Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review
Abstract
:1. Introduction
2. REM Sleep Network and REM Atonia Neurophysiopathology
3. REM Sleep without Atonia (RSWA)
3.1. Polysomnographic Features
3.2. Visual Scoring
3.3. Automatic Scoring
4. Other Neurophysiological Features
4.1. Electroencephalography during Wakefulness and Sleep
4.2. Transcranial Magnetic Stimulation
4.3. Vestibular Evoked Myogenicpotentials
5. Role of Neurophysiological Assessment in the Study of RBD
5.1. Neurophysiology and Neurodegeneration
5.2. Neurophysiology and Other Biomarkers
6. Conclusions and Research Agenda
6.1. Final Remarks
- RBD seems to modify the global neurochemical balance in areas of the central nervous system broader than the specific atonia-generating brainstem circuitry, providing a dynamic model of interaction between the brainstem and both the rostral and caudal CNS structures;
- The complex dynamical interactions between the brainstem and the other structures of the CNS are finely detected by specific neurophysiological markers, with some of them already available to both scientists and clinicians;
- Different visual scoring methods to detect and quantify RSWA have been developed and validated;
- Multiple efforts have been made to develop time-saving computerized methods for the quantification and detection of RSWA;
- EEG, TMS, and VEMP alteration studies, integrated with clinical, neuroimaging, and sleep-related data, provide novel insights into the mechanisms underlying cortical and brainstem dysfunction in RBD and might offer future therapeutic opportunities.
6.2. Research Agenda
- Further larger studies are needed to assess which RSWA visual scoring method is most efficient and which muscle group is better suited to identify and quantify RSWA and distinguish RBD from healthy subjects;
- Although the RAI seems to be the most reliable automatic method for the scoring of RSWA and identification of RBD, additional comparative studies on larger numbers of recordings are required in order to identify and introduce the most accurate algorithm in the scoring guidelines for everyday clinical practice;
- Automated EMG quantification methods currently depend upon visual identification of REM sleep, which is harder in subjects with RSWA, as the internationally accepted criteria to score REM sleep under these circumstances should be agreed upon and required to score sleep in subjects in whom RBD is clinically suspected;
- Longitudinal studies are required to verify whether the neurophysiological abnormalities detected at the early stages of RBD by EEG, TMS, and VEMP correlate with the clinical progression of RBD;
- The real usefulness of advanced analyses of the EEG by means of innovative approaches based on artificial intelligence and artificial neural networks is still unclear and needs a deeper assessment. It is important to note that these methods also depend on the accuracy of the classification of subjects used for their training.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed.; American Academy of Sleep Medicine: Darien, IL, USA, 2014. [Google Scholar]
- Schenck, C.H.; Bundlie, S.R.; Ettinger, M.G.; Mahowald, M.W. Chronic behavioral disorders of human REM sleep: A new category of parasomnia. Sleep 1986, 9, 293–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauvilliers, Y.; Schenck, C.H.; Postuma, R.B.; Iranzo, A.; Luppi, P.H.; Plazzi, G.; Montplaisir, J.; Boeve, B. REM sleep behaviour disorder. Nat. Rev. Dis. Primers 2018, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Antelmi, E.; Pizza, F.; Vandi, S.; Neccia, G.; Ferri, R.; Bruni, O.; Filardi, M.; Cantalupo, G.; Liguori, R.; Plazzi, G. The spectrum of REM sleep-related episodes in children with type 1 narcolepsy. Brain 2017, 140, 1669–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antelmi, E.; Pizza, F.; Donadio, V.; Filardi, M.; Sosero, Y.L.; Incensi, A.; Vandi, S.; Moresco, M.; Ferri, R.; Marelli, S.; et al. Biomarkers for REM sleep behavior disorder in idiopathic and narcoleptic patients. Ann. Clin. Transl. Neurol. 2019, 6, 1872–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauvilliers, Y.; Jennum, P.; Plazzi, G. Rapid eye movement sleep behavior disorder and rapid eye movement sleep without atonia in narcolepsy. Sleep Med. 2013, 14, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Antelmi, E.; Pizza, F.; Franceschini, C.; Ferri, R.; Plazzi, G. REM sleep behavior disorder in narcolepsy: A secondary form or an intrinsic feature? Sleep Med. Rev. 2020, 50, 101254. [Google Scholar] [CrossRef]
- Miglis, M.G.; Adler, C.H.; Antelmi, E.; Arnaldi, D.; Baldelli, L.; Boeve, B.F.; Cesari, M.; Dall’Antonia, I.; Diederich, N.J.; Doppler, K.; et al. Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol. 2021, 20, 671–684. [Google Scholar] [CrossRef]
