Pain-Related Brain Connectivity Changes in Migraine: A Narrative Review and Proof of Concept about Possible Novel Treatments Interference
Abstract
:1. Introduction
Current Knowledge about Migraine Pathophysiology
2. AIMS
3. Methods
4. FMRI
4.1. Resting-State (Studies Concerning Pain-Related Brain Regions or Pain-Related Symptoms)
4.2. Seed-Based Analysis Approach
4.3. Independent Component Analysis Approach
4.4. Graph Theory Analysis Approach
4.5. Pain Stimulation-Related FMRI Connectivity Changes
4.6. Effects of Preventive Drugs
5. EEG/MEG
5.1. Resting State (Studies Concerning Pain-Related Brain Regions or Pain Related Symptoms)
5.2. Pain Stimulation-Related EEG/MEG Connectivity Changes
6. General Remarks
7. Perspectives (in View of Peripheral CGRP Approach)
Author Contributions
Funding
Conflicts of Interest
References
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- May, A.; Schulte, L.H. Chronic migraine: Risk factors, mechanisms and treatment. Nat. Rev. Neurol. 2016, 12, 455–464. [Google Scholar] [CrossRef]
- Stewart, W.F.; Ricci, J.A.; Chee, E.; Morganstein, D.; Lipton, R. Lost productive time and cost due to common pain conditions in the U.S. workforce. JAMA 2003, 290, 2443–2454. [Google Scholar] [CrossRef] [Green Version]
- Nyholt, D.R.; Van Den Maagdenberg, A.M. Genome-wide association studies in migraine: Current state and route to follow. Curr. Opin. Neurol. 2016, 29, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, H.G.; Griffiths, L.R. Genetics of migraine: Insights into the molecular basis of migraine disorders. Headache 2017, 57, 537–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelman, L. The triggers or precipitants of the acute migraine attack. Cephalalgia 2007, 27, 394–402. [Google Scholar] [CrossRef] [PubMed]
- De Tommaso, M.; Ambrosini, A.; Brighina, F.; Coppola, G.; Perrotta, A.; Pierelli, F.; Sandrini, G.; Valeriani, M.; Marinazzo, D.; Stramaglia, S.; et al. Altered processing of sensory stimuli in patients with migraine. Nat. Rev. Neurol. 2014, 10, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Schulte, L.H.; May, A. The migraine generator revisited: Continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 2016, 139, 1987–1993. [Google Scholar] [CrossRef] [Green Version]
- Charles, A. The pathophysiology of migraine: Implications for clinical management. Lancet Neurol. 2018, 17, 174–182. [Google Scholar] [CrossRef]
- Wang, T.; Chen, N.; Zhan, W.; Liu, J.; Zhang, J.; Liu, Q.; Huang, H.; He, L.; Zhang, J.; Gong, Q. Altered effective connectivity of posterior thalamus in migraine with cutaneous allodynia: A resting-state fMRI study with Granger causality analysis. J. Headache Pain 2015, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Coppola, G.; Di Renzo, A.; Tinelli, E.; Di Lorenzo, C.; Di Lorenzo, G.; Parisi, V.; Serrao, M.; Schoeen, J.; Pierelli, F. Thalamo-cortical network activity during spontaneous migraine attacks. Neurology 2016, 87, 2154–2160. [Google Scholar] [CrossRef]
- De Tommaso, M.; Trotta, G.; Vecchio, E.; Ricci, K.; Siugzdaite, R.; Stramaglia, S. Brain networking analysis in migraine with and without aura. J. Headache Pain 2017, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- De Tommaso, M.; Trotta, G.; Vecchio, E.; Ricci, K.; Van De Steen, F.; Montemurno, A.; Lorenzo, M.; Marinazzo, D.; Bellotti, R.; Stramaglia, S. Functional Connectivity of EEG Signals Under Laser Stimulation in Migraine. Front. Hum. Neurosci. 2015, 9, 640. [Google Scholar] [CrossRef] [Green Version]
- Hadjikhani, N.; Sanchez Del Rio, M.; Wu, O.; Schwartz, D.; Bakker, D.; Fischl, B.; Kwong, K.K.; Cutrer, F.M.; Rosen, B.R.; Tootell, R.B.; et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl. Acad. Sci. USA 2001, 98, 4687–4692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecchia, D.; Pietrobon, D. Migraine: A disorder of brain excitatory-inhibitory balance? Trends Neurosci. 2012, 35, 507–520. [Google Scholar] [CrossRef]
- Pietrobon, D.; Moskowitz, M.A. Pathophysiology of migraine. Annu. Rev. Physiol. 2013, 75, 365–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legrain, V.; Iannetti, G.D.; Plaghki, L.; Mouraux, A. The pain matrix reloaded: A salience detection system for the body. Prog. Neurobiol. 2011, 93, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Brennan, K.C.; Pietrobon, D. A Systems Neuroscience Approach to Migraine. Neuron 2018, 97, 1004–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burstein, R.; Noseda, R.; Borsook, D. Migraine: Multiple processes, complex pathophysiology. J. Neurosci. 2015, 35, 6619–6629. [Google Scholar] [CrossRef]
