Systematic Review on the Safety and Tolerability of Transcranial Direct Current Stimulation in Children and Adolescents
Abstract
:1. Introduction
1.1. Current Safety Evidence
1.2. The Current Study
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection and Outcome Measures
2.4. Risk of Assessment Bias
3. Results
3.1. Literature Search
3.2. Quality of Studies
3.3. Safety and Tolerability Literature Characteristics
3.4. Safety and Electrode Location
3.5. Electrode Size and Conducting Material
3.6. Safety and Medication
3.7. Safety Indications for Specific tDCS Devices
3.8. Safety and Neuroimaging
3.8.1. EEG
3.8.2. MRI
3.8.3. TMS
3.8.4. ERP, EKG, EMG, and EOG
3.8.5. Neuroimaging Conclusion
3.9. Safety and Medical Examination
3.10. Safety and Neuromotor Function
3.11. Safety and Psychiatric/Cognitive Outcomes
3.12. Reports of Adverse Events
3.13. Acceptability and Rate of Dropouts
4. Discussion
4.1. Pediatric tDCS Safety Timeline
4.2. The Safety of Remote and At-Home tDCS
4.3. Dose Optimization
4.4. Limitations of the Literature and This Review
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nitsche, M.; Liebetanz, D.; Lang, N.; Antal, A.; Tergau, F.; Paulus, W.; Priori, A. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin. Neurophysiol. 2003, 114, 2220–2223. [Google Scholar] [CrossRef]
- Poreisz, C.; Boros, K.; Antal, A.; Paulus, W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 2007, 72, 208–214. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Amadera, J.; Berbel, B.; Volz, M.S.; Rizzerio, B.G.; Fregni, F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int. J. Psychophysiol. 2011, 14, 1133–1145. [Google Scholar] [CrossRef]
- Fertonani, A.; Ferrari, C.; Miniussi, C. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin. Neurophysiol. 2015, 126, 2181–2188. [Google Scholar] [CrossRef] [PubMed]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [Green Version]
- Aparício, L.V.M.; Guarienti, F.; Razza, L.B.; Carvalho, A.F.; Fregni, F.; Brunoni, A.R. A Systematic Review on the Acceptability and Tolerability of Transcranial Direct Current Stimulation Treatment in Neuropsychiatry Trials. Brain Stimul. 2016, 9, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Qiao, L.; Fan, D.; Zhang, S.; Turel, O.; Li, Y.; Li, J.; Xue, G.; Chen, A.; He, Q. Modulation of brain activity with noninvasive transcranial direct current stimulation (tDCS): Clinical applications and safety concerns. Front. Psychol. 2017, 8, 685. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, D.M.; D’Angiulli, A.; Samson, A.; Maisonneuve, A.R.; Robaey, P. Acceptability of transcranial direct current stimulation in children and adolescents with ADHD: The point of view of parents. J. Health Psychol. 2020, 1359105320937059. [Google Scholar] [CrossRef]
- Buchanan, D.; D’Angiulli, A.; Samson, A.; Amare, S.; Gaumond, G.; Robaey, P. Making transcranial direct current stimulation treatment in atypical child and adolescent neurodevelopment a reality: Translating safety tolerability and acceptability evidence from the laboratory into the doctors office, the classroom, and home. Brain Stimul. 2019, 12, 474. [Google Scholar] [CrossRef]
- Giordano, J.; Bikson, M.; Kappenman, E.S.; Clark, V.P.; Coslett, H.B.; Hamblin, M.R.; Hamilton, R.; Jankord, R.; Kozumbo, W.J.; McKinley, R.A.; et al. Mechanisms and Effects of Transcranial Direct Current Stimulation. Dose Response 2017, 15, 1559325816685467. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, D.M.; Robaey, P.; D’angiulli, A. What Do We Know about Transcranial Direct Current Stimulation for Major Depression? Brain Sci. 2020, 10, 480. [Google Scholar] [CrossRef]
