HIV Infection and Related Mental Disorders
Abstract
:1. Introduction
2. Mental Disorders Associated with HIV Infection
3. Biological Mechanisms of HIV-1—Effect on CNS Functions
4. Impact of Antiretroviral Therapy (ART) on the Development of Mental Pathologies
5. Competitive Interaction of Psychotropic and Antiretroviral Drugs in the Treatment of Mental Pathologies in HIV-Infected Patients
6. State of the Art
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. HIV/AIDS. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 30 November 2020).
- Legarth, R.A.; Ahlström, M.G.; Kronborg, G.; Larsen, C.S.; Pedersen, C.; Pedersen, G.; Mohey, R.; Gerstoft, J.; Obel, N. Long-term mortality in HIV-infected individuals 50 years or older: A nationwide, population-based cohort study. J. Acquir. Immune Defic. Syndr. 2016, 71, 213–218. [Google Scholar] [CrossRef]
- Nakagawa, F.; May, M.; Phillips, A. Life expectancy living with HIV: Recent estimates and future implications. Curr. Opin. Infect. Dis. 2013, 6, 17–25. [Google Scholar] [CrossRef]
- Cutrell, J.; Jodlowski, T.; Bedimo, R. The management of treatment-experienced HIV patients (including virologic failure and switches). Ther. Adv. Infect. Dis. 2020, 7, 2049936120901395. [Google Scholar] [CrossRef]
- Spudich, S.; Gonzalez-Scarano, F. HIV-1-related central nervous system disease: Current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb. Perspect. Med. 2012, 2, a007120. [Google Scholar] [CrossRef] [Green Version]
- Heaton, R.K.; Clifford, D.B.; Franklin, D.R., Jr.; Woods, S.P.; Ake, C.; Vaida, F.; Ellis, R.J.; Letendre, S.L.; Marcotte, T.D.; Atkinson, J.H.; et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 2010, 75, 2087–2096. [Google Scholar] [CrossRef] [Green Version]
- Robertson, K.R.; Su, Z.; Margolis, D.M.; Krambrink, A.; Havlir, D.V.; Evans, S.; Skiest, D.J. A5170 Study Team. Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort. Neurology 2010, 74, 1260–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaton, R.K.; Franklin, D.R.; Ellis, R.J.; McCutchen, J.A.; Letendre, S.L.; LeBlanc, S.; Corkran, S.H.; Duarte, N.A.; Clifford, D.B.; Woods, S.P.; et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: Differences in rates, nature, and predictors. J. Neurovirol. 2011, 17, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Sacktor, N.; Skolasky, R.L.; Seaberg, E.; Munro, C.; Becker, J.T.; Martin, E.; Ragin, A.; Levine, A.; Miller, E. Prevalence of HIV-associated neurocognitive disorders in the multicenter AIDS cohort study. Neurology 2016, 86, 334–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Fu, H.; Kaminga, A.C.; Li, Z.; Guo, G.; Chen, L.; Li, Q. Prevalence of depression or depressive symptoms among people living with HIV/AIDS in China: A systematic review and meta-analysis. BMC Psychiatry 2018, 18, 160. [Google Scholar] [CrossRef] [Green Version]
- Blank, M.B.; Himelhoch, S.; Walkup, J.; Eisenberg, M.M. Treatment Considerations for HIV-Infected Individuals with Severe Mental Illness. Curr. HIV AIDS Rep. 2013, 10, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobkirk, A.L.; Towe, S.L.; Lion, R.; Meade, C.S. Primary and secondary HIV prevention among persons with severe mental illness: Recent findings. Curr. Hiv Aids Rep. 2015, 12, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Hariri, A.G.; Karadag, F.; Gokalp, P.; Essizoglu, A. Risky Sexual Behavior among Patients in Turkey with Bipolar Disorder, Schizophrenia, and Heroin Addiction. J. Sex. Med. 2011, 8, 2284–2291. [Google Scholar] [CrossRef]