- Chong, C.D.; Schwedt, T.J.; Hougaard, A. Brain functional connectivity in headache disorders: A narrative review of MRI investigations. J. Cereb. Blood Flow Metab. 2019, 39, 650–669. [Google Scholar] [CrossRef]
- Smitha, K.A.; Akhil Raja, K.; Arun, K.M.; Rajesh, P.G.; Thomas, B.; Kapilamoorthy, T.R.; Kesavadas, C. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol. J. 2017, 30, 305–317. [Google Scholar] [CrossRef]
- Russo, A.; Silvestro, M.; Tedeschi, G.; Tessitore, A. Physiopathology of Migraine: What Have We Learned from Functional Imaging? Curr. Neurol. Neurosci. Rep. 2017, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mainero, C.; Boshyan, J.; Hadjikhani, N. Altered functional magnetic resonance imaging restingstate connectivity in periaqueductal gray networks in migraine. Ann. Neurol. 2011, 70, 838–845. [Google Scholar] [CrossRef] [Green Version]
- Schwedt, T.J.; Larson-Prior, L.; Coalson, R.S.; Nolan, T.; Mar, S.; Ances, B.M.; Benzinger, T.; Schlaggar, B.L. Allodynia and descending pain modulation in migraine: A resting state functional connectivity analysis. Pain Med. 2014, 1, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Moulton, E.A.; Becerra, L.; Johnson, A.; Burstein, R.; Borsook, D. Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine. PLoS ONE 2014, 17, e95508. [Google Scholar] [CrossRef] [Green Version]
- Schulte, L.H.; Menz, M.M.; Haaker, J.; May, A. The migraineur’s brain networks: Continuous resting state fMRI over 30 days. Cephalalgia 2020, 40, 1614–1621. [Google Scholar] [CrossRef]
- Qin, Z.X.; Su, J.J.; He, X.W.; Zhu, Q.; Cui, Y.Y.; Zhang, J.L.; Wang, M.X.; Gao, T.T.; Tang, W.; Hu, Y.; et al. Resting-state functional connectivity between subregions in the thalamus and cortex in migraine without aura. Eur. J. Neurol. 2020, 27, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Fu, Z.; Zeng, F.; Maleki, N.; Lan, L.; Li, Z.; Park, J.; Wilson, G.; Gao, Y.; Liu, M.; et al. Abnormal thalamocortical network dynamics in migraine. Neurology 2019, 92, e2706–e2716. [Google Scholar] [CrossRef] [PubMed]
- Mehnert, J.; May, A. Functional and structural alterations in the migraine cerebellum. J. Cereb. Blood Flow Metab. 2019, 39, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Yu, Y.; Zhang, X.; Su, Y.; Wang, X.; Hu, S.; Dai, H.; Hu, C.; Zhao, H.; Dai, L. Functional Alterations in the Posterior Insula and Cerebellum in Migraine Without Aura: A Resting-State MRI Study. Front. Behav. Neurosci. 2020, 14. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, X.; Liu, M.; Dong, Z.; Ma, L.; Yu, S. Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis. J. Headache Pain 2017, 18, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadjikhani, N.; Ward, N.; Boshyan, J.; Napadow, V.; Maeda, Y.; Truini, A.; Caramia, F.; Tinelli, E.; Mainero, C. The missing link: Enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia 2013, 33, 1264–1268. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Park, B.Y.; Cho, S.; Kim, S.T.; Park, H.; Chung, C.S. Increased connectivity of pain matrix in chronic migraine: A resting-state functional MRI study. J. Headache Pain 2019, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maizels, M.; Aurora, S.; Heinricher, M. Beyond neurovascular: Migraine as a dysfunctional neurolimbic pain network. Headache 2012, 52, 1553–1565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Su, J.; Wang, M.; Zhao, Y.; Zhang, Q.T.; Yao, Q.; Lu, H.; Zhang, H.; Li, G.F.; Wu, Y.L.; et al. The sensorimotor network dysfunction in migraineurs without aura: A resting-state fMRI study. J. Neurol. 2017, 264, 654–663. [Google Scholar] [CrossRef]
- Wei, H.L.; Chen, J.; Chen, Y.C.; Yu, Y.S.; Guo, X.; Zhou, G.P.; Qing-Qing Zhou, Q.Q.; He, Z.Z.; Yang, L.; Yin, X.; et al. Impaired effective functional connectivity of the sensorimotor network in interictal episodic migraineurs without aura. J. Headache Pain 2020, 21, 111. [Google Scholar] [CrossRef] [PubMed]