- Fregni, F.; Boggio, P.S.; Santos, M.C.; Lima, M.; Vieira, A.L.; Rigonatti, S.P.; Silva, M.T.A.; Barbosa, E.R.; Nitsche, M.A.; Pascual-Leone, A. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord. 2006, 21, 1693–1702. [Google Scholar] [CrossRef]
- Chi, R.P.; Snyder, A.W. Brain stimulation enables the solution of an inherently difficult problem. Neurosci. Lett. 2012, 515, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Soff, C.; Sotnikova, A.; Christiansen, H.; Becker, K.; Siniatchkin, M. Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder. J. Neural Transm. 2017, 124, 133–144. [Google Scholar] [CrossRef]
- Jensen, M.P.; Sherlin, L.H.; Askew, R.L.; Fregni, F.; Witkop, G.; Gianas, A.; Howe, J.D.; Hakimian, S. Effects of non-pharmacological pain treatments on brain states. Clin. Neurophysiol. 2013, 124, 2016–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.Y.; Lim, J.Y.; Kang, E.K.; You, D.S.; Oh, M.K.; Oh, B.M.; Paik, N.J. Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. Am. J. Phys. Med. Rehabil. 2010, 89, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Urbina, G.N.R.; Nitsche, M.A.; Vicario, C.M.; Chamizo, A.M. Applications of transcranial direct current stimulation in children and pediatrics. Rev. Neurosci. 2017, 28, 173–184. [Google Scholar] [CrossRef]
- Lee, J.C.; Jung, D.L.K.; Blacker, C.J.; Camsari, D.D.; Lewis, C.P. Transcranial Direct Current Stimulation in Child and Adolescent Psychiatric Disorders. Child Adolesc. Psychiatr. Clin. N. Am. 2019, 28, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Zewdie, E.; Ciechanski, P.; Kuo, H.C.; Giuffre, A.; Kahl, C.; King, R.; Cole, L.; Godfrey, H.; Seeger, T.; Swansburg, R.; et al. Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations. Brain Stimul. 2020, 13, 565–575. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rich, T.L.; Nemanich, S.; Chen, M.; Friel, K.; Feyma, T.; Krach, L.; Nawshin, T.; Meekins, G.; Gillick, B.T. Transcranial direct current stimulation (tDCS) paired with occupation-centered bimanual training in children with unilateral cerebral palsy: A preliminary study. Neural Plast. 2018, 2018, 9610812. [Google Scholar] [CrossRef] [PubMed]
- Nemanich, S.T.; Rich, T.L.; Chen, C.-Y.; Menk, J.; Rudser, K.; Chen, M.; Meekins, G.; Gillick, B.T. Influence of Combined Transcranial Direct Current Stimulation and Motor Training on Corticospinal Excitability in Children With Unilateral Cerebral Palsy. Front. Hum. Neurosci. 2019, 13, 137. [Google Scholar] [CrossRef] [PubMed]
- Gómez, L.; Vidal, B.; Maragoto, C.; Morales, L.M.; Berrillo, S.; Cuesta, H.V.; Baez, M.; Denis, M.; Marín, T.; Cabrera, Y.; et al. Non-invasive brain stimulation for children with autism spectrum disorders: A short-term outcome study. Behav. Sci. (Basel) 2017, 7, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.; Savović, J.; Page, M.J.; Sterne, J.A.C. RoB 2: A revised Cochrane risk-of-bias tool for randomized trials. Br. Med. J. 2019, 366, I4898. [Google Scholar] [CrossRef]
- Faria, P.; Fregni, F.; Sebastião, F.; Dias, A.I.; Leal, A. Feasibility of focal transcranial DC polarization with simultaneous EEG recording: Preliminary assessment in healthy subjects and human epilepsy. Epilepsy Behav. 2012, 25, 417–425. [Google Scholar] [CrossRef]
- Gillick, B.T.; Feyma, T.; Menk, J.; Krach, L.E. Safety of transcranial direct current stimulation in pediatric hemiparesis: Determination of the method for locating the optimal stimulation site. Brain Stimul. 2014, 7, e12. [Google Scholar] [CrossRef]
