Assessment of the Kinematic Adaptations in Parkinson’s Disease Using the Gait Profile Score: Influences of Trunk Posture, a Pilot Study
Abstract
:1. Introduction
2. Materials and Method
2.1. Participants
2.2. Procedures
2.3. Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frazzitta, G.; Pezzoli, G.; Bertotti, G.; Maestri, R. Asymmetry and freezing of gait in parkinsonian people. J. Neurol. 2012, 260, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Curtze, C.; Nutt, J.G.; Carlson-Kuhta Patricia Mancini, M.; Horak, F.B. Levodopa Is a Double-Edged Sword for Balance and Gait in People with Parkinson’s Disease. Mov. Disord. 2015, 30, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Carpinella, I.; Crenna, P.; Calabrese, E.; Rabuffetti, M.; Mazzoleni, P.; Nemni, R.; Ferrarin, M. Locomotor function in the early stage of Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Smulders, K.; Esselink, R.A.J.; Weiss, A.; Kessels, R.P.C.; Geurts, A.C.H.; Bloem, B.R. Assessment of dual tasking has no clinical value for fall prediction in Parkinson’s disease. J. Neurol. 2012, 259, 1840–1847. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.H.; Naughton, G.A.; Silburn, P.A. Neuromuscular Impairments Are Associated with Impaired Head and Trunk Stability during Gait in Parkinson Fallers. Neurorehabilit. Neural Repair 2017, 31, 34–47. [Google Scholar] [CrossRef]
- Lindholm, B.; Hagell, P.; Hansson, O.; Nilsson, M.H. Prediction of Falls and/or Near Falls in People with Mild Parkinson’s Disease. PLoS ONE 2015, 10, e0117018. [Google Scholar]
- Alster, P.; Madetko, N.; Koziorowski, D.; Friedman, A. Progressive Supranuclear Palsy-Parkinsonism Predominant (PSP-P)-A Clinical Challenge at the Boundaries of PSP and Parkinson’s Disease (PD). Front. Neurol. 2020, 11, 180. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.; Leddy, A.L.; Cavanaugh, J.T.; Dibble, L.E.; Ellis, T.D.; Ford, M.P.; Foreman, K.B.; Earhart, G.M. Detecting and Predicting Balance Decline in Parkinson Disease: A Prospective Cohort Study Ryan. J. Park. Dis. 2015, 5, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.H.; Silburn, P.A.; Wood, J.M.; Kerr, G.K. Falls in Parkinson’s disease: Evidence for altered stepping strategies on compliant surfaces. Park. Relat. Disord. 2011, 17, 610–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, J.; Burnfield, J. Gait Analysis: Normal and Pathological Function, 2nd ed.; SLACK Incorporated: Thorofare, NJ, USA, 2010; 572p. [Google Scholar]
- Aminiaghdam, S.; Rode, C.; Müller, R.; Blickhan, R. Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology. J. Exp. Biol. 2017, 220, 478–486. [Google Scholar] [PubMed] [Green Version]