- Tessitore, A.; Russo, A.; Giordano, A.; Conte, F.; Corbo, D.; De Stefano, M.; Cirillo, S.; Cirillo, M.; Esposito, F.; Tedeschi, G. Disrupted default mode network connectivity in migraine without aura. J. Headache Pain 2013, 14, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Su, J.; Wang, M.; Zhao, Y.; Yao, Q.; Zhang, Q.; Lu, H.; Zhang, H.; Wang, S.; Li, G.F.; et al. Increased default mode network connectivity and increased regional homogeneity in migraineurs without aura. J. Headache Pain 2016, 17, 98. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Silvestro, M.; Trojsi, F.; Bisecco, A.; De Micco, R.; Caiazzo, G.; Di Nardo, F.; Esposito, F.; Tessitore, A.; Tedeschi, G. Cognitive Networks Disarrangement in Patients with Migraine Predicts Cutaneous Allodynia. Headache 2020, 60, 1228–1243. [Google Scholar] [CrossRef]
- Androulakis, X.M.; Rorden, C.; Peterlin, B.L.; Krebs, K. Modulation of salience network intranetwork resting state functional connectivity in women with chronic migraine. Cephalalgia 2018, 38, 1731–1741. [Google Scholar] [CrossRef]
- Borsook, D.; Maleki, N.; Becerra, L.; McEwen, B. Understanding migraine through the lens of maladaptive stress responses: A model disease of allostatic load. Neuron 2012, 73, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Puledda, F.; Ffytche, D.; O‘Daly, O.; Goadsby, P.J. Imaging the Visual Network in the Migraine Spectrum. Front. Neurol. 2019, 10, 1325. [Google Scholar] [CrossRef] [Green Version]
- Amin, F.M.; Hougaard, A.; Magon, S.; Asghar, M.S.; Ahmad, N.N.; Rostrup, E.; Sprenger, T.; Ashina, M. Change in brain network connectivity during PACAP38-induced migraine attacks: A resting-state functional MRI study. Neurology 2016, 86, 180–187. [Google Scholar] [CrossRef]
- Coppola, G.; Di Renzo, A.; Tinelli, E.; Lepre, C.; Di Lorenzo, C.; Di Lorenzo, G.; Scapeccia, M.; Parisi, V.; Serrao, M.; Colonnese, C.; et al. Thalamo-cortical network activity between migraine attacks: Insights from MRI-based microstructural and functional resting-state network correlation analysis. J. Headache Pain 2016, 17, 100. [Google Scholar] [CrossRef]
- Lisicki, M.; D‘Ostilio, K.; Coppola, G.; De Noordhout, A.M.; Parisi, V.; Schoenen, J.; Magis, D. Increased functional connectivity between the right temporo-parietal junction and the temporal poles in migraine without aura. Cephalalgia Rep. 2018, 1, 2515816318804823. [Google Scholar] [CrossRef] [Green Version]
- Hougaard, A.; Amin, F.M.; Larsson, H.B.; Rostrup, E.; Ashina, M. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura. Hum. Brain Mapp. 2017, 38, 2635–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppola, G.; Di Renzo, A.; Petolicchio, B.; Tinelli, E.; Di Lorenzo, C.; Parisi, V.; Serrao, M.; Calistri, V.; Tardioli, S.; Cartocci, G.; et al. Aberrant interactions of cortical networks in chronic migraine: A resting-state fMRI study. Neurology 2019, 92, e2550–e2558. [Google Scholar] [CrossRef]
- Coppola, G.; Di Renzo, A.; Petolicchio, B.; Tinelli, E.; Di Lorenzo, C.; Serrao, M.; Calistri, V.; Tardioli, S.; Cartocci, G.; Parisi, V.; et al. Increased neural connectivity between the hypothalamus and cortical resting-state functional networks in chronic migraine. J. Neurol. 2020, 267, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Schwedt, T.J.; Si, B.; Li, J.; Wu, T.; Chong, C.D. Migraine Subclassification via a Data-Driven Automated Approach Using Multimodality Factor Mixture Modeling of Brain Structure Measurements. Headache 2017, 57, 1051–1064. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, L.; Li, G.; Xiong, S.; Nan, J.; Li, J.; Yuan, K.; Von Deneen, K.M.; Liang, F.; Qin, W.; et al. Hierarchical alteration of brain structural and functional networks in female migraine sufferers. PLoS ONE 2012, 7, e51250. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Liu, L.; Yin, Q.; Dun, W.; Xiaolin Xu, X.; Liu, X.; Zhang, M. Abnormal rich club organization and impaired correlation betweenst ructural and functional connectivity in migraine sufferers. Brain Imaging Behav. 2017, 11, 526–540. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, L.; Nan, J.; Li, G.; Xiong, S.; Von Deneen, K.M.; Gong, Q.; Liang, F.; Qin, W.; Tian, J. The trade-off between wiring cost and network topology in white matter structural networks in health and migraine. Exp. Neurol. 2013, 248, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Xiang, J.; Chen, Y.; Li, F.; Wu, T.; Shi, J. Abnormal functional connectivity under somatosensory stimulation in migraine: A multi-frequency magnetoencephalography study. J. Headache Pain 2019, 20, 3. [Google Scholar] [CrossRef]