- Ulam, F.; Shelton, C.; Richards, L.; Davis, L.; Hunter, B.; Fregni, F.; Higgins, K. Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury. Clin. Neurophysiol. 2015, 126, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Mattai, A.; Miller, R.; Weisinger, B.; Greenstein, D.; Bakalar, J.; Tossell, J.; David, C.; Wassermann, E.M.; Rapoport, J.; Gogtay, N. Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia. Brain Stimul. 2011, 4, 275–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auvichayapat, N.; Rotenberg, A.; Gersner, R.; Ngodklang, S.; Tiamkao, S.; Tassaneeyakul, W.; Auvichayapat, P. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimul. 2013, 6, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.C.; Magnavita, G.M.; Allegro, J.V.B.N.; Neto, C.E.B.P.; Lucena, R.d.C.S.; Fregni, F. Feasibility of Transcranial Direct Current Stimulation Use in Children Aged 5 to 12 Years. J. Child Neurol. 2013, 29, 0883073813503710. [Google Scholar] [CrossRef] [PubMed]
- Gillick, B.T.; Feyma, T.; Menk, J.; Usset, M.; Vaith, A.; Wood, T.J.; Worthington, R.; Krach, L.E. Safety and feasibility of transcranial direct current stimulation in pediatric hemiparesis: Randomized controlled preliminary study. Phys. Ther. 2015, 95, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Moliadze, V.; Andreas, S.; Lyzhko, E.; Schmanke, T.; Gurashvili, T.; Freitag, C.M.; Siniatchkin, M. Ten minutes of 1mA transcranial direct current stimulation was well tolerated by children and adolescents: Self-reports and resting state EEG analysis. Brain Res. Bull. 2015, 119, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Meiron, O.; Gale, R.; Namestnic, J.; Bennet-Back, O.; David, J.; Gebodh, N.; Adair, D.; Esmaeilpour, Z.; Bikson, M. High-Definition transcranial direct current stimulation in early onset epileptic encephalopathy: A case study. Brain Inj. 2018, 32, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Palm, U.; Segmiller, F.M.; Epple, A.N.; Freisleder, F.-J.; Koutsouleris, N.; Schulte-Körne, G.; Padberg, F. Transcranial direct current stimulation in children and adolescents: A comprehensive review. J. Neural Transm. 2016, 123. [Google Scholar] [CrossRef] [PubMed]
- Alwardat, M. Comments on: Safety of repeated sessions of transcranial direct current stimulation: A systematic review. Brain Stimul. 2018, 11, 278–288. [Google Scholar] [CrossRef]
- Samani, M.M.; Agboada, D.; Jamil, A.; Kuo, M.-F.; Nitsche, M.A. Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex 2019, 119, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Jamil, A.; Batsikadze, G.; Kuo, H.I.; Labruna, L.; Hasan, A.; Paulus, W.; Nitsche, M.A. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J. Physiol. 2017, 595, 1273–1288. [Google Scholar] [CrossRef] [PubMed]
- Batsikadze, G.; Moliadze, V.; Paulus, W.; Kuo, M.F.; Nitsche, M.A. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J. Physiol. 2013, 591, 1987–2000. [Google Scholar] [CrossRef]
- Rahimi, V.; Mohamadkhani, G.; Alaghband-Rad, J.; Kermani, F.R.; Nikfarjad, H.; Marofizade, S. Modulation of temporal resolution and speech long-latency auditory-evoked potentials by transcranial direct current stimulation in children and adolescents with dyslexia. Exp. Brain Res. 2019, 237, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Dedoncker, J.; Brunoni, A.R.; Baeken, C.; Vanderhasselt, M.-A. A Systematic Review and Meta-Analysis of the Effects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters. Brain Stimul. 2016, 9, 501–517. [Google Scholar] [CrossRef] [Green Version]
