, C.-H.; Lin, W.-R.; Sung, C.-M.; Chen, T.-H.; Cheng, M.-L.; Chang, K.-C.; Chiu, C.-T.; et al. Distinct Patterns of the Lipid Alterations between Genotype 1 and 2 Chronic Hepatitis C Patients after Viral Clearance. PLoS ONE 2014, 9, e104783. [Google Scholar] [CrossRef]
- Parvaiz, F.; Manzoor, S.; Iqbal, J.; McRae, S.; Javed, F.; Ahmed, Q.L.; Waris, G. Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: A metabolic syndrome. Arch. Virol. 2014, 159, 1017–1025. [Google Scholar] [CrossRef]
- Ramière, C.; Rodriguez, J.; Enache, L.S.; Lotteau, V.; André, P.; Diaz, O. Activity of Hexokinase Is Increased by Its Interaction with Hepatitis C Virus Protein NS5A. J. Virol. 2014, 88, 3246–3254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Hood, B.L.; Chadwick, S.L.; Liu, S.; Watkins, S.C.; Luo, G.; Conrads, T.P.; Wang, T. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 2008, 48, 1396–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Wang, C.; Sumpter, R.; Brown, M.S.; Goldstein, J.L.; Gale, M. Disruption of hepatitis C virus RNA replication through inhi-bition of host protein geranylgeranylation. Proc. Natl. Acad. Sci. USA 2003, 100, 15865–15870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapadia, S.B.; Chisari, F.V. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc. Natl. Acad. Sci. USA 2005, 102, 2561–2566. [Google Scholar] [CrossRef] [Green Version]
- Amako, Y.; Munakata, T.; Kohara, M.; Siddiqui, A.; Peers, C.; Harris, M. Hepatitis C Virus Attenuates Mitochondrial Lipid β-Oxidation by Downregulating Mitochondrial Trifunctional-Protein Expression. J. Virol. 2015, 89, 4092–4101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perlemuter, G.; Sabile, A.; Letteron, P.; Vona, G.; Topilco, A.; Chrétien, Y.; Koike, K.; Pessayre, D.; Chapman, J.; Barba, G.; et al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: A model of viral-related steatosis. FASEB J. 2002, 16, 185–194. [Google Scholar] [CrossRef]
- McPherson, S.; Jonsson, J.R.; Barrie, H.D.; O’Rourke, P.; Clouston, A.D.; Powell, E.E. Investigation of the role of SREBP-1c in the pathogenesis of HCV-related steatosis. J. Hepatol. 2008, 49, 1046–1054. [Google Scholar] [CrossRef]
- Enjoji, M.; Kohjima, M.; Kotoh, K.; Nakamuta, M. Metabolic Disorders and Steatosis in Patients with Chronic Hepatitis C: Metabolic Strategies for Antiviral Treatments. Int. J. Hepatol. 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Tsutsumi, T.; Suzuki, T.; Shimoike, T.; Suzuki, R.; Moriya, K.; Shintani, Y.; Fujie, H.; Matsuura, Y.; Koike, K.; Miyamura, T. Interaction of hepatitis C virus core protein with retinoid X receptor α modulates its transcriptional activity. Hepatology 2002, 35, 937–946. [Google Scholar] [CrossRef]
- Jhaveri, R.; McHutchison, J.; Patel, K.; Qiang, G.; Diehl, A.M. Specific Polymorphisms in Hepatitis C Virus Genotype 3 Core Protein Associated with Intracellular Lipid Accumulation. J. Infect. Dis. 2008, 197, 283–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roingeard, P. Hepatitis C virus diversity and hepatic steatosis. J. Viral Hepat. 2013, 20, 77–84. [Google Scholar] [CrossRef]
- Lombardi, R.; Fargion, S.; Fracanzani, A.L. Brain involvement in non-alcoholic fatty liver disease (NAFLD): A systematic review. Dig. Liver Dis. 2019, 51, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Shlomai, A.; Rechtman, M.M.; Burdelova, E.O.; Zilberberg, A.; Hoffman, S.; Solar, I.; Fishman, S.; Halpern, Z.; Sklan, E.H. The metabolic regulator PGC-1α links hepatitis C virus infection to hepatic insulin resistance. J. Hepatol. 2012, 57, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Romero-Gómez, M. Insulin resistance and hepatitis C. World J. Gastroenterol. 2006, 12, 7075–7080. [Google Scholar] [CrossRef]
- Sheikh, M.Y.; Choi, J.; Qadri, I.; Friedman, J.E.; Sanyal, A.J. Hepatitis C virus infection: Molecular pathways to metabolic syndrome. Hepatology 2008, 47, 2127–2133. [Google Scholar] [CrossRef]
- Shoji, I.; Deng, L.; Hotta, H. Molecular Mechanism of Hepatitis C Virus-Induced Glucose Metabolic Disorders. Front. Microbiol. 2011, 2, 278. [Google Scholar] [CrossRef] [Green Version]
- 29. Danesh, G.; Virlogeux, V.; Ramière, C.; Charre, C.; Cotte, L.; Alizon, S. Quantifying transmission dynamics of acute hepatitis C virus infections in a heterogeneous population using sequence data. PLoS Pathog. 2021, 17, e1009916. [Google Scholar] [CrossRef]
- Mathew, S.; Faheem, M.; Ibrahim, S.M.; Iqbal, W.; Rauff, B.; Fatima, K.; Qadri, I. Hepatitis C virus and neurological damage. World J. Hepatol. 2016, 8, 545–556. [Google Scholar] [CrossRef]
- De Carli, D.M.; Pannebeker, J.; Pedro, F.L.; Haygert, C.J.P.; Hertz, E.; Beck, M.D.O. Transverse myelitis associated to HCV infection. Braz. J. Infect. Dis. 2009, 13, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Nolte, C.H.; Endres, A.S.; Meisel, H. Sensory ataxia in myelopathy with chronic hepatitis C virus infection. Neurology 2002, 59, 958–959. [Google Scholar] [CrossRef]
- Aktipi, K.M.; Ravaglia, S.; Ceroni, M.; Nemni, R.; Debiaggi, M.; Bastianello, S.; Alfonsi, E.; Zardini, E.; Minoli, L.; Tavazzi, E.; et al. Severe recurrent myelitis in patients with hepatitis C virus infection. Neurology 2007, 68, 468–469. [Google Scholar] [CrossRef]