- Jacobs, J.V.; Dimitrova, D.M.; Nutt, J.G.; Horak, F.B. Can stooped posture explain multidirectional postural instability in people with Parkinson’ s disease? Exp. Brain Res. 2005, 166, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Geroin, C.; Smania, N.; Schena, F.; Dimitrova, E.; Verzini, E.; Bombieri, F.; Nardello, F.; Tinazzi, M.; Gandolfi, M. Does the Pisa syndrome affect postural control, balance, and gait in people with Parkinson’s disease? An observational cross-sectional study. Park. Relat. Disord. 2015, 21, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Tramonti, C.; Di Martino, S.; Unti, E.; Frosini, D.; Bonuccelli, U.; Rossi, B.; Ceravolo, R.; Chisari, C. Gait dynamics in Pisa syndrome and Camptocormia: The role of stride length and hip kinematics. Gait Posture 2017, 57, 130–135. [Google Scholar] [CrossRef]
- Baker, R.; McGinley, J.L.; Schwartz, M.H.; Beynon, S.; Rozumalski, A.; Graham, H.K.; Tirosh, O. The Gait Profile Score and Movement Analysis Profile. Gait Posture 2009, 30, 265–269. [Google Scholar] [CrossRef]
- Beynon, S.; McGinley, J.L.; Dobson, F.; Baker, R. Correlations of the Gait Profile Score and the Movement Analysis Profile relative to clinical judgments. Gait Posture 2010, 32, 129–132. [Google Scholar] [CrossRef]
- McMulkin, M.L.; MacWilliams, B.A. Application of the Gillette Gait Index, Gait Deviation Index and Gait Profile Score to multiple clinical pediatric populations. Gait Posture 2015, 41, 608–612. [Google Scholar] [CrossRef]
- Bueno, G.A.S.; Gervásio, F.M.; Ribeiro, D.M.; Martins, A.C.; Lemos, T.V.; de Menezes, R.L. Fear of Falling Contributing to Cautious Gait Pattern in Women Exposed to a Fictional Disturbing Factor: A Non-randomized Clinical Trial. Front. Neurol. 2019, 10, 283. [Google Scholar] [CrossRef] [PubMed]
- Devetak, G.F.; Martello, S.K.; de Almeida, J.C.; Correa, K.P.; Iucksch, D.D.; Manffra, E.F. Reliability and minimum detectable change of the gait profile score for post-stroke people. Gait Posture 2016, 49, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Speciali, D.S.; Oliveira, E.M.; Pereira, F.; Oliveira, C.S.; Corrêa, J.C.F.; Lucareli, P.R.G. The Movement Analysis Profile and Gait Profile Score in people with Parkinson’s disease during dual task. Gait Posture 2012, 36, S84. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression, and mortality Parkinsonism: Onset, progression, and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of people for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Cecato, J.F.; Montiel, J.M.; Bartholomeu, D.; Martinelli, J.E. Poder preditivo do MoCa na avaliação neuropsicológica de pacientes com diagnóstico de demência. Rev. Bras. Geriatr. Gerontol. 2014, 17, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Vicon Motion Systems. Plug-in Gait Reference Guide; Vicon Motion Systems: Oxfordshire, UK, 2016. [Google Scholar]
- Aday, L.A.; Cornelius, L.J. Designing and Conducting Health Surveys: A Comprehensive Guide, 3rd ed.; Jossey-Bass: San Francisco, CA, USA, 2006; Available online: https://scholar.google.com/scholar_lookup?title=Designing+and+Conducting+Health+Surveys:+A+Comprehensive+Guide.+3a&author=LA+Aday&author=LJ+Cornelius&publication_year=2006& (accessed on 3 November 2021).