- Meincke, J.; Hewitt, M.; Batsikadze, G.; Liebetanz, D. Automated TMS hotspot-hunting using a closed loop threshold-based algorithm. Neuroimage 2016, 124, 509–517. [Google Scholar] [CrossRef]
- Aonuma, S.; Gomez-Tames, J.; Laakso, I.; Hirata, A.; Takakura, T.; Tamura, M.; Muragaki, Y. A high-resolution computational localization method for transcranial magnetic stimulation mapping. Neuroimage 2018, 172, 85–93. [Google Scholar] [CrossRef]
- Woods, A.J.; Antal, A.; Bikson, M.; Boggio, P.S.; Brunoni, A.R.; Celnik, P.; Cohen, L.G.; Fregni, F.; Herrmann, C.S.; Kappenman, E.S.; et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 2016, 127, 1031–1048. [Google Scholar] [CrossRef] [Green Version]
- McLaren, M.E.; Nissim, N.R.; Woods, A.J. The effects of medication use in transcranial direct current stimulation: A brief review. Brain Stimul. 2018, 11, 52–58. [Google Scholar] [CrossRef]
- Ruffini, G.; Fox, M.D.; Ripolles, O.; Miranda, P.C.; Pascual-Leone, A. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. Neuroimage 2014, 89, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Badran, B.W.; Kofmehl, E.; Borckardt, J.J.; Bikson, M.; Mullins, C.; Summers, P.; George, M.S. Using transcranial electrical stimulation (TES) motor threshold to potentially determine individual transcranial direct current stimulation (tDCS) dosing. Brain Stimul. 2017, 10, 509–510. [Google Scholar] [CrossRef]
- Sekhon, M.; Cartwright, M.; Francis, J.J. Acceptability of healthcare interventions: An overview of reviews and development of a theoretical framework. BMC Health Serv. Res. 2017, 17, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitsche, M.A.; Bikson, M. Extending the parameter range for tDCS: Safety and tolerability of 4 mA stimulation. Brain Stimul. 2017, 10, 541–542. [Google Scholar] [CrossRef] [PubMed]
- Ciechanski, P.; Kirton, A. Transcranial Direct-Current Stimulation Can Enhance Motor Learning in Children. Cereb. Cortex 2016, 43, bhw114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, L.; Giuffre, A.; Ciechanski, P.; Carlson, H.L.; Zewdie, E.; Kuo, H.-C.; Kirton, A. Effects of High-Definition and Conventional Transcranial Direct-Current Stimulation on Motor Learning in Children. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirton, A.; Ciechanski, P.; Zewdie, E.; Andersen, J.; Nettel-Aguirre, A.; Carlson, H.; Carsolio, L.; Herrero, M.; Quigley, J.; Mineyko, A.; et al. Transcranial direct current stimulation for children with perinatal stroke and hemiparesis. Neurology 2017, 88, 259–267. [Google Scholar] [CrossRef]
- Riggs, A.; Patel, V.; Paneri, B.; Portenoy, R.K.; Bikson, M.; Knotkova, H. At-Home Transcranial Direct Current Stimulation (tDCS) With Telehealth Support for Symptom Control in Chronically-Ill Patients With Multiple Symptoms. Front. Behav. Neurosci. 2018, 12, 93. [Google Scholar] [CrossRef]
- André, S.; Heinrich, S.; Kayser, F.; Menzler, K.; Kesselring, J.; Khader, P.H.; Lefaucheur, J.P.; Mylius, V. At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia. J. Neurol. Sci. 2016, 369, 185–190. [Google Scholar] [CrossRef]
- Charvet, L.; Shaw, M.; Dobbs, B.; Frontario, A.; Sherman, K.; Bikson, M.; Datta, A.; Krupp, L.; Zeinapour, E.; Kasschau, M. Remotely Supervised Transcranial Direct Current Stimulation Increases the Benefit of At-Home Cognitive Training in Multiple Sclerosis. Neuromodulation 2018, 21, 383–389. [Google Scholar] [CrossRef]