- Mathur, V.A.; Moayedi, M.; Keaser, M.L.; Khan, S.A.; Hubbard, C.S.; Goyal, M.; Seminowicz, D.A. High Frequency Migraine Is Associated with Lower Acute Pain Sensitivity and Abnormal Insula Activity Related to Migraine Pain Intensity, Attack Frequency, and Pain Catastrophizing. Front. Hum. Neurosci. 2016, 10, 489. [Google Scholar] [CrossRef]
- Moulton, E.A.; Becerra, L.; Maleki, N.; Pendse, G.; Tully, S.; Hargreaves, R.; Burstein, R.; Borsook, D. Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine States. Cereb. Cortex 2011, 21, 435–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, A.; Tessitore, A.; Silvestro, M.; Di Nardo, F.; Trojsi, F.; Del Santo, T.; De Micco, R.; Esposito, F.; Tedeschi, G. Advanced visual network and cerebellar hyperresponsiveness to trigeminal nociception in migraine with aura. J. Headache Pain 2019, 20, 46. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Esposito, F.; Conte, F.; Fratello, M.; Caiazzo, G.; Marcuccio, L.; Giordano, A.; Tedeschi, G.; Tessitore, A. Functional interictal changes of pain processing in migraine with ictal cutaneous allodynia. Cephalalgia 2017, 37, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Tessitore, A.; Esposito, F.; Di Nardo, F.; Silvestro, M.; Trojsi, F.; De Micco, R.; Marcuccio, L.; Schoenen, J.; Tedeschi, G. Functional Changes of the Perigenual Part of the Anterior Cingulate Cortex after External Trigeminal Neurostimulation in Migraine Patients. Front. Neurol. 2017, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Stankewitz, A.; May, A. Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology 2011, 77, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct. 2010, 214, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Schwedt, T.J.; Chong, C.D.; Chiang, C.C.; Baxter, L.; Schlaggar, B.L.; Dodick, D.W. Enhanced pain-induced activity of pain-processing regions in a case-control study of episodic migraine. Cephalalgia 2014, 34, 947–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehnert, J.; Schulte, L.; Timmann, D.; May, A. Activity and connectivity of the cerebellum in trigeminal nociception. Neuroimage 2017, 150, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Schulte, L.H.; Allers, A.; May, A. Visual stimulation leads to activation of the nociceptive trigeminal nucleus in chronic migraine. Neurology 2018, 90, e1973–e1978. [Google Scholar] [CrossRef] [PubMed]
- Schulte, L.H.; Mehnert, J.; May, A. Longitudinal Neuroimaging over 30 Days: Temporal Characteristics of Migraine. Ann. Neurol. 2020, 87, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Bahra, A.; Matharu, M.S.; Buchel, C.; Frackowiak, R.S.; Goadsby, P.J. Brainstem activation specific to migraine headache. Lancet 2001, 357, 1016–1017. [Google Scholar] [CrossRef]
- Weiller, C.; May, A.; Limmroth, V.; Jüptner, M.; Kaube, H.; Schayck, R.V.; Coenen, H.H.; Diener, H.C. Brain stem activation in spontaneous human migraine attacks. Nat. Med. 1995, 1, 658–660. [Google Scholar] [CrossRef] [PubMed]
- Maniyar, F.; Sprenger, T.; Monteith, T.; Schankin, C.; Goadsby, P.J. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 2014, 137, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Coppola, G.; Parisi, V.; Di Lorenzo, C.; Serrao, M.; Magis, D.; Schoenen, J.; Pierelli, F. Lateral inhibition in visual cortex of migraine patients between attacks. J. Headache Pain 2013, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Judit, A.; Sandor, P.S.; Schoenen, J. Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia 2000, 20, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Shibata, K.; Yamane, K.; Iwata, M. Change of excitability in brainstem and cortical visual processing in migraine exhibiting allodynia. Headache 2006, 46, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Hebestreit, J.M.; May, A. The enigma of site of action of migraine preventives: No effect of metoprolol on trigeminal pain processing in patients and healthy controls. J. Headache Pain 2017, 18, 116. [Google Scholar] [CrossRef]
- Ziegeler, C.; Mehnert, J.; Asmussen, K.; May, A. Central effects of erenumab in migraine patients: An event-related functional imaging study. Neurology 2020, 95, e2794–e2802. [Google Scholar] [CrossRef] [PubMed]