- Suzuki, K.; Takao, M.; Katayama, Y.; Mihara, B. Acute myelitis associated with HCV infection. BMJ Case Rep. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Grewal, A.K.; Lopes, M.B.; Berg, C.L.; Bennett, A.K.; Alves, V.A.; Trugman, J.M. Recurrent demyelinating myelitis associated with hepatitis C viral infection. J. Neurol. Sci. 2004, 224, 101–106. [Google Scholar] [CrossRef]
- Stübgen, J.-P. Immune-mediated myelitis associated with Hepatitis virus infections. J. Neuroimmunol. 2011, 239, 21–27. [Google Scholar] [CrossRef]
- Kitada, M.; Suzuki, H.; Ichihashi, J.; Inada, R.; Miyamoto, K.; Takahashi, T.; Mitsui, Y.; Fujihara, K.; Kusunoki, S. Acute Combined Central and Peripheral Demyelination Showing Anti-Aquaporin 4 Antibody Positivity. Intern. Med. 2012, 51, 2443–2447. [Google Scholar] [CrossRef] [Green Version]
- Feldman, L.; Dhamne, M.; Li, Y. Neurologic manifestations associated with cryoglobulinemia: A single center experience. J. Neurol. Sci. 2019, 398, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Seifert, F.; Struffert, T.; Hildebrandt, M.; Blümcke, I.; Brück, W.; Staykov, D.; Huttner, H.B.; Hilz, M.-J.; Schwab, S.; Bardutzky, J. In vivo detection of hepatitis C virus (HCV) RNA in the brain in a case of encephalitis: Evidence for HCV neuroinvasion. Eur. J. Neurol. 2008, 15, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Sacconi, S.; Salviati, L.; Merelli, E. Acute disseminated encephalomyelitis associated with hepatitis C virus infection. Arch. Neurol. 2001, 58, 1679–1681. [Google Scholar] [CrossRef] [Green Version]
- Sim, J.E.; Lee, J.-B.; Na Cho, Y.; Suh, S.H.; Kim, J.K.; Lee, K.-Y. A Case of Acute Disseminated Encephalomyelitis Associated with Hepatitis C Virus Infection. Yonsei. Med. J. 2012, 53, 856–858. [Google Scholar] [CrossRef] [PubMed]
- Bolay, H.; Söylemezoǧlu, F.; Nurlu, G.; Tuncer, S.; Vari, K. PCR detected hepatitis C virus genome in the brain of a case with progressive encephalomyelitis with rigidity. Clin. Neurol. Neurosurg. 1996, 98, 305–308. [Google Scholar] [CrossRef]
- Enger, C.; Forssen, U.M.; Bennett, D.; Theodore, D.; Shantakumar, S.; McAfee, A. Thromboembolic Events Among Patients with Hepatitis C Virus Infection and Cirrhosis: A Matched-Cohort Study. Adv. Ther. 2014, 31, 891–903. [Google Scholar] [CrossRef]
- Liao, C.-C.; Su, T.-C.; Sung, F.-C.; Chou, W.-H.; Chen, T.-L. Does Hepatitis C Virus Infection Increase Risk for Stroke? A Population-Based Cohort Study. PLoS ONE 2012, 7, e31527. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-S.; Kao, J.-H.; Chao, Y.-C.; Lin, H.H.; Fan, Y.-C.; Huang, C.-J.; Tsai, P.-S. Interferon-based therapy reduces risk of stroke in chronic hepatitis C patients: A population-based cohort study in Taiwan. Aliment. Pharmacol. Ther. 2013, 38, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-H.; Yang, H.-I.; Wang, C.-H.; Jen, C.-L.; Yeh, S.-H.; Liu, C.-J.; You, S.-L.; Chen, W.J.; Chen, C.-J. Hepatitis C Virus Infection and Increased Risk of Cerebrovascular Disease. Stroke 2010, 41, 2894–2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Kang, R.; Zhao, Z. Hepatitis C Virus Infection and Risk of Stroke: A Systematic Review and Meta-Analysis. PLoS ONE 2013, 8, e81305. [Google Scholar] [CrossRef]
- Adinolfi, L.E.; Restivo, L.; Zampino, R.; Guerrera, B.; Lonardo, A.; Ruggiero, L.; Riello, F.; Loria, P.; Florio, A. Chronic HCV infection is a risk of atherosclerosis. Role of HCV and HCV-related steatosis. Atherosclerosis 2012, 221, 496–502. [Google Scholar] [CrossRef]
- Boddi, M.; Abbate, R.; Chellini, B.; Giusti, B.; Giannini, C.; Pratesi, G.; Rossi, L.; Pratesi, C.; Gensini, G.F.; Paperetti, L.; et al. Hepatitis C virus RNA localization in human carotid plaques. J. Clin. Virol. 2010, 47, 72–75. [Google Scholar] [CrossRef]
- Vidali, M.; Tripodi, M.-F.; Ivaldi, A.; Zampino, R.; Occhino, G.; Restivo, L.; Sutti, S.; Marrone, A.; Ruggiero, G.; Albano, E.; et al. Interplay between oxidative stress and hepatic steatosis in the progression of chronic hepatitis C. J. Hepatol. 2008, 48, 399–406. [Google Scholar] [CrossRef]
- Okuda, M.; Li, K.; Beard, M.R.; Showalter, L.A.; Scholle, F.; Lemon, S.M.; Weinman, S.A. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 2002, 122, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Nahon, P.; Bourcier, V.; Layese, R.; Audureau, E.; Cagnot, C.; Marcellin, P.; Guyader, D.; Fontaine, H.; Larrey, D.; De Lédinghen, V.; et al. Eradication of Hepatitis C Virus Infection in Patients with Cirrhosis Reduces Risk of Liver and Non-Liver Complications. Gastroenterology 2017, 152, 142–156.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petta, S.; Adinolfi, L.E.; Fracanzani, A.L.; Rini, F.; Caldarella, R.; Calvaruso, V.; Cammà, C.; Ciaccio, M.; Di Marco, V.; Grimaudo, S.; et al. Hepatitis C virus eradication by direct-acting antiviral agents improves carotid atherosclerosis in patients with severe liver fibrosis. J. Hepatol. 2018, 69, 18–24. [Google Scholar] [CrossRef]
- Dawson, T.M.; Starkebaum, G. Isolated central nervous system vasculitis associated with hepatitis C infection. J. Rheumatol. 1999, 26, 2273–2276. [Google Scholar] [PubMed]