- Charvet, L.E.; Kasschau, M.; Datta, A.; Knotkova, H.; Stevens, M.C.; Alonzo, A.; Loo, C.; Krull, K.R.; Bikson, M. Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: Guidelines for technology and protocols. Front. Syst. Neurosci. 2015, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Knotkova, H.; Clayton, A.; Stevens, M.; Riggs, A.; Charvet, L.E.; Bikson, M. Home-Based Patient-Delivered Remotely Supervised Transcranial Direct Current Stimulation. In Practical Guide to Transcranial Direct Current Stimulation; Springer International Publishing: Cham, Switzerland, 2019; pp. 379–405. [Google Scholar]
- Bikson, M.; Hanlon, C.A.; Woods, A.J.; Gillick, B.T.; Charvet, L.; Lamm, C.; Madeo, G.; Holczer, A.; Almeida, J.; Antal, A.; et al. Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimul. 2020, 13, 1124–1149. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Nitsche, M.A.; Loo, C.K.; Brunoni, A.R.; Marangolo, P.; Leite, J.; Carvalho, S.; Bolognini, N.; Caumo, W.; Paik, N.J.; et al. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): Review and recommendations from an expert panel. Clin. Res. Regul. Aff. 2014, 1333, 1060–1333. [Google Scholar] [CrossRef] [PubMed]
- Dmochowski, J.P.; Datta, A.; Huang, Y.; Richardson, J.D.; Bikson, M.; Fridriksson, J.; Parra, L.C. Targeted transcranial direct current stimulation for rehabilitation after stroke. Neuroimage 2013, 75, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, S.K.; Minhas, P.; Woods, A.J.; Rosen, A.; Gorman, C.; Bikson, M. Dosage Considerations for Transcranial Direct Current Stimulation in Children: A Computational Modeling Study. PLoS ONE 2013, 8, e76112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, D.Q.; Magerowski, G.; Blackburn, G.L.; Bikson, M.; Alonso, M.A. Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines. NeuroImage Clin. 2013, 2, 759–766. [Google Scholar] [CrossRef] [Green Version]
- Gallo, S.; B. , L.; Keysers, C.; Gazzola, V. Individual respond to stimulation does matter: Combining bi-hemispheric hd tdcs and sep in empathy for pain. Brain Stimul. 2015, 8, 351. [Google Scholar] [CrossRef]
- Rich, T.L.; Menk, J.S.; Rudser, K.D.; Chen, M.; Meekins, G.D.; Peña, E.; Feyma, T.; Bawroski, K.; Bush, C.; Gillick, B.T. Determining Electrode Placement for Transcranial Direct Current Stimulation: A Comparison of EEG—Versus TMS-Guided Methods. Clin. EEG Neurosci. 2017, 48, 367–375. [Google Scholar] [CrossRef] [PubMed]
Common | Uncommon | Rare and/or Serious |
---|---|---|
Tingling | Headache | Visual perceptual changes |
Itching | Nausea | Transient decrease in attention |
Redness at site | Small blisters at the site | Transient decrease in memory |
Discomfort | Nervousness | Difficulty concentrating |
Mild burning sensation | Feeling sleepy or wakeful | Mood changes |
Study | n (Total) | n (Active) | n (Sham) | n (Min) | Amperage (mA) | Age (Years) | Population | RCT |
---|---|---|---|---|---|---|---|---|
Mattai (2011) [28] | 12 175 | 5 (7) 125 | 3 (2) 50 | 20 2500 | 2, sham | 10–17 (16.37) | COS | Yes |
Faria (2012) [25] | 2 6 | 2 4 | 2 2 | 15 60 | 0.5, 1, sham | 7–11 (9) | CSWS/LKS | No |
Auvichayapat (2013) [29] | 36 36 | 20 (7) 27 | 6 (3) 9 | 20 540 | 1 | 6–15 (11.46) | Epilepsy | Yes |
Andrade (2013) [30] | 14 140 | 10 (4) 140 | 0 | 30 4200 | 2 | 7–12 (7.57) | ELD/PDD-NOS/AS/GD | No |
Gillick (2014) [26] | 1 1 | 1 1 | 0 | 10 10 | 0.7 | 10 | Stroke/Hemiparetic CP | Yes |
Gillick (2015) [31] | 11 11 | 3 (2) 5 | 1 (5) 6 | 10 50 | 0.7 | 7–18 (14) | Congenital hemiparesis | Yes |
Moliadze [32] (2015) | 19 57 | 8 (11) 38 | 8 (11) 19 | 10 380 | 1 | 11–16 (13.9) | Neurotypical | Yes |
Gomez (2017) [23] | 15 300 | 10 (5) 300 | 0 | 20 6000 | 1 | 5–10 (7.7) | ASD | Yes |
Meiron (2017) [33] | 1 10 | 1 10 | 0 | 20 200 | 0.1–1 | 2.5 | Epileptic encephalopathy | No |