- Pistacchi, M.; Gioulis, M.; Sanson, F.; de Giovannini, E.; Filippi, G.; Rossetto, F.; Marsala, S.Z. Gait analysis and clinical correlations in early Parkinson’s disease. Funct. Neurol. 2017, 32, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Moreau, C.; Cantiniaux, S.; Delval, A.; Defebvre, L.; Azulay, J.P. Les troubles de la marche dans la maladie de Parkinson: Problématique clinique et physiopathologique. Rev. Neurol. 2010, 166, 158–167. [Google Scholar] [CrossRef]
- Schmitt, A.C.; Daniels, J.N.; Baudendistel, S.T.; Okun, M.S.; Hass, C.J. The Primary Gait Screen in Parkinson’ s disease: Comparison to standardized measures. Gait Posture 2019, 73, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Hass, C.; Malczak, P.; Nocera, J.; Stegemoller, E.; Shukala, A.; Malaty, I.; Jacobson, C.E.; Okun, M.; McFarland, N. Quantitative Normative Gait Data in a Large Cohort of Ambulatory Persons with Parkinson’ s Disease. PLoS ONE 2012, 7, e42337. [Google Scholar] [CrossRef]
- Hass, C.J.; Bishop, M.; Moscovich, M.; Stegemöller, E.L.; Skinner, J.; Malaty, I.A.; Shukla, A.W.; McFarland, N.; Okun, M.S. Defining the clinically meaningful difference in gait speed in persons with Parkinson disease. J. Neurol. Phys. Ther. 2014, 38, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Hunt, M.; Foreman, K.B.; Zhao, J.; Merryweather, A. Clinical Biomechanics Gait alterations on irregular surface in people with Parkinson’ s disease. Clin. Biomech. 2018, 57, 93–98. [Google Scholar] [CrossRef]
- Cole, M.H.; Silburn, P.A.; Wood, J.M.; Worringham, C.J.; Kerr, G.K. Falls in Parkinson’s disease: Kinematic evidence for impaired head and trunk control. Mov. Disord. 2010, 25, 2369–2378. [Google Scholar] [CrossRef] [Green Version]
- Hausdorff, J.M.; Cudkowicz, M.E.; Firtion, R. Gait variability and basal ganglia disorders. Mov. Disord. 1998, 13, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Sofuwa, O.; Nieuwboer, A.; Desloovere, K.; Willems, A.M.; Chavret, F.; Jonkers, I. Quantitative gait analysis in Parkinson’s disease: Comparison with a healthy control group. Arch. Phys. Med. Rehabil. 2005, 86, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- Paker, N.; Bugdayci, D.; Goksenoglu, G.; Tekdos, D.; Kesiktas, N.; Ince, N. Gait speed and related factors in Parkinson’ s disease. J. Phys. Ther. Sci. 2015, 27, 3675–3679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Arias, M.D.R.; Silveira, C.R.A.; Caetano, M.J.D.; Pieruccini-Faria, F.; Gobbi, L.T.B.; Stella, F. Gait spatial and temporal predictors for functional capacity tests in Parkinson’ s disease people. Rev. Bras. Fisioter. 2008, 12, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Erra, C.; Mileti, I.; Germanotta, M.; Petracca, M.; Imbimbo, I.; De Biase, A.; Rossi, S.; Ricciardi, D.; Pacilli, A.; Di Sipio, E.; et al. Immediate effects of rhythmic auditory stimulation on gait kinematics in Parkinson’ s disease ON/OFF medication. Clin. Neurophysiol. 2019, 130, 1789–1797. [Google Scholar] [CrossRef]
- Morris, M.E.; Mcginley, J.; Huxham, F.; Collier, J.; Iansek, R. Constraints on the kinetic, kinematic and spatiotemporal parameters of gait in Parkinson’ s disease. Hum. Mov. Sci. 1999, 18, 461–483. [Google Scholar] [CrossRef]