- Malnick, S.D.H.; Abend, Y.; Evron, E.; Sthoeger, Z.M. HCV Hepatitis Associated with Anticardiolipin Antibody and a Cerebrovascular Accident: Response to interferon therapy. J. Clin. Gastroenterol. 1997, 24, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, I.M.; Cojocaru, M.; Iacob, S.A. High prevalence of anticardiolipin antibodies in patients with asymptomatic hepatitis C virus infection associated acute ischemic stroke. Rom. J. Intern. Med. 2005, 43, 89–95. [Google Scholar] [PubMed]
- Karibe, H.; Niizuma, H.; Ohyama, H.; Shirane, R.; Yoshimoto, T. Hepatitis C virus (HCV) infection as a risk factor for spontaneous intracerebral hemorrhage: Hospital based case-control study. J. Clin. Neurosci. 2001, 8, 423–425. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Muo, C.-H.; Hsu, C.Y.; Kao, C.-H. Increased Risk of Intracerebral Hemorrhage Among Patients with Hepatitis C Virus Infection. Medicine 2015, 94, e2132. [Google Scholar] [CrossRef]
- Lunel, F.; Musset, L.; Cacoub, P.; Frangeul, L.; Cresta, P.; Perrin, M.; Grippon, P.; Hoang, C.; Piette, J.; Huraux, J.-M.; et al. Cryoglobulinemia in chronic liver diseases: Role of hepatitis C virus and liver damage. Gastroenterology 1994, 106, 1291–1300. [Google Scholar] [CrossRef]
- Tedeschi, A.; Baratè, C.; Minola, E.; Morra, E. Cryoglobulinemia. Blood Rev. 2007, 21, 183–200. [Google Scholar] [CrossRef]
- Sansonno, D.; Dammacco, F. Hepatitis C virus, cryoglobulinaemia, and vasculitis: Immune complex relations. Lancet Infect. Dis. 2005, 5, 227–236. [Google Scholar] [CrossRef]
- Brouet, J.-C.; Clauvel, J.-P.; Danon, F.; Klein, M.; Seligmann, M. Biologic and clinical significance of cryoglobulins. Am. J. Med. 1974, 57, 775–788. [Google Scholar] [CrossRef]
- Basile, U.; Gulli, F.; Gragnani, L.; Pocino, K.; Napodano, C.; Miele, L.; Santini, S.A.; Marino, M.; Zignego, A.L.; Rapaccini, G.L. Different biochemical patterns in type II and type III mixed cryoglobulinemia in HCV positive patients. Dig. Liver Dis. 2018, 50, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Casals, M.; Stone, J.H.; Cid, M.C.; Bosch, X. The cryoglobulinaemias. Lancet 2012, 379, 348–360. [Google Scholar] [CrossRef]
- Morra, E. Cryoglobulinemia. Hematology/the Education Program of the American Society of Hematology American Society of Hematology Education Program. Hematology 2005, 2005, 368–372. [Google Scholar] [CrossRef]
- Saadoun, D.; Landau, D.A.; Calabrese, L.H.; Cacoub, P. Hepatitis C-associated mixed cryoglobulinaemia: A crossroad between autoimmunity and lymphoproliferation. Rheumatology 2007, 46, 1234–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zignego, A.L.; Ferri, C.; Giannelli, F.; Giannini, C.; Caini, P.; Monti, M.; Marrocchi, M.E.; Di Pietro, E.; La Villa, G.; Laffi, G.; et al. Prevalence of bcl-2 Rearrangement in Patients with Hepatitis C Virus–Related Mixed Cryoglobulinemia with or without B-Cell Lymphomas. Ann. Intern. Med. 2002, 137, 571–580. [Google Scholar] [CrossRef]
- Ferri, C.; Zignego, A.L.; A Pileri, S.; Bryson, G.J.; Lear, D.; Williamson, R.; Wong, R.C.W. Cryoglobulins. J. Clin. Pathol. 2002, 55, 4–13. [Google Scholar] [CrossRef]
- Dammacco, F.; Lauletta, G.; Montrone, M.; Sansonno, D. Mixed cryoglobulinemia: A model of virus-related disease in internal medicine. Dig. Liver Dis. 2007, 39, S8–S12. [Google Scholar] [CrossRef]
- Boyer, N.; Marcellin, P. Pathogenesis, diagnosis and management of hepatitis C. J. Hepatol. 2000, 32, 98–112. [Google Scholar] [CrossRef]
- Dammacco, F.; Lauletta, G.; Russi, S.; Leone, P.; Tucci, M.; Manno, C.; Monaco, S.; Ferrari, S.; Vacca, A.; Racanelli, V. Clinical practice: Hepatitis C virus infection, cryoglobulinemia and cryoglobulinemic vasculitis. Clin. Exp. 2018, 19, 1–21. [Google Scholar] [CrossRef]
- Lake-Bakaar, G.; Jacobson, I.; Talal, A. B cell activating factor (BAFF) in the natural history of chronic hepatitis C virus liver disease and mixed cryoglobulinaemia. Clin. Exp. Immunol. 2012, 170, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Sansonno, M.E.; Tucci, F.A.; Ghebrehiwet, B.; Lauletta, G.; Peerschke, E.I.B.; Conteduca, V.; Russi, S.; Gatti, P.; Sansonno, L.; Dammacco, F. Role of the Receptor for the Globular Domain of C1q Protein in the Pathogenesis of Hepatitis C Virus-Related Cryoglobulin Vascular Damage. J. Immunol. 2009, 183, 6013–6020. [Google Scholar] [CrossRef] [PubMed]
- Sansonno, D.E.; Lauletta, G.; Nisi, L.; Gatti, P.; Pesola, F.; Pansini, N.; Dammacco, F. Non-enveloped HCV core protein as constitutive antigen of cold-precipitable immune complexes in type II mixed cryoglobulinaemia. Clin. Exp. Immunol. 2003, 133, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.Q.; Nguyen, D.T.; Hiotellis, A.I.; Hahn, Y.S. Hepatitis C Virus Core Protein Inhibits Human T Lymphocyte Responses by a Complement-Dependent Regulatory Pathway. J. Immunol. 2001, 167, 5264–5272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roccatello, D.; Saadoun, D.; Ramos-Casals, M.; Tzioufas, A.G.; Fervenza, F.C.; Cacoub, P.; Zignego, A.L.; Ferri, C. Cryoglobulinaemia. Nat. Rev. Dis. Prim. 2018, 4, 11. [Google Scholar] [CrossRef]
- Schamberg, N.J.; Lake-Bakaar, G.V. Hepatitis C virus-related mixed cryoglobulinemia: Pathogenesis, clinical manifestations, and new therapies. Gastroenterol. Hepatol. 2007, 3, 695–703. [Google Scholar]
- Ragab, G.; Hussein, M.A. Vasculitic syndromes in hepatitis C virus: A review. J. Adv. Res. 2017, 8, 99–111. [Google Scholar] [CrossRef]
- Silva, F.; Pinto, C.; Barbosa, A.; Borges, T.; Dias, C.; Almeida, J. New insights in cryoglobulinemic vasculitis. J. Autoimmun. 2019, 105, 102313. [Google Scholar] [CrossRef]