- Schulte, L.H.; Allers, A.; May, A. Hypothalamus as a mediator of chronic migraine. Neurology 2017, 88, 2011–2016. [Google Scholar] [CrossRef] [PubMed]
- De Tommaso, M. An update on EEG in migraine. Expert Rev. Neurother. 2019, 19, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Friston, K.J.; Harrison, L.; Penny, W. Dynamic causal modeling. Neuroimage 2003, 19, 1273–1302. [Google Scholar] [CrossRef]
- Marinazzo, D.; Pellicoro, M.; Stramaglia, S. Kernel method for nonlinear granger causality. Phys. Rev. Lett. 2008, 100, 144103. [Google Scholar] [CrossRef] [Green Version]
- Frid, A.; Shor, M.; Shifrin, A.; Yarnitsky, D.; Granovsky, Y. A Biomarker for Discriminating Between Migraine with and Without Aura: Machine Learning on Functional Connectivity on Resting-State EEGs. Ann. Biomed. Eng. 2020, 48, 403–412. [Google Scholar] [CrossRef]
- Cao, Z.; Lin, C.T.; Chuang, C.H.; Lai, K.L.; Yang, A.C.; Fuh, J.L.; Wang, S.J. Resting-state EEG power and coherence vary between migraine phases. J. Headache Pain 2016, 17, 102. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhou, Y.; Xiang, J.; Tang, L.; Liu, H.; Huang, S.; Wu, T.; Chen, Q.; Wang, X. Multi-frequency analysis of brain connectivity networks in migraineurs: A magnetoencephalography study. J. Headache Pain 2016, 17, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieboer, D.; Sorrentino, P.; Hillebrand, A.; Heymans, M.W.; Twisk, J.W.R.; Stam, C.J.; Douw, L. Brain Network Integration in Patients with Migraine: A Magnetoencephalography Study. Brain Connect. 2020, 10, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, F.J.; Chen, W.T.; Liu, H.Y.; Wang, Y.F.; Chen, S.P.; Lai, K.L.; Pan, L.H.; Wang, S.J. Individual pain sensitivity is associated with resting-state cortical activities in healthy individuals but not in patients with migraine: A magnetoencephalography study. J. Headache Pain 2020, 21, 133. [Google Scholar] [CrossRef] [PubMed]
- Bassez, I.; Van De Steen, F.; Ricci, K.; Vecchio, E.; Gentile, E.; Marinazzo, D.; De Tommaso, M. Dynamic Causal Modelling of the Reduced Habituation to Painful Stimuli in Migraine: An EEG Study. Brain Sci. 2020, 10, 712. [Google Scholar] [CrossRef]
- Edvinsson, L. The trigeminovascular pathway: Role of CGRP and CGRP receptors in migraine. Headache J. Head Face Pain 2017, 57, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, S.L.; Ernstsen, C.; Olesen, J.; Kristensen, D.M. No central action of CGRP antagonising drugs in the GTN mouse model of migraine. Cephalalgia 2020, 40, 924–934. [Google Scholar] [CrossRef]
- Chao, C.C.; Tseng, M.T.; Lin, Y.H.; Hsieh, P.C.; Lin, C.J.; Huang, S.L.; Hsieh, S.T.; Chiang, M.C. Brain imaging signature of neuropathic pain phenotypes in small-fiber neuropathy: Altered thalamic connectome and its associations with skin nerve degeneration. Pain 2020, 23. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, H.; Das, S.K.; Yang, M.J.; Li, B.; Li, Y.; Xu, X.X.; Yang, H.F. Structural and Functional Brain Abnormalities in Trigeminal Neuralgia: A Systematic Review. J. Oral Facial Pain Headache 2020, 34, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Henssen, D.; Dijk, J.; Knepflé, R.; Sieffers, M.; Winter, A.; Vissers, K. Alterations in grey matter density and functional connectivity in trigeminal neuropathic pain and trigeminal neuralgia: A systematic review and meta-analysis. Neuroimage Clin. 2019, 24, 102039. [Google Scholar] [CrossRef]
Year | Authors | Subjects | Methods | Condition | Main Results (in Pts) | Significance |
---|---|---|---|---|---|---|
2015 | Liu et al. [31] | 108 MwoA 30 HC | Graph theory analysis approach | Intercritical | Significant between-group differences in the intensity of the brain connections | Learning mechanisms are likely involved in maintenance of chronic migraine pain |
2015 | Tessitore et al. [22] | 20 MwA 20 MwoA 20 HC | RS-FC BOLD-fMRI; ICA- approach | Intercritical | Reduced RS-FC within the CEN centred in middle frontal gyrus and anterior cingulate cortex in both MwoA and MwA pts | Vulnerability to executive high-demanding conditions of daily living activities in pts with MwoA and MwA |
2015 | Hougaard et al. [43] | 40 MwA 40 HC | RS-FC BOLD-fMRI; Seed-based analysis approach | Intercritical | No intrinsic FC abnormalities in the intercritical phase of migraine with aura | MwA brain may be abnormally functioning in intercritical period only during exposure to external stimuli |