Rich (2018) [21] | 8 80 | 3 (5) 80 | 0 | 20 1600 | 1.5 | 7–21 (13.4) | Perinatal stroke/UCP | No |
Nemanich (2019) [22] | 20 200 | 5 (5) 100 | 4 (6) 100 | 20 2000 | 0.7, sham | 7–21 (12.75) | UCP via hemispheric stroke/PVL | Yes |
Rahimi (2019) [36] | 17 51 | 9 (8) 34 | 9 (8) 17 | 20 680 | 1, sham | 9–12 (10.35) | Dyslexia | No |
Overall | 156 1067 | 77 (54) 864 | 33 (35) 203 | 18,220 303 (h) | 0.5, 0.7, 1, 1.5, 2, sham | 6–17 (10.75) |
Study | Location of Research and Device Used | Medications Reported | Electrode Location | Electrode Size (cm2) | Sponges Soaked With |
---|---|---|---|---|---|
Mattai [28] (2011) | USA Phoresor II 850 | Medication as usual. The atypical antipsychotic clozapine ranging from 100 to 450 mg. Antipsychotic medication may have altered cortical excitability in the cohort, thereby preventing the functional effects of tDCS. | Bilateral anodal DLPFC to improve cognitive difficulty or bilateral cathode STG to reduce hallucinations. | 25 | Tap water or normal saline |
Faria [25] (2012) | Portugal/USA Phoresor 850 | None to be reported. | Cathode placed at CP6/CP5. | 1.09 | Skin Pure/Electrogel |
Auvichayapat [29] (2013) | Thailand/USA Soterix constant current | Medication as usual. Antiepileptic medication regimens. | The cathodal electrode was placed over the epileptogenic focus. The anodal electrode was placed over the contralateral shoulder area. | 35 | Normal saline |
Andrade [30] (2013) | Brazil/USA Striat | None to be reported. | Anode was positioned in the Broca area (mid-left inferior frontal gyrus) and the cathode in the right supraorbital area. In patient 3, the electrodes were placed in the opposite hemisphere (however, in the same location). | 35 | Normal saline |
Gillick [26] (2014) | USA/Canada Soterix LTE | The subject was developmentally normal, did not have epilepsy, and was not taking any neuroactive medications. | Cathode placed over the contralesional motor cortex and anode over the ipsilesional supraorbital region with the intent to inhibit contralesional effects upon the ipsilesional cortex. | 35 | Normal saline |
Gillick [31] (2015) | USA Soterix LTE | One participant was taking Levetiracetam. | Primary motor cortex. The cathode rubber electrode was placed over the M1 FDI hotspot of the non-lesioned hemisphere, and the anode rubber electrode was placed over the M1 FDI hotspot of the lesioned hemisphere. | 35 | Normal saline/disinfected |
Moliadze [32] (2015) | Germany/Russia neuroConn constant current | None to be reported. None of the subjects took any psychoactive drugs, smoked, or drank alcohol regularly. | Anodal, cathodal, and sham tDCS were applied over the left primary motor cortex (M1, over C3). The reference electrode was placed over the contralateral orbit. | 35 | Normal saline/70% cellulose 30% cotton sponge |
Gomez [23] (2017) | Cuba Neuroconn tDCS stimulator | Medication as usual. Only patients with no changes in their therapeutic scheme, pharmacologically or non-pharmacologically, were accepted. Patients who needed any change were excluded from the trial. | Cathode was placed over area F3 (based on the 10/20 international EEG electrode system), with the anode over the proximal right arm. | Not specified | 0.9% NaCl solution |
Meiron [33] (2017) | Israel Soterix LTE | The infant was given anticonvulsants (Phenytoin and Phenobarbital) with no effect. Epileptic medication then changed to Clonazepam (1.5 mg/day), Vigabatrin (500 mg/day) and Topiramate (100 mg/day). | A 4 × 1 ring configuration was applied so that the cathode was placed over the right temporal area and the four anodes were situated around the cathode. The right hemisphere received 90% of current. | 1.09 | Not specified |