- Terrier, B.; Cacoub, P. Renal involvement in HCV-related vasculitis. Clin. Res. Hepatol. Gastroenterol. 2013, 37, 334–339. [Google Scholar] [CrossRef]
- Zaltron, S.; Puoti, M.; Liberini, P.; Antonini, L.; Quinzanini, M.; Manni, M.; A Forleo, M.; Rossi, S.; Spinetti, A.; Zanini, B.; et al. High prevalence of peripheral neuropathy in hepatitis C virus infected patients with symptomatic and asymptomatic cryoglobulinaemia. Ital. J. Gastroenterol. Hepatol. 1998, 30, 391–395. [Google Scholar]
- Vigani, A.G.; Macedo-de-Oliveira, A.; Pavan MH, P.; Pedro, M.N.; Goncales, F.L., Jr. Hepatitis C virus infection, cryoglobulinemia, and peripheral neuropathy: A case report. Braz. J. Med Biol. Res. 2005, 38, 1729–1734. [Google Scholar] [CrossRef] [Green Version]
- Russi, S.; Sansonno, D.; Monaco, S.; Mariotto, S.; Ferrari, S.; Pavone, F.; Lauletta, G.; Dammacco, F. HCV RNA Genomic sequences and HCV-E2 glycoprotein in sural nerve biopsies from HCV-infected patients with peripheral neuropathy. Neuropathol. Appl. Neurobiol. 2018, 44, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, B.; Scardoni, M.; Monaco, S.; Rizzuto, N.; Scarpa, A. Hepatitis C virus infection of peripheral nerves in type II cryoglobulinaemia. Virchows. Archiv. 1999, 434, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Cacoub, P.; Saadoun, D.; Limal, N.; Léger, J.M.; Maisonobe, T. Hepatitis C virus infection and mixed cryoglobulinaemia vasculitis: A review of neurological complications. AIDS 2005, 19, S128–S134. [Google Scholar] [CrossRef] [PubMed]
- Gemignani, F.; Brindani, F.; Alfieri, S.; Giuberti, T.; Allegri, I.; Ferrari, C.; Marbini, A. Clinical spectrum of cryoglobulinaemic neuropathy. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1410–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biasiotta, A.; Casato, M.; La Cesa, S.; Colantuono, S.; Di Stefano, G.; Leone, C.; Carlesimo, M.; Piroso, S.; Cruccu, G.; Truini, A. Clinical, neurophysiological, and skin biopsy findings in peripheral neuropathy associated with hepatitis C virus-related cryoglobulinemia. J. Neurol. 2014, 261, 725–731. [Google Scholar] [CrossRef]
- Nemni, R.; Sanvito, L.; Quattrini, A.; Santuccio, G.; Camerlingo, M.; Canal, N. Peripheral neuropathy in hepatitis C virus infection with and without cryoglobulinaemia. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1267–1271. [Google Scholar] [CrossRef] [Green Version]
- Lidove, O.; Cacoub, P.; Maisonobe, T.; Servan, J.; Thibault, V.; Piette, J.-C.; Léger, J.-M. Hepatitis C virus infection with peripheral neuropathy is not always associated with cryoglobulinaemia. Ann. Rheum. Dis. 2001, 60, 290–292. [Google Scholar] [CrossRef] [Green Version]
- Chin, R.L.; Sander, H.W.; Brannagan, T.H.; De Sousa, E.; Latov, N. Demyelinating Neuropathy in Patients with Hepatitis C Virus Infection. J. Clin. Neuromuscul. Dis. 2010, 11, 209–212. [Google Scholar] [CrossRef]
- De Martino, L.; Sampaolo, S.; Tucci, C.; Ambrosone, L.; Bs, A.B.; Migliaresi, S.; Di Iorio, G. Viral RNA in nerve tissues of patients with hepatitis C infection and peripheral neuropathy. Muscle Nerve 2003, 27, 102–104. [Google Scholar] [CrossRef]
- Moretti, R.; Torre, P.; Antonello, R.M.; Cattaruzza, T.; Pizzolato, G. Peripheral neuropathy in hepatitis C virus-related mixed cryoglobulinaemia: Existing treatments and a positive symptomatic response to oxcarbazepine. Funct. Neurol. 2006, 21, 137. [Google Scholar]
- Authier, F.-J.; Bassez, G.; Payan, C.; Guillevin, L.; Pawlotsky, J.-M.; Degos, J.-D.; Gherardi, R.K.; Belec, L. Detection of genomic viral RNA in nerve and muscle of patients with HCV neuropathy. Neurology 2003, 60, 808–812. [Google Scholar] [CrossRef]
- Boukhris, S.; Magy, L.; Senga-Mokono, U.; Loustaud-Ratti, V.; Vallat, J.-M. Polyneuropathy with demyelinating features in mixed cryoglobulinemia with hepatitis C virus infection. Eur. J. Neurol. 2006, 13, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Tsuzaki, K.; Someda, H.; Inoue, M.; Tachibana, N.; Hamano, T. Remission of chronic inflammatory demyelinating polyneuropathy after hepatitis C virus eradication with sofosbuvir and ledipasvir therapy. Muscle Nerve 2018, 58, E34–E36. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Monaco, S. HCV-Related Central and Peripheral Nervous System Demyelinating Disorders. Inflamm. Allergy Drug Targets 2014, 13, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Lidove, O.; Cacoub, P.; Hausfater, P.; Wechsler, B.; Frances, C.; Leger, J.M.; Piette, J.C. Hepatits C virus and cryoglobulinemia: Worsening of peripheral neuropathy after interferon alpha treatment. Gastroenterol. Clin. Biol. 1999, 23, 403–406. [Google Scholar]
- De Klippel, N.; Hautekeete, M.L.; De Keyser, J.; Ebinger, G. Guillain-Barre syndrome as the presenting manifestation of hepatitis C infection. Neurology 1993, 43, 2143. [Google Scholar] [CrossRef] [PubMed]
- Lacaille, F.; Zylberberg, H.; Hagège, H.; Roualdès, B.; Meyrignac, C.; Chousterman, M.; Girot, R. Hepatitis C associated with Guillain-Barré syndrome. Liver Int. 1998, 18, 49–51. [Google Scholar] [CrossRef]
- Chlilek, A.; Roger, C.; Muller, L.; Carles, M.-J.; Stephan, R.; Laureillard, D.; Lavigne, J.-P.; Lefrant, J.-Y.; Sotto, A. Severe Guillain-Barré syndrome associated with chronic active hepatitis C and mixed cryoglobulinemia: A case report. BMC Infect. Dis. 2019, 19, 1–5. [Google Scholar] [CrossRef]