2016 | Tedeschi et al. [32] | 20 MwA 20 MwoA 20 HC | RS-FC BOLD-fMRI; ICA- approach | Intercritical | Increased RS-FC of lingual gyrus within VN in MwA pts | Extrastriate cortex, centred in the lingual gyrus, play a critical role in mechanisms underlying the initiation and propagation of the migraine aura phenomenon |
2016 | Niddam et al. [34] | 26 MwA 26 MwoA 26 HC | RS-FC BOLD-fMRI; ICA- approach | Intercritical | Reduced RS-FC between anterior insula and occipital areas in MwA pts | An unique pattern of connectivity involving area V3A, (known to be implicated in aura generation) characterizes MwA pts |
2016 | Zhang et al. [38] | 22 MwA 22 HC | RS-FC BOLD-fMRI; ICA- approach | Intercritical | Increased RS-FC in precuneus/posterior cingulate cortex within the DMN and increased in ReHo values in bilateral precuneus/posterior cingulate cortex, pons and trigeminal nerve entry zone | Abnormalities in the precuneus/posterior cingulate cortex suggest a dysfunctional multimodal integration in MwoA pts |
2016 | Amin et al. [43] | 24 MwoA | RS-FC BOLD-fMRI; ICA- approach | Ictal (PACAP induced attacks) | Increased RS-FC of SN, SMN and decreased RS-FC of VN during PACAP38 induced migraine attacks | PACAP38-induced migraine attack is associated with altered connectivity of several large-scale functional networks of the brain |
2016 | Coppola et al. [11] | 18 MwoA 19 HC | RS-FC BOLD-fMRI; ICA- approach | Intercritical | Reduced RS-FC between DMN and visuo-spatial system | Abnormal connectivity within networks could contribute to migraine pathophysiology |
2017 | Chen et al. [31] | 18 episodic MwoA 16 chronic migraine 18 HC | RS-FC BOLD-fMRI; Seed-based analysis approach | Intercritical | Increased RS-FC of left amygdala in episodic migraine pts and decreased RS-FC of right amygdala in chronic migraine pts compared with HC. Increased FC of bilateral amygdala in chronic migraine pts compared with episodic migraine pts | Altered connectivity of amygdala support neurolimbic pain network contributes in the episodic migraine pathogenesis and migraine chronification |
2017 | Zhang et al. [27] | 30 MwoA 31 HC | RS-FC BOLD-fMRI; ICA- approach | Intercritical | Reduced RS-FC between S1 and brain areas within the pain intensity and spatial discrimination pathways and trigemino-thalamo-cortical nociceptive pathway | Decreased connectivity between the S1 and brain areas in migraine pts may disrupt the discrimination of sensory features of pain and affect nociception pathways |
2017 | Androulakis et al. [40] | 29 women with chronic migraine 29 HC | RS-FC BOLD-fMRI; ICA- approach | Intercritical | Decreased RS-FC of DMN, SN and CEN | Decreased overall connectivity of the 3 major intrinsic brain networks in women with chronic migraine, correlated with frequency of moderate to severe headache and CA |
2017 | Li et al. [35] | 30 MwoA 30 HC | Graph theory analysis approach | Intercritical | Altered rich club organization with high level of feeder connection density, abnormal small-world organization with increased global efficiency and decreased strength of SC-FC coupling | Selective alteration of the connectivity of the rich club regions which probably increases the integration among pain-related brain circuits with increased excitability but reduced inhibition in migraine modulation |
2019 | Tu et al. [28] | 89 MwoA 70 HC | dRS-FC BOLD-fMRI; Seed-based analysis approach | Intercritical | Abnormal dynamic RS-FC of posterior thalamus (pulvinar nucleus) with the visual cortex and the precuneus, correlated with migraine frequency | MwoA pts are characterized by transient pathologic state with atypical thalamo-cortical connectivity |
2019 | Huang et al. [10] | 30 MwoA 22 HC | RS-FC BOLD-fMRI; Seed-based analysis approach | Intercritical | Reduced RS-FC between both red nucleus and substantia nigra and several cortical and subcortical brain regions | The functional changes of regions associated with cognitive evaluation, multisensory integration, and pain modulation and perception may be associated with migraine production, feedback and development |
2019 | Coppola et al. [47] | 20 chronic migraine 20 HC | RS-FC BOLD-fMRI; ICA- approach | Intercritical | Reduced RS-FC between DMN and CEN and between DAS and CEN, increased RS-FC between DAS and DMN | Large-scale reorganization of functional cortical networks in chronic migraine |