- Cesari, M.; Heidbreder, A.; St Louis, E.K.; Sixel-Doring, F.; Bliwise, D.L.; Baldelli, L.; Bes, F.; Fantini, M.L.; Iranzo, A.; Knudsen-Heier, S.; et al. Video-polysomnography procedures for diagnosis of rapid eye movement sleep behavior disorder (RBD) and the identification of its prodromal stages: Guidelines from the International RBD Study Group. Sleep 2021. [Google Scholar] [CrossRef]
- Manni, R.; Ratti, P.L.; Terzaghi, M. Secondary “incidental” REM sleep behavior disorder: Do we ever think of it? Sleep Med. 2011, 12 (Suppl. S2), S50–S53. [Google Scholar] [CrossRef]
- Zambelis, T.; Paparrigopoulos, T.; Soldatos, C.R. REM sleep behaviour disorder associated with a neurinoma of the left pontocerebellar angle. J. Neurol. Neurosurg. Psychiatry 2002, 72, 821–822. [Google Scholar] [CrossRef] [Green Version]
- Provini, F.; Vetrugno, R.; Pastorelli, F.; Lombardi, C.; Plazzi, G.; Marliani, A.F.; Lugaresi, E.; Montagna, P. Status dissociatus after surgery for tegmental ponto-mesencephalic cavernoma: A state-dependent disorder of motor control during sleep. Mov. Disord. Off. J. Mov. Disord. Soc. 2004, 19, 719–723. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.; Peever, J. Degeneration of rapid eye movement sleep circuitry underlies rapid eye movement sleep behavior disorder. Mov. Disord. Off. J. Mov. Disord. Soc. 2017, 32, 636–644. [Google Scholar] [CrossRef]
- Jouvet, M. Recherches sur les structures nerveuses et les mecanismes responsables des differentes phases du sommeil physiologique. Arch. Ital. Biol. 1962, 100, 125–206. [Google Scholar]
- Sakai, K.; Koyama, Y. Are there cholinergic and non-cholinergic paradoxical sleep-on neurones in the pons? Neuroreport 1996, 7, 2449–2453. [Google Scholar] [CrossRef] [PubMed]
- Vanni-Mercier, G.; Sakai, K.; Lin, J.S.; Jouvet, M. Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat. Arch. Ital. Biol. 1989, 127, 133–164. [Google Scholar]
- Clement, O.; Sapin, E.; Berod, A.; Fort, P.; Luppi, P.H. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep 2011, 34, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Valencia Garcia, S.; Libourel, P.A.; Lazarus, M.; Grassi, D.; Luppi, P.H.; Fort, P. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder. Brain 2017, 140, 414–428. [Google Scholar] [CrossRef] [Green Version]
- Luppi, P.H.; Fort, P. Sleep-wake physiology. Handb. Clin. Neurol. 2019, 160, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Varin, C.; Luppi, P.H.; Fort, P. Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep 2018, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapin, E.; Lapray, D.; Berod, A.; Goutagny, R.; Leger, L.; Ravassard, P.; Clement, O.; Hanriot, L.; Fort, P.; Luppi, P.H. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS ONE 2009, 4, e4272. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, Y.; Kashiwagi, M.; Yasuda, K.; Ando, R.; Kanuka, M.; Sakai, K.; Itohara, S. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science 2015, 350, 957–961. [Google Scholar] [CrossRef]
- Luppi, P.H.; Clement, O.; Sapin, E.; Gervasoni, D.; Peyron, C.; Leger, L.; Salvert, D.; Fort, P. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Med. Rev. 2011, 15, 153–163. [Google Scholar] [CrossRef]
- McGinty, D.J.; Harper, R.M. Dorsal raphe neurons: Depression of firing during sleep in cats. Brain Res. 1976, 101, 569–575. [Google Scholar] [CrossRef]
- Nakamura, Y.; Goldberg, L.J.; Chandler, S.H.; Chase, M.H. Intracellular analysis of trigeminal motoneuron activity during sleep in the cat. Science 1978, 199, 204–207. [Google Scholar] [CrossRef]
- Brooks, P.L.; Peever, J.H. Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis. J. Neurosci. 2012, 32, 9785–9795. [Google Scholar] [CrossRef]
- Soja, P.J.; Lopez-Rodriguez, F.; Morales, F.R.; Chase, M.H. The postsynaptic inhibitory control of lumbar motoneurons during the atonia of active sleep: Effect of strychnine on motoneuron properties. J. Neurosci. 1991, 11, 2804–2811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, C.; Lai, D.; Siegel, J.; Peever, J. An endogenous glutamatergic drive onto somatic motoneurons contributes to the stereotypical pattern of muscle tone across the sleep-wake cycle. J. Neurosci. 2008, 28, 4649–4660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, Y.Y.; Kodama, T.; Siegel, J.M. Changes in monoamine release in the ventral horn and hypoglossal nucleus linked to pontine inhibition of muscle tone: An in vivo microdialysis study. J. Neurosci. 2001, 21, 7384–7391. [Google Scholar] [CrossRef] [Green Version]