- Caporale, G.; Policastro, S.; Carlucci, A.; Monteleone, E. Consumer expectations for sensory properties in virgin olive oils. Food Qual. Prefer. 2006, 17, 116–121. [Google Scholar] [CrossRef]
- Chitnis, T.; Weiner, H.L. CNS inflammation and neurodegeneration. J. Clin. Investig. 2017, 127, 3577–3587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-H.; Lam, S.; Cheng, A.L.; Li, X.-J. Intranuclear huntingtin increases the expression of caspase-1 and induces apoptosis. Hum. Mol. Genet. 2000, 9, 2859–2867. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, R.J.; Kiechle, T.; Dedeoglu, A.; Kubilus, J.; Kowall, N.W.; Beal, M.F.; Friedlander, R.M.; Hersch, S.M. Cytochrome C and Caspase-9 Expression in Huntington’s Disease. NeuroMolecular Med. 2002, 1, 183–196. [Google Scholar] [CrossRef]
- Caruso, P.; Signori, R.; Moretti, R. Small vessel disease to subcortical dementia: A dynamic model, which interfaces aging, cholinergic dysregulation and the neurovascular unit. Vasc. Heal. Risk Manag. 2019, 15, 259–281. [Google Scholar] [CrossRef]
- Shi, Z.-W.; Ge, L.-S.; Li, Y.-C. The Role of Necroptosis in Cardiovascular Disease. Front. Pharmacol. 2018, 9, 721. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging: An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Stephenson, J.; Nutma, E.; Van Der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 2018, 154, 204–219. [Google Scholar] [CrossRef] [Green Version]
- Sankowski, R.; Mader, S.; Valdã©S-Ferrer, S.I. Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration. Front. Cell. Neurosci. 2015, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Yankner, B.A.; Lu, T.; Loerch, P. The Aging Brain. Annu. Rev. Pathol. Mech. Dis. 2008, 3, 41–66. [Google Scholar] [CrossRef]
- Rawji, K.S.; Mishra, M.; Michaels, N.J.; Rivest, S.; Stys, P.K.; Yong, V.W. Immunosenescence of microglia and macrophages: Impact on the ageing central nervous system. Brain 2016, 139, 653–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flanary, B.E.; Sammons, N.W.; Nguyen, C.; Walker, D.; Streit, W.J. Evidence That Aging and Amyloid Promote Microglial Cell Senescence. Rejuvenation Res. 2007, 10, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Moretti, R.; Caruso, P.; Ben, M.D.; Conti, C.; Gazzin, S.; Tiribelli, C. Vitamin D, Homocysteine, and Folate in Subcortical Vascular Dementia and Alzheimer Dementia. Front. Aging Neurosci. 2017, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Low, A.; Mak, E.; Rowe, J.; Markus, H.S.; O’Brien, J.T. Inflammation and cerebral small vessel disease: A systematic review. Ageing Res. Rev. 2019, 53, 100916. [Google Scholar] [CrossRef]
- Perry, V.H.; Cunningham, C.; Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nat. Rev. Immunol. 2007, 7, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T.; Cryan, J.F. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol. 2017, 595, 489–503. [Google Scholar] [CrossRef]
- Giuffrè, M.; Campigotto, M.; Campisciano, G.; Comar, M.; Crocè, L.S. A story of liver and gut microbes: How does the intestinal flora affect liver disease? A review of the literature. Am. J. Physiol. Liver Physiol. 2020, 318, G889–G906. [Google Scholar] [CrossRef] [PubMed]
- Rivest, S. Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 2009, 9, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Miranda-Saksena, M.; Saksena, N.K. Viruses and neurodegeneration. Virol. J. 2013, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Lehnardt, S.; Massillon, L.; Follett, P.; Jensen, F.E.; Ratan, R.; Rosenberg, P.; Volpe, J.J.; Vartanian, T. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl. Acad. Sci. USA 2003, 100, 8514–8519. [Google Scholar] [CrossRef] [Green Version]
- Popovich, P.G.; Longbrake, E. Can the immune system be harnessed to repair the CNS? Nat. Rev. Neurosci. 2008, 9, 481–493. [Google Scholar] [CrossRef]
- Tansey, M.G.; McCoy, M.K.; Frank-Cannon, T.C. Neuroinflammatory mechanisms in Parkinson’s disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol. 2007, 208, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, R.; Caruso, P. Small Vessel Disease-Related Dementia: An Invalid Neurovascular Coupling? Int. J. Mol. Sci. 2020, 21, 1095. [Google Scholar] [CrossRef] [Green Version]
- Nagatsu, T.; Sawada, M. Cellular and Molecular Mechanisms of Parkinson’s Disease: Neurotoxins, Causative Genes, and Inflammatory Cytokines. Cell. Mol. Neurobiol. 2006, 26, 779–800. [Google Scholar] [CrossRef] [PubMed]
- Dustin, L.B.; Rice, C.M. Flying Under the Radar: The Immunobiology of Hepatitis, C. Annu. Rev. Immunol. 2007, 25, 71–99. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, N.; Wilson, G.K.; Murray, J.; Hu, K.; Lewis, A.; Reynolds, G.M.; Stamataki, Z.; Meredith, L.; Rowe, I.A.; Luo, G.; et al. Hepatitis C Virus Infects the Endothelial Cells of the Blood-Brain Barrier. Gastroenterology 2012, 142, 634–643.e6. [Google Scholar] [CrossRef] [Green Version]