2020 | Schulte et al. [13] | 12 MwoA (during intercritical, preictal and ictal phase) | RS-FC BOLD-fMRI; Seed-based analysis approach | Intercritical and ictal | High RS-FC between accumbens and amygdala, hippocampus, gyrus parahippocampalis and dorsal rostral pons in the preictal phase compared to the intercritical phase | Changes of connectivity in dopaminergic centres and between the dorsal pons and the hypothalamus are important in migraine attack generation and sustainment. |
2020 | Coppola et al. [48] | 20 chronic migraine 20 HC | RS-FC BOLD-fMRI; ICA- approach | Intercritical | Increased RS-FC between the hypothalamus and brain areas belonging to the DMN and dorsal VN. No RS-FC abnormalities between hypothalamus and brainstem | Hypothalamic involvement in large-scale reorganisation at the functional-network level in chronic migraine |
2020 | Qin et al. [27] | 48 MwoA 48 HC | RS-FC BOLD-fMRI; Seed-based analysis approach | Intercritical | Reduced RS-FC between anterior dorsal thalamic nucleus and precuneus and between the ventral posterior nucleus and precuneus, inferior parietal lobule and middle frontal gyrus | Altered thalamo-cortical connectivity patterns may contribute to multisensory integration abnormalities, deficits in pain attention, cognitive evaluation and pain modulation |
2020 | Wei et al. [36] | 40 MwoA 34 HC | RS-FC BOLD-fMRI; ICA- approach | Intercritical | Decreased RS-FC between SMN and middle temporal gyrus, putamen, insula and precuneus, increased RS-FC between SMN and paracentral lobule | SMN intra- and internetwork connectivity imbalances associated with nociceptive regulation and migraine chronification |
2020 | Ke et al. [30] | 39 MwA 35 HC | RS-FC BOLD-fMRI; Seed-based analysis approach | Intercritical | Increased RS-FC of posterior insula with the postcentral gyrus, supplementary motor area/paracentral lobule, fusiform gyrus and temporal pole, decreased RS-FC between crus I and medial prefrontal cortex, angular gyrus, medial and lateral temporal cortices | Increased connectivity with the posterior insula and decreased connectivity of crus I may underlie disturbed sensory integration and cognitive pain processing |
2020 | Russo et al. [22] | 37 MwoA (with or without CA development) 19 HC | RS-FC BOLD-fMRI; ICA- approach | Intercritical | Reduced RS-FC of both DMN and CEN in pts with MwoA developing CA when compared with both pts with MwoA not developing CA and HC | Abnormalities in DMN and CEN connectivity could represent a prognostic imaging biomarker able to identify migraine pts more prone to experiencing CA and, therefore, more inclined to chronic migraine |
Year | Authors | Subjects | Condition (Ictal-Intercritical) | Methods | Main Results | Significance |
---|---|---|---|---|---|---|
2017 | Mehnert et al. [29] | MWoA = 8 CM = 46 | fMRI to gaseous ammonia stimuli | ↑ activation in PAG, left crus I, the latter was less connected with left thalamus, bilateral occipital areas, and the right fusiformis gyrus. | This study emphasizes the important role of the cerebellum in nociception. | |
2017 | Hebestreit & May [71] | Episodic = 13 Chronic = 6 | Interiritical | Trigeminal fMRI recording before and after administration of metoprolol 75mg | No central effects. In an exploratory analysis, metoprolol slightly enhanced hypothalamic activity | Metoprolol seems to act peripherally, with negligible central effects |
2018 | Schulte et al. [63] | MWoA = 18 CM = 17 HC = 19 | Ictal/Intercrticial | fMRI to visual stimuli | In chronic patients ↑ activation in the spinal trigeminal nuclei (↑during the headache) and right superior colliculus. | Abnormal visual–nociceptive integration at the brainstem level during the headaches |
2020 | Ziegeler et al. [72] | Episodic = 12 Chronic = 15 | Interictal | Trigeminal fMRI recording before and after administration of erenumab 70mg | Decreased activation in several brain areas after erenumab. Only responders show reduced hypothalamic activation. | The efficacy of Erenumab may not be confined exclusively to the periphery |
Year | Authors | Subjects | Condition (ictal-intercritical) | Methods | Main results | Significance |
---|---|---|---|---|---|---|
2016 | Cao et al. [79] | 50 MWA 20 HC | Ictal-pre-post ictal | EEG power and coherence analyses Resting state | ↓EEG power and coherence in inter and ictal phases | RS EEG power and connectivity fluctuate across migraine phases |