- Fenik, V.B.; Davies, R.O.; Kubin, L. REM sleep-like atonia of hypoglossal (XII) motoneurons is caused by loss of noradrenergic and serotonergic inputs. Am. J. Respir. Crit. Care Med. 2005, 172, 1322–1330. [Google Scholar] [CrossRef] [Green Version]
- Peever, J.; Luppi, P.H.; Montplaisir, J. Breakdown in REM sleep circuitry underlies REM sleep behavior disorder. Trends Neurosci. 2014, 37, 279–288. [Google Scholar] [CrossRef]
- Fraigne, J.J.; Torontali, Z.A.; Snow, M.B.; Peever, J.H. REM Sleep at its Core—Circuits, Neurotransmitters, and Pathophysiology. Front. Neurol. 2015, 6, 123. [Google Scholar] [CrossRef] [Green Version]
- Boissard, R.; Gervasoni, D.; Schmidt, M.H.; Barbagli, B.; Fort, P.; Luppi, P.H. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: A combined microinjection and functional neuroanatomical study. Eur. J. Neurosci. 2002, 16, 1959–1973. [Google Scholar] [CrossRef]
- Peever, J.; Fuller, P.M. Neuroscience: A Distributed Neural Network Controls REM Sleep. Curr. Biol. 2016, 26, R34–R35. [Google Scholar] [CrossRef] [Green Version]
- Torontali, Z.A.; Grace, K.P.; Horner, R.L.; Peever, J.H. Cholinergic involvement in control of REM sleep paralysis. J. Physiol. 2014, 592, 1425–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, F.J.; Williams, R.H.; Hawryluk, J.M.; Lu, J.; Scammell, T.E.; Saper, C.B.; Arrigoni, E. Carbachol excites sublaterodorsal nucleus neurons projecting to the spinal cord. J. Physiol. 2014, 592, 1601–1617. [Google Scholar] [CrossRef] [Green Version]
- Krenzer, M.; Anaclet, C.; Vetrivelan, R.; Wang, N.; Vong, L.; Lowell, B.B.; Fuller, P.M.; Lu, J. Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS ONE 2011, 6, e24998. [Google Scholar] [CrossRef] [PubMed]
- Iranzo, A.; Tolosa, E.; Gelpi, E.; Molinuevo, J.L.; Valldeoriola, F.; Serradell, M.; Sanchez-Valle, R.; Vilaseca, I.; Lomena, F.; Vilas, D.; et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: An observational cohort study. Lancet Neurol. 2013, 12, 443–453. [Google Scholar] [CrossRef]
- Ehrminger, M.; Latimier, A.; Pyatigorskaya, N.; Garcia-Lorenzo, D.; Leu-Semenescu, S.; Vidailhet, M.; Lehericy, S.; Arnulf, I. The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder. Brain 2016, 139, 1180–1188. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Lorenzo, D.; Longo-Dos Santos, C.; Ewenczyk, C.; Leu-Semenescu, S.; Gallea, C.; Quattrocchi, G.; Pita Lobo, P.; Poupon, C.; Benali, H.; Arnulf, I.; et al. The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson’s disease. Brain 2013, 136, 2120–2129. [Google Scholar] [CrossRef]
- Berry, R.B.; Quan, S.F.; Abreu, A.R.; Bibbs, M.L.; DelRosso, L.; Harding, S.M.; Mao, M.-M.; Plante, D.T.; Pressman, M.R.; Troester, M.R.; et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Version 2.6; American Academy of Sleep Medicine: Darien, IL, USA, 2020. [Google Scholar]
- Hoque, R.; Chesson, A.L., Jr. Pharmacologically induced/exacerbated restless legs syndrome, periodic limb movements of sleep, and REM behavior disorder/REM sleep without atonia: Literature review, qualitative scoring, and comparative analysis. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2010, 6, 79–83. [Google Scholar] [CrossRef]
- Postuma, R.B.; Gagnon, J.F.; Tuineaig, M.; Bertrand, J.A.; Latreille, V.; Desjardins, C.; Montplaisir, J.Y. Antidepressants and REM sleep behavior disorder: Isolated side effect or neurodegenerative signal? Sleep 2013, 36, 1579–1585. [Google Scholar] [CrossRef]
- Lee, K.; Baron, K.; Soca, R.; Attarian, H. The Prevalence and Characteristics of REM Sleep without Atonia (RSWA) in Patients Taking Antidepressants. J. Clin. Sleep Med. 2016, 12, 351–355. [Google Scholar] [CrossRef] [Green Version]
- McCarter, S.J.; St Louis, E.K.; Sandness, D.J.; Arndt, K.; Erickson, M.; Tabatabai, G.; Boeve, B.F.; Silber, M.H. Antidepressants Increase REM Sleep Muscle Tone in Patients with and without REM Sleep Behavior Disorder. Sleep 2015, 38, 907–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iranzo, A.; Santamaria, J. Bisoprolol-induced rapid eye movement sleep behavior disorder. Am. J. Med. 1999, 107, 390–392. [Google Scholar] [CrossRef]
- Ferri, R.; Mogavero, M.P.; Bruni, O.; Plazzi, G.; Schenck, C.H.; DelRosso, L.M. Increased Chin Muscle Tone during All Sleep Stages in Children Taking SSRI Antidepressants and in Children with Narcolepsy Type 1. Sleep 2021, 44, zsab147. [Google Scholar] [CrossRef]
- Lapierre, O.; Montplaisir, J. Polysomnographic features of REM sleep behavior disorder: Development of a scoring method. Neurology 1992, 42, 1371–1374. [Google Scholar] [CrossRef]