- Fishman, S.L.; Murray, J.M.; Eng, F.J.; Walewski, J.L.; Morgello, S.; Branch, A.D. Molecular and Bioinformatic Evidence of Hepatitis C Virus Evolution in Brain. J. Infect. Dis. 2008, 197, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Radkowski, M.; Wilkinson, J.; Nowicki, M.; Adair, D.; Vargas, H.E.; Ingui, C.; Rakela, J.; Laskus, T. Search for Hepatitis C Virus Negative-Strand RNA Sequences and Analysis of Viral Sequences in the Central Nervous System: Evidence of Replication. J. Virol. 2002, 76, 600–608. [Google Scholar] [CrossRef] [Green Version]
- Forton, D.M.; Karayiannis, P.; Mahmud, N.; Taylor-Robinson, S.D.; Thomas, H.C. Identification of Unique Hepatitis C Virus Quasispecies in the Central Nervous System and Comparative Analysis of Internal Translational Efficiency of Brain, Liver, and Serum Variants. J. Virol. 2004, 78, 5170–5183. [Google Scholar] [CrossRef] [Green Version]
- Forton, D.M.; Hamilton, G.; Allsop, J.M.; Grover, V.P.; Wesnes, K.; O’Sullivan, C.; Thomas, H.C.; Taylor-Robinson, S.D. Cerebral immune activation in chronic hepatitis C infection: A magnetic resonance spectroscopy study. J. Hepatol. 2008, 49, 316–322. [Google Scholar] [CrossRef]
- Bokemeyer, M.; Ding, X.-Q.; Goldbecker, A.; Raab, P.; Heeren, M.; Arvanitis, D.; Tillmann, H.L.; Lanfermann, H.; Weissenborn, K. Evidence for neuroinflammation and neuroprotection in HCV infection-associated encephalopathy. Gut 2011, 60, 370–377. [Google Scholar] [CrossRef]
- Glodzik-Sobanska, L.; Li, J.; Mosconi, L.; Slowik, A.; Walecki, J.; Szczudlik, A.; Sobiecka, B.; de Leon, M. Prefrontal N-Acetylaspartate and Poststroke Recovery: A Longitudinal Proton Spectroscopy Study. Am. J. Neuroradiol. 2007, 28, 470–474. [Google Scholar]
- Grover, V.P.B.; Pavese, N.; Koh, S.-B.; Wylezinska, M.; Saxby, B.K.; Gerhard, A.; Forton, D.M.; Brooks, D.J.; Thomas, H.C.; Taylor-Robinson, S.D. Cerebral microglial activation in patients with hepatitis c: In vivo evidence of neuroinflammation. J. Viral Hepat. 2012, 19, e89–e96. [Google Scholar] [CrossRef]
- Chang, L.; Ernst, T.; Leonido-Yee, M.; Walot, I.; Singer, E. Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology 1999, 52, 100. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, V.; Miller, A.; Lowry, D.; Hill, E.; Weinstein, C.; Alsop, D.; Lenkinski, R.; Afdhal, N.H. Effects of anti-viral therapy and HCV clearance on cerebral metabolism and cognition. J. Hepatol. 2012, 56, 549–556. [Google Scholar] [CrossRef]
- Bladowska, J.; Zimny, A.; Knysz, B.; Małyszczak, K.; Kołtowska, A.; Szewczyk, P.; Gąsiorowski, J.; Furdal, M.; Sąsiadek, M.J. Evaluation of early cerebral metabolic, perfusion and microstructural changes in HCV-positive patients: A pilot study. J. Hepatol. 2013, 59, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Felipo, V. Hepatic encephalopathy: Effects of liver failure on brain function. Nat. Rev. Neurosci. 2013, 14, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Montoliu, C.; Urios, A.; Forn, C.; García-Panach, J.; Avila, C.; Gimenez-Garzó, C.; Wassel, A.; A Serra, M.; Giner-Durán, R.; Gonzalez, O.; et al. Reduced white matter microstructural integrity correlates with cognitive deficits in minimal hepatic encephalopathy. Gut 2014, 63, 1028–1030. [Google Scholar] [CrossRef] [Green Version]
- Solinas, A.; Piras, M.R.; Deplano, A. Cognitive dysfunction and hepatitis C virus infection. World J. Hepatol. 2015, 7, 922–925. [Google Scholar] [CrossRef]
- Vivithanaporn, P.; Maingat, F.; Lin, L.-T.; Na, H.; Richardson, C.D.; Agrawal, B.; Cohen, A.; Jhamandas, J.H.; Power, C. Hepatitis C Virus Core Protein Induces Neuroimmune Activation and Potentiates Human Immunodeficiency Virus-1 Neurotoxicity. PLoS ONE 2010, 5, e12856. [Google Scholar] [CrossRef]
- Fletcher, N.F.; Yang, J.P.; Farquhar, M.J.; Hu, K.; Davis, C.; He, Q.; Dowd, K.; Ray, S.C.; Krieger, S.E.; Neyts, J.; et al. Hepatitis C Virus Infection of Neuroepithelioma Cell Lines. Gastroenterology 2010, 139, 1365–1374.e2. [Google Scholar] [CrossRef] [Green Version]
- Wakita, T.; Suzuki, T.; Evans, M.J.; Shimotohno, K.; Chayama, K.; Matsuura, Y.; Hijikata, M.; Moriishi, K.; Seya, T.; Enomoto, N.; et al. Will There Be an HCV Meeting in 2020? Summary of the 17th International Meeting on Hepatitis C Virus and Related Viruses. Gastroenterology 2011, 141, e1–e5. [Google Scholar] [CrossRef]
- Bürgel, B.; Friesland, M.; Koch, A.; Manns, M.P.; Wedemeyer, H.; Weissenborn, K.; Schulz-Schaeffer, W.J.; Pietschmann, T.; Steinmann, E.; Ciesek, S. Hepatitis C virus enters human peripheral neuroblastoma cells—Evidence for extra-hepatic cells sustaining hepatitis C virus penetration. J. Viral Hepat. 2011, 18, 562–570. [Google Scholar] [CrossRef]
- Marukian, S.; Jones, C.T.; Andrus, L.; Evans, M.; Ritola, K.D.; Charles, E.D.; Rice, C.M.; Dustin, L.B. Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells. Hepatology 2008, 48, 1843–1850. [Google Scholar] [CrossRef] [Green Version]
- Thiele, C.J. Biology of pediatric peripheral neuroectodermal tumors. Cancer Metastasis Rev. 1991, 10, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Laskus, T.; Radkowski, M.; Adair, D.M.; Wilkinson, J.; Scheck, A.; Rakela, J. Emerging evidence of hepatitis C virus neuroinvasion. AIDS 2005, 19, S140–S144. [Google Scholar] [CrossRef]
- Brault, C.; Levy, P.; Bartosch, B. Hepatitis C Virus-Induced Mitochondrial Dysfunctions. Viruses 2013, 5, 954–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, J.; Fishman, S.L.; Ryan, E.; Eng, F.J.; Walewski, J.L.; Branch, A.D.; Morgello, S. Clinicopathologic correlates of hepatitis C virus in brain: A pilot study. J. Neurovirol. 2008, 14, 17–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilsabeck, R.C.; Perry, W.; Hassanein, T.I. Neuropsychological impairment in patients with chronic hepatitis C. Hepatology 2002, 35, 440–446. [Google Scholar] [CrossRef]