- Lewis, G.N.; Byblow, W.D.; Walt, S.E. Stride length regulation in Parkinson’ s disease: The use of extrinsic, visual cues. Brain 2000, 123, 2077–2090. [Google Scholar] [CrossRef] [Green Version]
- Speciali, D.S.; Corrêa, J.C.F.; Luna, N.M.; Brant, R.; Greve, J.M.D.A.; de Godoy, W.; Baker, R.; Lucareli, P.R.G. Validation of GDI, GPS and GVS for use in Parkinson’s disease through evaluation of effects of subthalamic deep brain stimulation and levodopa. Gait Posture 2014, 39, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Speciali, D.S.; Oliveira, E.M.; Cardoso, J.R.; Correa, J.C.F.; Baker, R.; Lucareli, P.R.G. Gait profile score and movement analysis profile in people with Parkinson’s disease during concurrent cognitive load. Braz. J. Phys. Ther. 2014, 18, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Roemmich, R.T.; Elrod, J.M.; Hass, C.J.; Hsiao-Wecksler, E.T. Effects of aging and Parkinson’s disease on joint coupling, symmetry, complexity and variability of lower limb movements during gait. Clin. Biomech. 2016, 33, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Wang, R.; Liou, D.; Shaw, J. Gait Disorders in Parkinson’ s Disease: Assessment and Management. Int. J. Gerontol. 2013, 7, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Roiz, R.D.M.; Cacho, E.W.A.; Pazinatto, M.M.; Reis, J.G.; Cliquet, A., Jr.; Barasnevicius-Quagliato, E.M.A. Gait analysis comparing Parkinson’s disease with healthy elderly subjects. Arq. Neuropsiquiatr. 2010, 68, 81–86. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-282X2010000100018&lng=en&tlng=en (accessed on 3 November 2021). [CrossRef] [PubMed]
- Grasso, R.; Zago, M.; Lacquaniti, F. Interactions Between Posture and Locomotion: Motor Patterns in Humans Walking with Bent Posture Versus Erect Posture. J. Neurophysiol. 2000, 83, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Solopova, I.A.; Selionov, V.A.; Zhvansky, D.S.; Ivanenko, Y.P.; Chernikova, L.A. Investigation of Muscle Tone in People with Parkinson’ s Disease in Unloadings Conditions. Hum. Physiol. 2014, 40, 125–131. [Google Scholar] [CrossRef]
- Mazzoni, P.; Shabbott, B.; Cortés, J.C. Motor Control Abnormalities in Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a009282. [Google Scholar] [CrossRef] [Green Version]
- Grabli, D.; Karachi, C.; Welter, M.; Lau, B.; Hirsch, E.C.; Vidailhet, M.; François, C. Normal and pathological gait: What we learn from Parkinson’ s disease. J. Neurol. Neurosurg. Psychiatry 2012, 83, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Bello, O.; Sanchez, J.A.; Lopez-Alonso, V.; Márquez, G.; Morenilla, L.; Castro, X.; Giráldez-García, M.A.; Santos-García, D.; del Olmo, M.F. The effects of treadmill or overground walking training program on gait in Parkinson’s disease. Gait Posture 2013, 38, 590–595. [Google Scholar] [CrossRef] [Green Version]