- Ferri, R.; Gagnon, J.F.; Postuma, R.B.; Rundo, F.; Montplaisir, J.Y. Comparison between an automatic and a visual scoring method of the chin muscle tone during rapid eye movement sleep. Sleep Med. 2014, 15, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Montplaisir, J.; Gagnon, J.F.; Fantini, M.L.; Postuma, R.B.; Dauvilliers, Y.; Desautels, A.; Rompre, S.; Paquet, J. Polysomnographic diagnosis of idiopathic REM sleep behavior disorder. Mov. Disord. Off. J. Mov. Disord. Soc. 2010, 25, 2044–2051. [Google Scholar] [CrossRef]
- Frauscher, B.; Iranzo, A.; Gaig, C.; Gschliesser, V.; Guaita, M.; Raffelseder, V.; Ehrmann, L.; Sola, N.; Salamero, M.; Tolosa, E.; et al. Normative EMG values during REM sleep for the diagnosis of REM sleep behavior disorder. Sleep 2012, 35, 835–847. [Google Scholar] [CrossRef]
- Bliwise, D.L.; Rye, D.B. Elevated PEM (phasic electromyographic metric) rates identify rapid eye movement behavior disorder patients on nights without behavioral abnormalities. Sleep 2008, 31, 853–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarter, S.J.; St Louis, E.K.; Duwell, E.J.; Timm, P.C.; Sandness, D.J.; Boeve, B.F.; Silber, M.H. Diagnostic thresholds for quantitative REM sleep phasic burst duration, phasic and tonic muscle activity, and REM atonia index in REM sleep behavior disorder with and without comorbid obstructive sleep apnea. Sleep 2014, 37, 1649–1662. [Google Scholar] [CrossRef] [Green Version]
- McCarter, S.J.; St Louis, E.K.; Sandness, D.J.; Duwell, E.J.; Timm, P.C.; Boeve, B.F.; Silber, M.H. Diagnostic REM sleep muscle activity thresholds in patients with idiopathic REM sleep behavior disorder with and without obstructive sleep apnea. Sleep Med. 2017, 33, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Figorilli, M.; Ferri, R.; Zibetti, M.; Beudin, P.; Puligheddu, M.; Lopiano, L.; Cicolin, A.; Durif, F.; Marques, A.; Fantini, M.L. Comparison Between Automatic and Visual Scorings of REM Sleep Without Atonia for the Diagnosis of REM Sleep Behavior Disorder in Parkinson Disease. Sleep 2017, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarter, S.J.; Sandness, D.J.; McCarter, A.R.; Feemster, J.C.; Teigen, L.N.; Timm, P.C.; Boeve, B.F.; Silber, M.H.; St Louis, E.K. REM sleep muscle activity in idiopathic REM sleep behavior disorder predicts phenoconversion. Neurology 2019, 93, e1171–e1179. [Google Scholar] [CrossRef]
- Figorilli, M.; Marques, A.R.; Meloni, M.; Zibetti, M.; Pereira, B.; Lambert, C.; Puligheddu, M.; Cicolin, A.; Lopiano, L.; Durif, F.; et al. Diagnosing REM sleep behavior disorder in Parkinson’s disease without a gold standard: A latent-class model study. Sleep 2020, 43, zsz323. [Google Scholar] [CrossRef]
- Nepozitek, J.; Dostalova, S.; Dusek, P.; Kemlink, D.; Prihodova, I.; Ibarburu Lorenzo, Y.L.V.; Friedrich, L.; Bezdicek, O.; Nikolai, T.; Perinova, P.; et al. Simultaneous tonic and phasic REM sleep without atonia best predicts early phenoconversion to neurodegenerative disease in idiopathic REM sleep behavior disorder. Sleep 2019, 42, zsz132. [Google Scholar] [CrossRef]
- Ferri, R.; Marelli, S.; Cosentino, F.I.; Rundo, F.; Ferini-Strambi, L.; Zucconi, M. Night-to-night variability of automatic quantitative parameters of the chin EMG amplitude (Atonia Index) in REM sleep behavior disorder. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2013, 9, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Ferri, R.; Manconi, M.; Plazzi, G.; Bruni, O.; Vandi, S.; Montagna, P.; Ferini-Strambi, L.; Zucconi, M. A quantitative statistical analysis of the submentalis muscle EMG amplitude during sleep in normal controls and patients with REM sleep behavior disorder. J. Sleep Res. 2008, 17, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Ferri, R.; Rundo, F.; Manconi, M.; Plazzi, G.; Bruni, O.; Oldani, A.; Ferini-Strambi, L.; Zucconi, M. Improved computation of the atonia index in normal controls and patients with REM sleep behavior disorder. Sleep Med. 2010, 11, 947–949. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, K.; Kimura, N.; Iyama, A.; Sakoda, S. Automatic Quantification of Muscular Activity in Rapid Eye Movement Sleep. Adv. Biomed. Eng. 2015, 4, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Frauscher, B.; Gabelia, D.; Biermayr, M.; Stefani, A.; Hackner, H.; Mitterling, T.; Poewe, W.; Hogl, B. Validation of an integrated software for the detection of rapid eye movement sleep behavior disorder. Sleep 2014, 37, 1663–1671. [Google Scholar] [CrossRef] [Green Version]
- Cesari, M.; Christensen, J.A.E.; Sorensen, H.B.D.; Jennum, P.; Mollenhauer, B.; Muntean, M.L.; Trenkwalder, C.; Sixel-Doring, F. External validation of a data-driven algorithm for muscular activity identification during sleep. J. Sleep Res. 2019, 28, e12868. [Google Scholar] [CrossRef] [PubMed]