- McAndrews, M.P.; Farcnik, K.; Carlen, P.; Damyanovich, A.; Mrkonjic, M.; Jones, S.; Heathcote, E.J. Prevalence and significance of neurocognitive dysfunction in hepatitis C in the absence of correlated risk factors. Hepatology 2005, 41, 801–808. [Google Scholar] [CrossRef]
- Ryan, E.; Morgello, S.; Isaacs, K.; Naseer, M.; Gerits, P.; Bank, T.M.H.B. Neuropsychiatric impact of hepatitis C on advanced HIV. Neurology 2004, 62, 957–962. [Google Scholar] [CrossRef]
- Lucchese, G.; Kanduc, D. Single amino acid repeats connect viruses to neurodegeneration. Curr. Drug Discov. Technol. 2014, 11, 214–219. [Google Scholar] [CrossRef]
- Qian, L.; Flood, P.M.; Hong, J.-S. Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J. Neural Transm. 2010, 117, 971–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.Y.-Y.; Kang, K.-H.; Chen, S.L.-S.; Chiu, S.Y.-H.; Yen, A.M.-F.; Fann, J.C.-Y.; Su, C.-W.; Liu, H.-C.; Lee, C.-Z.; Fu, W.-M.; et al. Hepatitis C virus infection: A risk factor for Parkinson’s disease. J. Viral Hepat. 2015, 22, 784–791. [Google Scholar] [CrossRef]
- Lyons, P.D.; Benveniste, E.N. Cleavage of membrane-associated ICAM-1 from astrocytes: Involvement of a metalloprotease. Glia 1998, 22, 103–112. [Google Scholar] [CrossRef]
- Sheridan, G.K.; Dev, K.K. S1P1 receptor subtype inhibits demyelination and regulates chemokine release in cerebellar slice cultures. Glia 2012, 60, 382–392. [Google Scholar] [CrossRef]
- Fiala, M.; Avagyan, H.; Merino, J.J.; Bernas, M.; Valdivia, J.; Espinosa-Jeffrey, A.; Witte, M.; Weinand, M. Chemotactic and mitogenic stimuli of neuronal apoptosis in patients with medically intractable temporal lobe epilepsy. Pathophysiology 2013, 20, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Chao, C.; Ghorpade, A. Production and roles of glial tissue inhibitor of metalloproteinases-1 in human immunodeficiency virus-1-associated dementia neuroinflammation: A review. Am. J. Infect. Dis. 2009, 5, 314–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E Gomez, D.; Alonso, D.F.; Yoshiji, H.; Thorgeirsson, U.P. Tissue inhibitors of metalloproteinases: Structure, regulation and biological functions. Eur. J. Cell Biol. 1997, 74, 111–122. [Google Scholar]
- Hjerrild, S.; Renvillard, S.G.; Leutscher, P.; Sørensen, L.H.; Østergaard, L.; Eskildsen, S.F.; Videbech, P. Reduced cerebral cortical thickness in Non-cirrhotic patients with hepatitis C. Metab. Brain Dis. 2016, 31, 311–319. [Google Scholar] [CrossRef]
- Tucker, K.A.; Robertson, K.R.; Lin, W.; Smith, J.K.; An, H.; Chen, Y.; Aylward, S.R.; Hall, C.D. Neuroimaging in human immunodeficiency virus infection. J. Neuroimmunol. 2004, 157, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.M.; Dutton, R.A.; Hayashi, K.M.; Toga, A.W.; Lopez, O.L.; Aizenstein, H.J.; Becker, J.T. Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc. Natl. Acad. Sci. USA 2005, 102, 15647–15652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.Y.; Chung, R.T.; Kim, A.Y.; Chung, R.T. Coinfection With HIV-1 and HCV—A One-Two Punch. Gastroenterology 2009, 137, 795–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greub, G.; Ledergerber, B.; Battegay, M.; Grob, P.; Perrin, L.; Furrer, H.; Burgisser, P.; Erb, P.; Boggian, K.; Piffaretti, J.-C.; et al. Clinical progression, survival, and immune recovery during antiretroviral therapy in patients with HIV-1 and hepatitis C virus coinfection: The Swiss HIV Cohort Study. Lancet 2000, 356, 1800–1805. [Google Scholar] [CrossRef]
- Laskus, T.; Radkowski, M.; Bednarska, A.; Wilkinson, J.; Adair, D.; Nowicki, M.; Nikolopoulou, G.B.; Vargas, H.E.; Rakela, J. Detection and Analysis of Hepatitis C Virus Sequences in Cerebrospinal Fluid. J. Virol. 2002, 76, 10064–10068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestre, T.A.; de Sá, J.C.; Pimentel, J. Multifocal central and peripheral demyelination associated with hepatitis C virus infection. J. Neurol. 2007, 254, 1754–1756. [Google Scholar] [CrossRef]
- Küper, M.; Rabe, K.; Esser, S.; Gizewski, E.R.; Husstedt, I.W.; Maschke, M.; Obermann, M. Structural gray and white matter changes in patients with HIV. J. Neurol. 2011, 258, 1066–1075. [Google Scholar] [CrossRef]
- Pfefferbaum, A.; Rohlfing, T.; Pohl, K.M.; Lane, B.; Chu, W.; Kwon, D.; Nichols, B.N.; Brown, S.A.; Tapert, S.F.; Cummins, K.; et al. Adolescent Development of Cortical and White Matter Structure in the NCANDA Sample: Role of Sex, Ethnicity, Puberty, and Alcohol Drinking. Cereb. Cortex 2016, 26, 4101–4121. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.W.; Heinrichs-Graham, E.; Becker, K.M.; Aloi, J.; Robertson, K.R.; Sandkovsky, U.; White, M.L.; O’Neill, J.; Knott, N.L.; Fox, H.S.; et al. Multimodal neuroimaging evidence of alterations in cortical structure and function in HIV-infected older adults. Hum. Brain Mapp. 2015, 36, 897–910. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Hepatitis FAQs for Health Professionals. Viral Hepatitis-CDC Published Online First. 2018. Available online: http://www.cdc.gov/hepatitis/hcv/hcvfaq.htm#e1 (accessed on 10 July 2021).