- Rennie, L.; Löfgren, N.; Moe-Nilssen, R.; Opheim, A.; Dietrichs, E.; Franzén, E. The reliability of gait variability measures for individuals with Parkinson’s disease and healthy older adults—The effect of gait speed. Gait Posture 2018, 62, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Sale, P.; De Pandis, M.F.; Vimercati, S.L.; Sova, I.; Foti, C.; Tenore, N.; Fini, M.; Stocchi, F.; Albertini, G.; Franceschini, M.; et al. Comparison of the gait patterns of young Parkinson’s the relation between Parkinson’s disease and ageing disease subjects with healthy elderly subjects. Eur. J. Phys. Rehabil. Med. 2013, 49, 161–167. [Google Scholar] [PubMed]
- Kelly, V.E.; Israel, S.M.; Samii, A.; Slimp, J.C.; Goodkin, R.; Shumway-Cook, A. Assessing the effects of subthalamic nucleus stimulation on gait and mobility in people with Parkinson disease. Disabil. Rehabil. 2010, 32, 929–936. [Google Scholar] [CrossRef]
- Aminiaghdam, S.; Rode, C. Effects of altered sagittal trunk orientation on kinetic pattern in able-bodied walking on uneven ground. Biol. Open 2017, 6, 1000–1007. [Google Scholar] [CrossRef] [Green Version]
- AminiAghdam, S.; Blickhan, R. The effects of an expected twofold perturbation on able-bodied gait: Trunk flexion and uneven ground surface. Gait Posture 2018, 61, 431–438. [Google Scholar] [CrossRef]
- Saha, D.; Gard, S.; Fatone, S. The effect of trunk flexion on able-bodied gait. Gait Posture 2008, 27, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Tesio, L.; Rota, V. The Motion of Body Center of Mass During Walking: A Review Oriented to Clinical Applications. Front. Neurol. 2019, 10, 999. [Google Scholar] [CrossRef]
- Heglund, N.C.; Taylor, C.R.; Umana, F.; Mechanical, R.T. Mechanical work basic mechanisms in terrestrial locomotion: Two for minimizing energy expenditure. J. Physiol. 1976, 23, 246–261. [Google Scholar]
- Middleton, A.; Fritz, S.L.; Lusardi, M. Walking speed: The functional vital sign. J. Aging Phys. Act. 2015, 23, 314–322. [Google Scholar] [CrossRef] [PubMed]
PDG | CG | |||
---|---|---|---|---|
Mean (SD) | Mean (SD) | p | ||
Age (years) | 63.74 (±5.98) | 64.37 (±4.32) | 0.703 | |
Weight (kg) | 67.85 (±6.34) | 66.26 (±6.38) | 0.572 a | |
Height (meters) | 1.66 (±0.05) | 1.64 (±0.06) | 0.334 | |
BMI (kg/m2) | 24.51 (±1.17) | 25.52 (±1.75) | 0.626 | |
MoCA (score) | 27.82 (±1.46) | 29.42 (±0.76) | <0.001 * | |
Mini-Mental (score) | 28.17 (±1.72) | 29.63 (±0.68) | 0.001 * | |
Diagnostic time (years) | 4.64 (±4.01) | |||
Hoehn and Yahr stage | Stage 1 | 11 (47.84%) | 11 (47.84%) | |
Stage 2 | 9 (39.13%) | 9 (39.13%) | ||
Stage 3 | 3 (13.04%) | 3 (13.04%) |
PDG | CG | ||
---|---|---|---|
Mean (SD) | Mean (SD) | p | |
Cadence (steps/min) | 104.94 (±9.02) | 111.43 (±7.16) | 0.015 * |
Stride time (s) | 1.14 (±0.09) | 1.10 (±0.10) | 0.153 |
Opposite foot off (%) | 14.51(±3.32) | 10.17 (±2.27) | <0.001 * |
Opposite foot contact (%) | 50.09 (±0.52) | 50.14 (±0.70) | 0.791 |
Step time (s) | 0.57 (±0.05) | 0.54 (±0.03) | 0.010 * |
Single support (s) | 0.41 (±0.04) | 0.43 (±0.03) | 0.031 * |
Double support (s) | 0.33 (±0.09) | 0.24 (±0.05) | <0.001 * |