- Frauscher, B.; Ehrmann, L.; Hogl, B. Defining muscle activities for assessment of rapid eye movement sleep behavior disorder: From a qualitative to a quantitative diagnostic level. Sleep Med. 2013, 14, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Neikrug, A.B.; Ancoli-Israel, S. Diagnostic tools for REM sleep behavior disorder. Sleep Med. Rev. 2012, 16, 415–429. [Google Scholar] [CrossRef] [Green Version]
- Ferri, R.; Bruni, O.; Fulda, S.; Zucconi, M.; Plazzi, G. A quantitative analysis of the submentalis muscle electromyographic amplitude during rapid eye movement sleep across the lifespan. J. Sleep Res. 2012, 21, 257–263. [Google Scholar] [CrossRef]
- Ferri, R.; Fulda, S.; Cosentino, F.I.; Pizza, F.; Plazzi, G. A preliminary quantitative analysis of REM sleep chin EMG in Parkinson’s disease with or without REM sleep behavior disorder. Sleep Med. 2012, 13, 707–713. [Google Scholar] [CrossRef]
- Ferri, R.; Franceschini, C.; Zucconi, M.; Vandi, S.; Poli, F.; Bruni, O.; Cipolli, C.; Montagna, P.; Plazzi, G. Searching for a marker of REM sleep behavior disorder: Submentalis muscle EMG amplitude analysis during sleep in patients with narcolepsy/cataplexy. Sleep 2008, 31, 1409–1417. [Google Scholar]
- Olesen, A.N.; Cesari, M.; Christensen, J.A.E.; Sorensen, H.B.D.; Mignot, E.; Jennum, P. A comparative study of methods for automatic detection of rapid eye movement abnormal muscular activity in narcolepsy. Sleep Med. 2018, 44, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, J.W.; Consens, F.B.; Little, R.J.; Angell, K.J.; Gilman, S.; Chervin, R.D. EMG variance during polysomnography as an assessment for REM sleep behavior disorder. Sleep 2007, 30, 1771–1778. [Google Scholar] [CrossRef] [Green Version]
- Mayer, G.; Kesper, K.; Ploch, T.; Canisius, S.; Penzel, T.; Oertel, W.; Stiasny-Kolster, K. Quantification of tonic and phasic muscle activity in REM sleep behavior disorder. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2008, 25, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Kempfner, J.; Sorensen, H.B.; Nikolic, M.; Jennum, P. Early automatic detection of Parkinson’s disease based on sleep recordings. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2014, 31, 409–415. [Google Scholar] [CrossRef]
- Frandsen, R.; Nikolic, M.; Zoetmulder, M.; Kempfner, L.; Jennum, P. Analysis of automated quantification of motor activity in REM sleep behaviour disorder. J. Sleep Res. 2015, 24, 583–590. [Google Scholar] [CrossRef]
- Jeppesen, J.; Otto, M.; Frederiksen, Y.; Hansen, A.K.; Fedorova, T.D.; Knudsen, K.; Nahimi, A.; Brooks, D.J.; Borghammer, P.; Sommerauer, M. Observations on muscle activity in REM sleep behavior disorder assessed with a semi-automated scoring algorithm. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2018, 129, 541–547. [Google Scholar] [CrossRef]
- Fairley, J.A.; Georgoulas, G.; Stylios, C.D.; Vachtsevanos, G.; Rye, D.B.; Bliwise, D.L. Phasic Electromyographic Metric detection based on wavelet analysis. In Proceedings of the 2011 19th Mediterranean Conference on Control & Automation (MED), Corfu, Greece, 20–23 June 2011. [Google Scholar] [CrossRef] [Green Version]
- Milerska, I.; Kremen, V.; Gerla, V.; St Louis, E.K.; Lhotska, L. Semi-automated Detection of Polysomnographic REM Sleep without Atonia (RSWA) in REM Sleep Behavioral Disorder. Biomed. Signal Process. Control 2019, 51, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Cooray, N.; Andreotti, F.; Lo, C.; Symmonds, M.; Hu, M.T.M.; De Vos, M. Detection of REM sleep behaviour disorder by automated polysomnography analysis. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2019, 130, 505–514. [Google Scholar] [CrossRef]
- Cooray, N.; Andreotti, F.; Lo, C.; Symmonds, M.; Hu, M.T.M.; De Vos, M. Proof of concept: Screening for REM sleep behaviour disorder with a minimal set of sensors. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2021, 132, 904–913. [Google Scholar] [CrossRef]
- Cesari, M.; Christensen, J.A.E.; Sixel-Doring, F.; Trenkwalder, C.; Mayer, G.; Oertel, W.H.; Jennum, P.; Sorensen, H.B.D. Validation of a new data-driven automated algorithm for muscular activity detection in REM sleep behavior disorder. J. Neurosci. Methods 2019, 312, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Christensen, J.A.E.; Muntean, M.L.; Mollenhauer, B.; Sixel-Doring, F.; Sorensen, H.B.D.; Trenkwalder, C.; Jennum, P. A data-driven system to identify REM sleep behavior disorder and to predict its progression from the prodromal stage in Parkinson’s disease. Sleep Med. 2021, 77, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Christensen, J.A.E.; Kempfner, L.; Olesen, A.N.; Mayer, G.; Kesper, K.; Oertel, W.H.; Sixel-Doring, F.; Trenkwalder, C.; Sorensen, H.B.D.; et al. Comparison of computerized methods for rapid eye movement sleep without atonia detection. Sleep 2018, 41, zsy133. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D. Cognitive impairment in Parkinson’s disease and dementia with Lewy bodies. Parkinsonism Relat. Disord. 2016, 22 (Suppl. S1), S144–S148. [Google Scholar] [CrossRef]