- Goldstein, L.; Fogel-Grinvald, H.; Steiner, I. Hepatitis B and C virus infection as a risk factor for Parkinson’s disease in Israel-A nationwide cohort study. J. Neurol. Sci. 2019, 398, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Golabi, P.; Otgonsuren, M.; Sayiner, M.; Arsalla, A.; Gogoll, T.; Younossi, Z.M. The Prevalence of Parkinson Disease Among Patients with Hepatitis C Infection. Ann. Hepatol. 2017, 16, 342–348. [Google Scholar] [CrossRef]
- Kell, D.B. Iron behaving badly: Inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genom. 2009, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Marano, M.; Gentilucci, U.V.; Altamura, C.; Siotto, M.; Squitti, R.; Bucossi, S.; Quintiliani, L.; Migliore, S.; Greco, F.; Scarciolla, L.; et al. Altered metal metabolism in patients with HCV-related cirrhosis and hepatic encephalopathy. Metab. Brain Dis. 2015, 30, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- White, K.N.; Conesa, C.; Sánchez, L.; Amini, M.; Farnaud, S.; Lorvoralak, C.; Evans, R.W. The transfer of iron between ceruloplasmin and transferrins. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 2012, 1820, 411–416. [Google Scholar] [CrossRef]
- Snaedal, J.; Kristinsson, J.; Jóhannesson, T.; Torsdottir, G. Ceruloplasmin and iron in Alzheimer’s disease and Parkinson’s disease: A synopsis of recent studies. Neuropsychiatr. Dis. Treat. 2012, 8, 515–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayakumar, A.R.; Rao, K.V.R.; Norenberg, M.D. Neuroinflammation in Hepatic Encephalopathy: Mechanistic Aspects. J. Clin. Exp. Hepatol. 2015, 5, S21–S28. [Google Scholar] [CrossRef] [Green Version]
- Bosoi, C.R.; Rose, C.F. Oxidative stress: A systemic factor implicated in the pathogenesis of hepatic encephalopathy. Metab. Brain Dis. 2013, 28, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Córdoba, J.; Raguer, N.; Flavià, M.; Jacas, C.; Vargas, V.; Alonso, J.; Rovira, A. T2 hyperintensity along the cortico-spinal tract in cirrhosis relates to functional abnormalities. Hepatology 2003, 38, 1026–1033. [Google Scholar] [CrossRef]
- Serena, M.; Biscaro, R.; Moretto, G.; Recchia, E. Peripheral and central nervous system involvement in essential mixed cryoglobulinemia: A case report. Clin. Neuropathol. 1991, 10, 177–180. [Google Scholar]
- Buccoliero, R.; Gambelli, S.; Sicurelli, F.; Malandrini, A.; Palmeri, S.; De Santis, M.; Stromillo, M.L.; De Stefano, N.; Sperduto, A.; Musumeci, S.A.; et al. Leukoencephalopathy as a rare complication of hepatitis C infection. Neurol. Sci. 2006, 27, 360–363. [Google Scholar] [CrossRef]
- Monaco, S.; Ferrari, S.; Gajofatto, A.; Zanusso, G.; Mariotto, S. HCV-Related Nervous System Disorders. Clin. Dev. Immunol. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Moretti, R.; Gazzin, S.; Crocè, L.S.; Baso, B.; Masutti, F.; Bedogni, G.; Tiribelli, C. Rapid identification system of frontal dysfunction in subclinical hepatic encephalopathy. Ann. Hepatol. 2016, 15, 559–567. [Google Scholar]
- Forton, D.M.; Allsop, J.M.; Main, J.; Foster, G.R.; Thomas, H.C.; Taylor-Robinson, S.D. Evidence for a cerebral effect of the hepatitis C virus. Lancet 2001, 358, 38–39. [Google Scholar] [CrossRef]
- Weissenborn, K.; Krause, J.; Bokemeyer, M.; Hecker, H.; Schüler, A.; Ennen, J.C.; Ahl, B.; Manns, M.P.; Böker, K.W. Hepatitis C virus infection affects the brain—evidence from psychometric studies and magnetic resonance spectroscopy. J. Hepatol. 2004, 41, 845–851. [Google Scholar] [CrossRef]
- Perry, W.; Hilsabeck, R.C.; Hassanein, T.I. Cognitive Dysfunction in Chronic Hepatitis C: A Review. Dig. Dis. Sci. 2008, 53, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, N.R.; Koob, G.F. Lesions of the dorsomedial nucleus of the thalamus, medial prefrontal cortex and pedunculopon-tine nucleus: Effects on locomotor activity mediated by nucleus accumbens-ventral pallidal circuitry. Brain Res. 1987, 412, 233–243. [Google Scholar] [CrossRef]
- Cacciarelli, T.V.; Martinez, O.M.; Gish, R.; Villanueva, J.C.; Krams, S.M. Immunoregulatory cytokines in chronic hepatitis C virus infection: Pre- and posttreatment with interferon alfa. Hepatology 1996, 24, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Blatteis, C.M. Human recombinant tumor necrosis factor and interferon affect the activity of neurons in the or-ganum vasculosum laminae terminalis. Brain Res. 1991, 562, 323–326. [Google Scholar] [CrossRef]
- Giuffrè, M.; Moretti, R.; Campisciano, G.; Da Silveira, A.B.M.; Monda, V.M.; Comar, M.; Di Bella, S.; Antonello, R.M.; Luzzati, R.; Crocè, L.S. You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. J. Clin. Med. 2020, 9, 3705. [Google Scholar] [CrossRef] [PubMed]
- Kronfol, Z. Cytokines and the Brain: Implications for Clinical Psychiatry. Am. J. Psychiatry 2000, 157, 683–694. [Google Scholar] [CrossRef]
- Olah, M.; Menon, V.; Habib, N.; Taga, M.F.; Ma, Y.; Yung, C.J.; Cimpean, M.; Khairallah, A.; Coronas-Samano, G.; Sankowski, R.; et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat. Commun. 2020, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yarlott, L.; Heald, E.; Forton, D. Hepatitis C virus infection, and neurological and psychiatric disorders—A review. J. Adv. Res. 2017, 8, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretti, R.; Giuffrè, M.; Merli, N.; Caruso, P.; Di Bella, S.; Tiribelli, C.; Crocè, L.S. Hepatitis C Virus-Related Central and Peripheral Nervous System Disorders. Brain Sci. 2021, 11, 1569. https://doi.org/10.3390/brainsci11121569
Moretti R, Giuffrè M, Merli N, Caruso P, Di Bella S, Tiribelli C, Crocè LS. Hepatitis C Virus-Related Central and Peripheral Nervous System Disorders. Brain Sciences. 2021; 11(12):1569. https://doi.org/10.3390/brainsci11121569
Chicago/Turabian StyleMoretti, Rita, Mauro Giuffrè, Nicola Merli, Paola Caruso, Stefano Di Bella, Claudio Tiribelli, and Lory Saveria Crocè. 2021. "Hepatitis C Virus-Related Central and Peripheral Nervous System Disorders" Brain Sciences 11, no. 12: 1569. https://doi.org/10.3390/brainsci11121569
APA StyleMoretti, R., Giuffrè, M., Merli, N., Caruso, P., Di Bella, S., Tiribelli, C., & Crocè, L. S. (2021). Hepatitis C Virus-Related Central and Peripheral Nervous System Disorders. Brain Sciences, 11(12), 1569. https://doi.org/10.3390/brainsci11121569