Foot off (%) | 64.16 (±3.45) | 61.10 (±1.52) | 0.001 * |
Stride length (m) | 1.08 (±0.13) | 1.10 (±0.13) | 0.552 |
Step length (m) | 0.54 (±0.06) | 0.56 (±0.06) | 0.333 |
Walking speed (m/s) | 0.94 (±0.15) | 1.04 (±0.14) | 0.024 * |
PDG | CG | ||
---|---|---|---|
Mean (SD) | Mean (SD) | p | |
GPS (degree) | |||
Overall | 8.22 (±1.54) | 5.11 (±1.16) | <0.001 * |
Left | 7.72 (±2.04) | 4.74 (±1.03) | <0.001 * |
Right | 7.66 (±1.23) | 4.86 (±1.59) | <0.001 * |
GVS | |||
Pelvic tilt | 5.43 (±3.93) | 4.15 (±2.81) | 0.241 |
Hip flex/ext left | 7.92 (±5.32) | 6.00 (±3.24) | 0.176 |
Knee flex/ext left | 8.13 (±2.81) | 6.65 (±2.57) | 0.044 * |
Ankle dorsi/plan left | 5.61 (±2.98) | 3.56 (±1.58) | 0.010 * |
Pelvic obliquity | 2.37 (±1.77) | 1.32 (±0.68) | 0.019 * |
Hip add/abd left | 5.05 (±4.19) | 3.47 (±2.20) | 0.147 |
Pelvic rotation | 3.13 (±1.43) | 2.51 (±1.46) | 0.170 |
Hip rotation int/ext left | 13.74 (±2.88) | 3.03 (±4.51) | <0.001 * |
Foot progression left | 6.52 (±4.88) | 4.25 (±1.14) | 0.044 * |
Hip flex/ext right | 7.88 (±4.40) | 6.02 (±3.69) | 0.151 |
Knee flex/ext right | 7.89 (±2.77) | 6.48 (±3.14) | 0.030 * |
Ankle dorsi/plan right | 5.85 (±3.21) | 3.73 (±1.98) | 0.016 * |
Hip add/abd right | 4.89 (±4.64) | 3.40 (±2.03) | 0.202 |
Hip rotation int/ext right | 13.84 (±2.06) | 4.33 (±5.28) | <0.001 * |
Foot progression right | 5.92 (±2.46) | 4.46 (±1.01) | 0.020 * |
PDG | CG | ||
---|---|---|---|
Mean (SD) | Mean (SD) | p | |
Trunk kinematics (degree) | |||
Flexion/extension mean | 4.03 (±2.62) | 0.72 (±0.72) | <0.001 * |
Flexion/extension maximum | 5.33 (±3.18) | 1.31 (±1.36) | <0.001 * |
Flexion/extension minimum | 3.43 (±3.28) | −0.94 (±1.53) | <0.001 * |
Lateral inclination mean | 0.01 (±0.07) | −0.01 (±0.11) | 0.390 |
Lateral inclination maximum | 1.44 (±0.62) | 1.18 (±0.52) | 0.166 |
Lateral inclination minimum | −1.38 (±0.65) | −1.20 (±0.62) | 0.380 |
Rotation mean | −0.05 (±0.20) | −0.06 (±0.19) | 0.843 |
Rotation maximum | 2.13 (±0.96) | 2.54 (±0.86) | 0.158 |
Rotation minimum | −2.30 (±0.82) | −2.64 (±0.76) | 0.171 |
Trunk Flexion Mean | Trunk Flexion Maximum | Trunk Flexion Minimum | Walking Speed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | R² | p | r | R² | p | r | R² | p | r | R² | p | |
GPS (degree) | ||||||||||||
Overall | 0.24 | 0.13 | 0.27 | 0.26 | 0.024 | 0.227 | 0.19 | −0.007 | 0.371 | 0.084 | −0.04 | 0.704 |
Left | 0.21 | 0.002 | 0.311 | 0.23 | 0.008 | 0.288 | 0.17 | −0.017 | 0.433 | 0.08 | −0.041 | 0.716 |
Right | 0.13 | −0.029 | 0.539 | 0.21 | −0.001 | 0.335 | 0.16 | −0.021 | 0.465 | 0.043 | −0.046 | 0.847 |
GVS | ||||||||||||
Pelvic tilt | 0.01 | −0.047 | 0.944 | 0.14 | −0.025 | 0.504 | 0.11 | −0.033 | 0.591 | −0.134 | −0.029 | 0.542 |
Hip flex/ext left | −0.01 | −0.047 | 0.948 | 0.12 | −0.031 | 0.571 | 0.07 | −0.042 | 0.729 | −0.246 | 0.016 | 0.259 |
Hip flex/ext right | 0.38 | 0.108 | 0.069 | 0.31 | 0.057 | 0.142 | 0.25 | 0.023 | 0.232 | −0.07 | −0.042 | 0.750 |
Knee flex/ext left | 0.71 | 0.213 | 0.031 * | 0.86 | 0.245 | 0.026 * | −0.86 | −0.045 | 0.826 | −0.052 | −0.045 | 0.813 |