- Ferini-Strambi, L.; Fasiello, E.; Sforza, M.; Salsone, M.; Galbiati, A. Neuropsychological, electrophysiological, and neuroimaging biomarkers for REM behavior disorder. Expert Rev. Neurother. 2019, 19, 1069–1087. [Google Scholar] [CrossRef]
- Valomon, A.; Riedner, B.A.; Jones, S.G.; Nakamura, K.P.; Tononi, G.; Plante, D.T.; Benca, R.M.; Boly, M. A high-density electroencephalography study reveals abnormal sleep homeostasis in patients with rapid eye movement sleep behavior disorder. Sci. Rep. 2021, 11, 4758. [Google Scholar] [CrossRef]
- Ferri, R.; Rundo, F.; Silvani, A.; Zucconi, M.; Bruni, O.; Ferini-Strambi, L.; Plazzi, G.; Manconi, M. REM Sleep EEG Instability in REM Sleep Behavior Disorder and Clonazepam Effects. Sleep 2017, 40, zsx080. [Google Scholar] [CrossRef] [Green Version]
- Parrino, L.; Ferri, R.; Bruni, O.; Terzano, M.G. Cyclic alternating pattern (CAP): The marker of sleep instability. Sleep Med. Rev. 2012, 16, 27–45. [Google Scholar] [CrossRef]
- Ferri, R.; Zucconi, M.; Marelli, S.; Plazzi, G.; Schenck, C.H.; Ferini-Strambi, L. Effects of long-term use of clonazepam on nonrapid eye movement sleep patterns in rapid eye movement sleep behavior disorder. Sleep Med. 2013, 14, 399–406. [Google Scholar] [CrossRef]
- Kutlu, A.; Iseri, P.; Selekler, M.; Benbir, G.; Karadeniz, D. Cyclic alternating pattern analysis in REM sleep behavior disorder. Sleep Breath. Schlaf Atm. 2013, 17, 209–215. [Google Scholar] [CrossRef]
- Melpignano, A.; Parrino, L.; Santamaria, J.; Gaig, C.; Trippi, I.; Serradell, M.; Mutti, C.; Ricco, M.; Iranzo, A. Isolated rapid eye movement sleep behavior disorder and cyclic alternating pattern: Is sleep microstructure a predictive parameter of neurodegeneration? Sleep 2019, 42, zsz142. [Google Scholar] [CrossRef]
- O’Reilly, C.; Godin, I.; Montplaisir, J.; Nielsen, T. REM sleep behaviour disorder is associated with lower fast and higher slow sleep spindle densities. J. Sleep Res. 2015, 24, 593–601. [Google Scholar] [CrossRef]
- Christensen, J.A.; Kempfner, J.; Zoetmulder, M.; Leonthin, H.L.; Arvastson, L.; Christensen, S.R.; Sorensen, H.B.; Jennum, P. Decreased sleep spindle density in patients with idiopathic REM sleep behavior disorder and patients with Parkinson’s disease. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2014, 125, 512–519. [Google Scholar] [CrossRef]
- Ruffini, G.; Ibañez, D.; Castellano, M.; Dubreuil-Vall, L.; Soria-Frisch, A.; Postuma, R.; Gagnon, J.F.; Montplaisir, J. Deep Learning With EEG Spectrograms in Rapid Eye Movement Behavior Disorder. Front. Neurol. 2019, 10, 806. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Koch, G.; Hillis, A.E.; Huynh, W.; Ward, N.S.; Vucic, S.; Kiernan, M.C. Interrogating cortical function with transcranial magnetic stimulation: Insights from neurodegenerative disease and stroke. J. Neurol. Neurosurg. Psychiatry 2019, 90, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Di Lazzaro, V.; Bella, R.; Benussi, A.; Bologna, M.; Borroni, B.; Capone, F.; Chen, K.S.; Chen, R.; Chistyakov, A.V.; Classen, J.; et al. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2021, 132, 2568–2607. [Google Scholar] [CrossRef]
- Nardone, R.; Sebastianelli, L.; Versace, V.; Brigo, F.; Golaszewski, S.; Pucks-Faes, E.; Saltuari, L.; Trinka, E. Effects of repetitive transcranial magnetic stimulation in subjects with sleep disorders. Sleep Med. 2020, 71, 113–121. [Google Scholar] [CrossRef]
- Lanza, G. Repetitive TMS for sleep disorders: Are we ready? Sleep Med. 2020, 71, 111–112. [Google Scholar] [CrossRef]
- Lanza, G. Repetitive TMS for the “cognitive tsunami” of sleep deprivation. Sleep Med. 2021, 77, 279–280. [Google Scholar] [CrossRef]
- Cantone, M.; Lanza, G.; Vinciguerra, L.; Puglisi, V.; Ricceri, R.; Fisicaro, F.; Vagli, C.; Bella, R.; Ferri, R.; Pennisi, G.; et al. Age, Height, and Sex on Motor Evoked Potentials: Translational Data From a Large Italian Cohort in a Clinical Environment. Front. Hum. Neurosci. 2019, 13, 185. [Google Scholar] [CrossRef]
- Fisicaro, F.; Lanza, G.; Cantone, M.; Ferri, R.; Pennisi, G.; Nicoletti, A.; Zappia, M.; Bella, R.; Pennisi, M. Clinical and Electrophysiological Hints to TMS in De Novo Patients with Parkinson’s Disease and Progressive Supranuclear Palsy. J. Pers. Med. 2020, 10, 274. [Google Scholar] [CrossRef]