2016 | Wu et al. [38] | 13 MWA 10 MWoA 23 HC | Intercritical | MEG Graph analysis Resting state | ↑functional connectivity and connections stenght and path lenght in slow wave and fast bands | Functional connectivity impaired in low- and high-frequency ranges, possible sign of brain reorganization. |
2017 | de Tommaso et al. [12] | 19 MWA 19 MWoA 11 HC | Intercritical | EEG 65 channels FMRI Granger causality Graph analysis Resting state Visual stimulation | Different information flow among MWoA, MWA and controls in resting state. Different brain networking in MWA in occipital regions, according to FMRI results | Phenotypical differences in neuronal networks organization at occipital level, related to aura symptoms perception |
2020 | Frid et al. [78] | 22 MWoA 30 MWA | Intercritical | EEG 26 channels Machine Learning on Functional Connectivity Resting State | ↓ connectivity in theta band in MWA, in selected brain areas in Default Mode and Resting State Networks | ↓ functioning of the DMN in migraine with aura. |
2020 | Nieboer et al. [81] | 24 MWA 24 HC | Intercritical | MEG Functional connectivity between 78 cortical brain regions phase lag index Resting State | ↑betweeness centrality in higher frequency bands in patients with longer disease duration | Specific brain areas have altered topological roles in a frequency-specific manner |
2020 | Hsiao et al. [82] | 30 MWoA 27 HC | Intercritical | MEG functional connectivity at 2 to 59 Hz in pain-related cortical region Correlation with pain threshold Resting State | Pain threshold inversely correlated with gamma oscillation in C, no correlation in MWoA | Lack of correlation between functional connectivity in pain related structures and pain sensitivity in migraine |
2015 | de Tommaso et al. [13] | 31 MWoA 19 HC | Intercritical | EEG 65 channels Synchronization entropy Granger causality Habituation Laser stimulation | ↑ information flow between the bilateral temporal-parietal and the frontal regions in MWoA Correlation with laser evoked potentials dis-habituation | Change in brain function within pain related cortical areas in migraine |
2019 | Ren et al. [53] | 22 MWoA 22 HC | Intercritical | MEG Graph theory Electrical stimulation | ↑ functional connectivity in the high-frequency band between the sensory cortex and the frontal lobe in migraine | Aberrant connections from the somatosensory cortex to the frontal lobe. |
2020 | Bassez et al. [83] | 23 MWoA 20 HC | Intercritical | EEG 65 channels Dynamical Causal Modelling Laser stimulation | ↑ relationships between lS1 and the thalamus, in both directions, with a lack of progressive habituation of connection strengths from the thalamus to all somatosensory areas | Disrupted thalamus-cortical networks dynamic, coherent with reduced habituation to painful stimuli |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Tommaso, M.; Vecchio, E.; Quitadamo, S.G.; Coppola, G.; Di Renzo, A.; Parisi, V.; Silvestro, M.; Russo, A.; Tedeschi, G. Pain-Related Brain Connectivity Changes in Migraine: A Narrative Review and Proof of Concept about Possible Novel Treatments Interference. Brain Sci. 2021, 11, 234. https://doi.org/10.3390/brainsci11020234
de Tommaso M, Vecchio E, Quitadamo SG, Coppola G, Di Renzo A, Parisi V, Silvestro M, Russo A, Tedeschi G. Pain-Related Brain Connectivity Changes in Migraine: A Narrative Review and Proof of Concept about Possible Novel Treatments Interference. Brain Sciences. 2021; 11(2):234. https://doi.org/10.3390/brainsci11020234
Chicago/Turabian Stylede Tommaso, Marina, Eleonora Vecchio, Silvia Giovanna Quitadamo, Gianluca Coppola, Antonio Di Renzo, Vincenzo Parisi, Marcello Silvestro, Antonio Russo, and Gioacchino Tedeschi. 2021. "Pain-Related Brain Connectivity Changes in Migraine: A Narrative Review and Proof of Concept about Possible Novel Treatments Interference" Brain Sciences 11, no. 2: 234. https://doi.org/10.3390/brainsci11020234
APA Stylede Tommaso, M., Vecchio, E., Quitadamo, S. G., Coppola, G., Di Renzo, A., Parisi, V., Silvestro, M., Russo, A., & Tedeschi, G. (2021). Pain-Related Brain Connectivity Changes in Migraine: A Narrative Review and Proof of Concept about Possible Novel Treatments Interference. Brain Sciences, 11(2), 234. https://doi.org/10.3390/brainsci11020234