Knee flex/ext right | 0.62 | 0.244 | 0.010 * | 0.77 | 0.219 | 0.022 * | −0.85 | 0.168 | 0.330 | −0.114 | −0.034 | 0.604 |
Ankle dorsi/plan left | 0.69 | 0.134 | 0.024 * | 0.85 | 0.19 | 0.001 * | −0.74 | −0.045 | 0.835 | 0.037 | −0.046 | 0.867 |
Ankle dorsi/plan right | 0.72 | 0.138 | 0.046 * | 0.85 | 0.192 | 0.021 * | 0.15 | 0.056 | 0.144 | −0.337 | 0.071 | 0.116 |
Pelvic obliquity | −0.10 | −0.038 | 0.648 | −0.11 | −0.033 | 0.595 | −0.09 | −0.039 | 0.679 | 0.191 | −0.01 | 0.384 |
Hip add/abd left | −0.06 | −0.043 | 0.771 | −0.06 | −0.043 | 0.764 | −0.07 | −0.042 | 0.732 | 0.552 | 0.271 | 0.066 |
Hip add/abd right | 0.04 | −0.045 | 0.831 | 0.09 | −0.038 | 0.670 | 0.11 | −0.034 | 0.609 | 0.379 | 0.103 | 0.075 |
Pelvic rotation | −0.46 | 0.176 | 0.241 | −0.5 | 0.276 | 0.141 | −0.47 | 0.192 | 0.210 | 0.221 | 0.003 | 0.312 |
Hip rotation int/ext left | 0.38 | 0.108 | 0.069 | 0.31 | 0.057 | 0.142 | 0.25 | 0.023 | 0.232 | −0.07 | −0.042 | 0.750 |
Hip rotation int/ext right | 0 | −0.048 | 0.990 | −0.02 | −0.047 | 0.917 | −0.04 | −0.046 | 0.846 | 0.095 | −0.038 | 0.667 |
Foot progression left | 0.24 | 0.017 | 0.254 | 0.15 | −0.021 | 0.471 | 0.19 | −0.010 | 0.385 | 0.10 | −0.037 | 0.650 |
Foot progression right | −0.07 | −0.042 | 0.745 | 0.13 | −0.03 | 0.552 | 0.19 | −0.009 | 0.378 | −0.081 | −0.041 | 0.714 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Callais Franco do Nascimento, T.; Martins Gervásio, F.; Pignolo, A.; Augusto Santos Bueno, G.; Araújo do Carmo, A.; Martins Ribeiro, D.; D’Amelio, M.; Augusto dos Santos Mendes, F. Assessment of the Kinematic Adaptations in Parkinson’s Disease Using the Gait Profile Score: Influences of Trunk Posture, a Pilot Study. Brain Sci. 2021, 11, 1605. https://doi.org/10.3390/brainsci11121605
Callais Franco do Nascimento T, Martins Gervásio F, Pignolo A, Augusto Santos Bueno G, Araújo do Carmo A, Martins Ribeiro D, D’Amelio M, Augusto dos Santos Mendes F. Assessment of the Kinematic Adaptations in Parkinson’s Disease Using the Gait Profile Score: Influences of Trunk Posture, a Pilot Study. Brain Sciences. 2021; 11(12):1605. https://doi.org/10.3390/brainsci11121605
Chicago/Turabian StyleCallais Franco do Nascimento, Tauana, Flavia Martins Gervásio, Antonia Pignolo, Guilherme Augusto Santos Bueno, Aline Araújo do Carmo, Darlan Martins Ribeiro, Marco D’Amelio, and Felipe Augusto dos Santos Mendes. 2021. "Assessment of the Kinematic Adaptations in Parkinson’s Disease Using the Gait Profile Score: Influences of Trunk Posture, a Pilot Study" Brain Sciences 11, no. 12: 1605. https://doi.org/10.3390/brainsci11121605
APA StyleCallais Franco do Nascimento, T., Martins Gervásio, F., Pignolo, A., Augusto Santos Bueno, G., Araújo do Carmo, A., Martins Ribeiro, D., D’Amelio, M., & Augusto dos Santos Mendes, F. (2021). Assessment of the Kinematic Adaptations in Parkinson’s Disease Using the Gait Profile Score: Influences of Trunk Posture, a Pilot Study. Brain Sciences, 11(12), 1605. https://doi.org/10.3390/brainsci11121605