- Nardone, R.; Brigo, F.; Versace, V.; Holler, Y.; Tezzon, F.; Saltuari, L.; Trinka, E.; Sebastianelli, L. Cortical afferent inhibition abnormalities reveal cholinergic dysfunction in Parkinson’s disease: A reappraisal. J. Neural Transm. 2017, 124, 1417–1429. [Google Scholar] [CrossRef]
- Lanza, G.; Ferri, R. The neurophysiology of hyperarousal in restless legs syndrome: Hints for a role of glutamate/GABA. Adv. Pharmacol. 2019, 84, 101–119. [Google Scholar] [CrossRef]
- Lanza, G.; Lanuzza, B.; Arico, D.; Cantone, M.; Cosentino, F.I.I.; Bella, R.; Pennisi, G.; Ferri, R.; Pennisi, M. Impaired short-term plasticity in restless legs syndrome: A pilot rTMS study. Sleep Med. 2018, 46, 1–4. [Google Scholar] [CrossRef]
- Magalhaes, S.C.; Kaelin-Lang, A.; Sterr, A.; do Prado, G.F.; Eckeli, A.L.; Conforto, A.B. Transcranial magnetic stimulation for evaluation of motor cortical excitability in restless legs syndrome/Willis-Ekbom disease. Sleep Med. 2015, 16, 1265–1273. [Google Scholar] [CrossRef]
- Cantone, M.; Lanza, G.; Ranieri, F.; Opie, G.M.; Terranova, C. Editorial: Non-invasive Brain Stimulation in the Study and Modulation of Metaplasticity in Neurological Disorders. Front. Neurol. 2021, 12, 721906. [Google Scholar] [CrossRef]
- Lanza, G.; Scalise, A. The present and the future of Transcranial Magnetic Stimulation in Restless Legs Syndrome. Sleep Med. 2020, 71, 122–123. [Google Scholar] [CrossRef]
- Bares, M.; Kanovsky, P.; Klajblova, H.; Rektor, I. Intracortical inhibition and facilitation are impaired in patients with early Parkinson’s disease: A paired TMS study. Eur. J. Neurol. 2003, 10, 385–389. [Google Scholar] [CrossRef]
- Lefaucheur, J.P. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson’s disease: Influence of antiparkinsonian treatment and cortical stimulation. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2005, 116, 244–253. [Google Scholar] [CrossRef]
- Vacherot, F.; Attarian, S.; Vaugoyeau, M.; Azulay, J.P. A motor cortex excitability and gait analysis on Parkinsonian patients. Mov. Disord. Off. J. Mov. Disord. Soc. 2010, 25, 2747–2755. [Google Scholar] [CrossRef]
- Kacar, A.; Filipovic, S.R.; Kresojevic, N.; Milanovic, S.D.; Ljubisavljevic, M.; Kostic, V.S.; Rothwell, J.C. History of exposure to dopaminergic medication does not affect motor cortex plasticity and excitability in Parkinson’s disease. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2013, 124, 697–707. [Google Scholar] [CrossRef]
- Leon-Sarmiento, F.E.; Rizzo-Sierra, C.V.; Bayona, E.A.; Bayona-Prieto, J.; Doty, R.L.; Bara-Jimenez, W. Novel mechanisms underlying inhibitory and facilitatory transcranial magnetic stimulation abnormalities in Parkinson’s disease. Arch. Med Res. 2013, 44, 221–228. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ohira, T.; Mihara, B.; Fujimaki, T. Changes in intracortical inhibition and clinical symptoms after STN-DBS in Parkinson’s disease. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2016, 127, 2031–2037. [Google Scholar] [CrossRef]
- Fernandez-Lago, H.; Bello, O.; Mora-Cerda, F.; Montero-Camara, J.; Fernandez-Del-Olmo, M.A. Treadmill Walking Combined With Anodal Transcranial Direct Current Stimulation in Parkinson Disease: A Pilot Study of Kinematic and Neurophysiological Effects. Am. J. Phys. Med. Rehabil. 2017, 96, 801–808. [Google Scholar] [CrossRef]
- Nardone, R.; Bergmann, J.; Kunz, A.; Christova, M.; Brigo, F.; Tezzon, F.; Trinka, E.; Golaszewski, S. Cortical afferent inhibition is reduced in patients with idiopathic REM sleep behavior disorder and cognitive impairment: A TMS study. Sleep Med. 2012, 13, 919–925. [Google Scholar] [CrossRef]
- Nardone, R.; Bergmann, J.; Brigo, F.; Christova, M.; Kunz, A.; Seidl, M.; Tezzon, F.; Trinka, E.; Golaszewski, S. Functional evaluation of central cholinergic circuits in patients with Parkinson’s disease and REM sleep behavior disorder: A TMS study. J. Neural Transm. 2013, 120, 413–422. [Google Scholar] [CrossRef]
- Lanza, G.; Arico, D.; Lanuzza, B.; Cosentino, F.I.I.; Tripodi, M.; Giardina, F.; Bella, R.; Puligheddu, M.; Pennisi, G.; Ferri, R.; et al. Facilitatory/inhibitory intracortical imbalance in REM sleep behavior disorder: Early electrophysiological marker of neurodegeneration? Sleep 2020, 43, zsz242. [Google Scholar] [CrossRef]
- Kohyama, J. REM sleep atonia: Responsible brain regions, quantification, and clinical implication. Brain Dev. 2000, 22 (Suppl. S1), S136–S142. [Google Scholar] [CrossRef]
- Magnano, I.; Pes, G.M.; Cabboi, M.P.; Pilurzi, G.; Ginatempo, F.; Achene, A.; Salis, A.; Conti, M.; Deriu, F. Comparison of brainstem reflex recordings and evoked potentials with clinical and MRI data to assess brainstem dysfunction in multiple sclerosis: A short-term follow-up. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2016, 37, 1457–1465. [Google Scholar] [CrossRef]