Rich [21] (2018) | USA Soterix LTE | No patients reported use of medications acting on the central nervous system for seizure control. No patients had phenol or botulinum toxin injections in the six months prior to the experiment. | The cathode was placed on the TMS-derived hotspot (primary motor cortex) of the non-lesioned hemisphere. The reference electrode was placed on the contralateral supraorbital region. | 25 | Not specified |
Nemanich [22] (2019) | USA Soterix LTE | None to be reported. | The cathode was placed over the TMS-derived motor hotspot of the contralesional hemisphere, and the anode was placed over the contralateral forehead. | Not specified | Not specified |
Rahimi [36] (2019) | Iran Electrical Brain Stimulator Neurostim | None to be reported. | Anode on the left superior temporal gyrus (STG), with the cathode either placed on right STG or on the right shoulder. | 25 | 0.9% NaCl solution |
Study | Neuroimaging AEs | Clinical AEs | Psychiatric AEs | Cognitive AEs | Physical AEs | Dropouts |
---|---|---|---|---|---|---|
Mattai (2011) [28] | 0% | 0% | 0% | Fatigue 30.7% | Itching 53.8% Tingling 46.1% | 0% |
Faria (2012) [25] | 0% | - | - | - | Felt something 40% | 0% |
Auvichayapat (2013) [29] | 0% | 0% | - | - | Skin rash 2.7% | 0% |
Andrade (2013) [30] | 0% | 0% | Mood 42.9% Irritability 35.7% | Fatigue 14.3% Trouble Concentrating 14.3% | Tingling/Itching 28.6% Burning 14.3% Headache 14.3% Scalp pain 7.1% | 0% |
Gillick (2014) [26] | - | - | - | - | 0% | 0% |
Gillick (2015) [31] | 0% | 0% | 0% | Fatigue 20% Trouble Concentrating 20% | Itching and tingling 0% Burning 16.7% | 8.3% |
Moliadze [32] (2015) | 0% | - | 5.3% | Fatigue (A) 15.8% Fatigue (C) 31.6 | Tingling (A) 31.6% Burning (A) 31.6% Pain (mild) (A) 15.5% Tingling (C) 57.9% Burning (C) 26.3% Pain (mild) (C) 10.5% | - |
Gomez (2017) [23] | 0% | 0% | 0% | 0% | - | - |
Meiron (2017) [33] | 0% | 0% | - | - | 0% | 0% |
Rich (2018) [21] | 0% | 0% | 0% | Fatigue 25% Trouble Concentrating 12.5% | Felt something 37.5% Itchiness 25% Tingling 25% Headache 25% | 0% |
Nemanich (2019) [22] | 0% | 0% | - | - | 0% | - |
Rahimi (2019) [36] | 0% | - | - | 0% | - | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchanan, D.M.; Bogdanowicz, T.; Khanna, N.; Lockman-Dufour, G.; Robaey, P.; D’Angiulli, A. Systematic Review on the Safety and Tolerability of Transcranial Direct Current Stimulation in Children and Adolescents. Brain Sci. 2021, 11, 212. https://doi.org/10.3390/brainsci11020212
Buchanan DM, Bogdanowicz T, Khanna N, Lockman-Dufour G, Robaey P, D’Angiulli A. Systematic Review on the Safety and Tolerability of Transcranial Direct Current Stimulation in Children and Adolescents. Brain Sciences. 2021; 11(2):212. https://doi.org/10.3390/brainsci11020212
Chicago/Turabian StyleBuchanan, Derrick Matthew, Thomas Bogdanowicz, Neha Khanna, Guillaume Lockman-Dufour, Philippe Robaey, and Amedeo D’Angiulli. 2021. "Systematic Review on the Safety and Tolerability of Transcranial Direct Current Stimulation in Children and Adolescents" Brain Sciences 11, no. 2: 212. https://doi.org/10.3390/brainsci11020212
APA StyleBuchanan, D. M., Bogdanowicz, T., Khanna, N., Lockman-Dufour, G., Robaey, P., & D’Angiulli, A. (2021). Systematic Review on the Safety and Tolerability of Transcranial Direct Current Stimulation in Children and Adolescents. Brain Sciences, 11(2), 212. https://doi.org/10.3390/brainsci11020212