- De Natale, E.R.; Ginatempo, F.; Laccu, I.; Figorilli, M.; Manca, A.; Mercante, B.; Puligheddu, M.; Deriu, F. Vestibular Evoked Myogenic Potentials Are Abnormal in Idiopathic REM Sleep Behavior Disorder. Front. Neurol. 2018, 9, 911. [Google Scholar] [CrossRef]
- De Natale, E.R.; Ginatempo, F.; Paulus, K.S.; Pes, G.M.; Manca, A.; Tolu, E.; Agnetti, V.; Deriu, F. Abnormalities of vestibular-evoked myogenic potentials in idiopathic Parkinson’s disease are associated with clinical evidence of brainstem involvement. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2015, 36, 995–1001. [Google Scholar] [CrossRef]
- Puligheddu, M.; Figorilli, M.; Serra, A.; Laccu, I.; Congiu, P.; Tamburrino, L.; de Natale, E.R.; Ginatempo, F.; Deriu, F.; Loi, G.; et al. REM Sleep without atonia correlates with abnormal vestibular-evoked myogenic potentials in isolated REM sleep behavior disorder. Sleep 2019, 42, zsz128. [Google Scholar] [CrossRef]
- Pereira, J.B.; Weintraub, D.; Chahine, L.; Aarsland, D.; Hansson, O.; Westman, E. Cortical thinning in patients with REM sleep behavior disorder is associated with clinical progression. NPJ Parkinson’s Dis. 2019, 5, 7. [Google Scholar] [CrossRef]
- Dugger, B.N.; Murray, M.E.; Boeve, B.F.; Parisi, J.E.; Benarroch, E.E.; Ferman, T.J.; Dickson, D.W. Neuropathological analysis of brainstem cholinergic and catecholaminergic nuclei in relation to rapid eye movement (REM) sleep behaviour disorder. Neuropathol. Appl. Neurobiol. 2012, 38, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Cipolli, C.; Ferrara, M.; De Gennaro, L.; Plazzi, G. Beyond the neuropsychology of dreaming: Insights into the neural basis of dreaming with new techniques of sleep recording and analysis. Sleep Med. Rev. 2017, 35, 8–20. [Google Scholar] [CrossRef]
- Iranzo, A.; Santamaria, J.; Rye, D.B.; Valldeoriola, F.; Marti, M.J.; Munoz, E.; Vilaseca, I.; Tolosa, E. Characteristics of idiopathic REM sleep behavior disorder and that associated with MSA and PD. Neurology 2005, 65, 247–252. [Google Scholar] [CrossRef]
- Berg, D.; Borghammer, P.; Fereshtehnejad, S.M.; Heinzel, S.; Horsager, J.; Schaeffer, E.; Postuma, R.B. Prodromal Parkinson disease subtypes—Key to understanding heterogeneity. Nat. Rev. Neurol. 2021, 17, 349–361. [Google Scholar] [CrossRef]
Study | Method | Marker Type | RBD Sample Size | Accuracy |
---|---|---|---|---|
Visual methods | ||||
McCarter et al., 2014 [53] McCarter et al., 2017 [54] | AASM [41] | Diagnostic Diagnostic | 35 | 0.750–0.978 |
McCarter et al., 2014 [53] McCarter et al., 2015 [45] McCarter et al., 2017 [54] | Mayo Clinic [53] | Diagnostic Diagnostic Diagnostic | 65 | 0.817–1.000 |
McCarter et al., 2019 [56] | Prognostic | 60 | 0.563–0.925 | |
Ferri et al., 2014 [49] Figorilli et al., 2017 [55] Figorilli et al., 2020 [57] | Montreal Group [48] | Diagnostic Diagnostic Diagnostic | 270 | 0.597–1.000 |
Figorilli et al., 2017 [55] Figorilli et al., 2020 [57] Nepozitek et al., 2019 [58] | SINBAR [51] | Diagnostic Diagnostic Diagnostic | 203 | 0.548–0.952 |
Automatic methods | ||||
Ferri et al., 2013 [59] Ferri et al., 2014 [49] Figorilli et al., 2017 [55] McCarter et al., 2014 [53] McCarter et al., 2015 [45] McCarter et al., 2017 [54] | RAI [60,61] | Diagnostic Diagnostic Diagnostic Diagnostic Diagnostic Diagnostic | 214 | 0.633–1.000 |
Yoshino et al., 2015 [62] | AASM [62] | Diagnostic | 24 | 0.854 |
Frauscher et al., 2014 [63] | SINBAR [63] | Diagnostic | 20 | 0.563–0.925 |
Cesari et al., 2019 [64] | Danish Center [64] | Diagnostic | 31 | 0.842 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figorilli, M.; Lanza, G.; Congiu, P.; Lecca, R.; Casaglia, E.; Mogavero, M.P.; Puligheddu, M.; Ferri, R. Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sci. 2021, 11, 1588. https://doi.org/10.3390/brainsci11121588
Figorilli M, Lanza G, Congiu P, Lecca R, Casaglia E, Mogavero MP, Puligheddu M, Ferri R. Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sciences. 2021; 11(12):1588. https://doi.org/10.3390/brainsci11121588
Chicago/Turabian StyleFigorilli, Michela, Giuseppe Lanza, Patrizia Congiu, Rosamaria Lecca, Elisa Casaglia, Maria P. Mogavero, Monica Puligheddu, and Raffaele Ferri. 2021. "Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review" Brain Sciences 11, no. 12: 1588. https://doi.org/10.3390/brainsci11121588
APA StyleFigorilli, M., Lanza, G., Congiu, P., Lecca, R., Casaglia, E., Mogavero, M. P., Puligheddu, M., & Ferri, R. (2021). Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sciences, 11(12), 1588. https://doi.org/10.3390/brainsci11121588