- Meade, C.S.; Graff, F.S.; Griffin, M.L.; Weiss, R.D. HIV risk behavior among patients with co-occurring bipolar and substance use disorders: Associations with mania and drug abuse. Drug Alcohol Depend. 2008, 92, 296–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, P.S.; Carey, M.P.; Carey, K.B.; Prasada Rao, P.S.; Jairam, K.R.; Thomas, T. HIV risk behaviour among psychiatric inpatients: Results from a hospital-wide screening study in Southern India. Int. J. STD AIDS 2003, 14, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Carey, M.P.; Carey, K.B.; Maisto, S.A.; Schroder, K.E.; Vanable, P.A.; Gordon, C.M. HIV risk behavior among outpatient: Association with psychiatric disorder, substance use disorder, and gender. J. Nerv. Ment. Dis. 2004, 192, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Meade, C.S.; Kershaw, T.S.; Hansen, N.B.; Sikkema, K.J. Long-term correlates of childhood abuse among adults with severe mental illness: Adult victimization, substance abuse, and HIV sexual risk behavior. AIDS Behav. 2009, 13, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varshney, M.; Mahapatra, A.; Krishnan, V.; Gupta, R.; Deb, K.S. Violence and mental illness: What is the true story? J. Epidemiol. Community Health 2016, 70, 223–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, P.S.; Carey, M.P.; Carey, K.B.; Shalinianant, A.; Thomas, T. Sexual coercion and abuse among women with a severe mental illness in India: An exploratory investigation. Compr. Psychiatry 2003, 44, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.W.; Hou, C.L.; Wang, S.B.; Huang, Z.H.; Huang, Y.H.; Zhang, J.J.; Jia, F.J. Frequency and correlates of violence against patients with schizophrenia living in rural China. BMC Psychiatry 2020, 20, 286. [Google Scholar] [CrossRef]
- Newman, J.M.; Turnbull, A.; Berman, B.A.; Rodrigues, S.; Serper, M.R. Impact of traumatic and violent victimization experiences in individuals with schizophrenia and schizoaffective disorder. J. Nerv. Ment. Dis. 2010, 198, 708–714. [Google Scholar] [CrossRef]
- Markowitz, S.M.; O’Cleirigh, C.; Hendriksen, E.S.; Bullis, J.R.; Stein, M.; Safren, S.A. Childhood sexual abuse and health risk behaviors in patients with HIV and a history of injection drug use. AIDS Behav. 2011, 15, 1554–1560. [Google Scholar] [CrossRef] [Green Version]
- Pence, B.W.; Mills, J.C.; Bengtson, A.M.; Gaynes, B.N.; Breger, T.L.; Cook, R.L.; Moore, R.D.; Grelotti, D.J.; O’Cleirigh, C.; Mugavero, M.J. Association of increased chronicity of depression with HIV appointment attendance, treatment failure, and mortality among HIV-infected adults in the United States. JAMA Psychiatry 2018, 75, 379–385. [Google Scholar] [CrossRef]
- Helleberg, M.; Pedersen, M.G.; Pedersen, C.B.; Mortensen, P.B.; Obel, N. Associations between HIV and schizophrenia and their effect on HIV treatment outcomes: A nationwide population-based cohort study in Denmark. Lancet HIV 2015, 2, e344–e350. [Google Scholar] [CrossRef]
- Closson, K.; McLinden, T.; Patterson, T.L.; Eyawo, O.; Kibel, M.; Card, K.G.; Salters, K.; Chau, W.; Ye, M.; Hull, M.W.; et al. HIV, schizophrenia, and all-cause mortality: A population-based cohort study of individuals accessing universal medical care from 1998 to 2012 in British Columbia, Canada. Schizophr. Res. 2019, 209, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, P.; Nakasujja, N.; Musisi, S.; Thorson, A.E.; Cantor-Graae, E.; Allebeck, P. HIV prevalence in persons with severe mental illness in Uganda: A cross-sectional hospital-based study. Int. J. Ment. Health Syst. 2013, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maling, S.; Todd, J.; Van der Paal, L.; Grosskurth, H.; Kinyanda, E. HIV-1 seroprevalence and risk factors for HIV infection among first-time psychiatric admissions in Uganda. AIDS Care 2011, 23, 171–178. [Google Scholar] [CrossRef]
- Camara, A.; Sow, M.S.; Touré, A.; Sako, F.B.; Camara, I.; Soumaoro, K.; Delamou, A.; Doukouré, M. Anxiety and depression among HIV patients of the infectious disease department of Conakry University Hospital in 2018. Epidemiol. Infect. 2020, 148, e8. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Mazenga, A.C.; Yu, X.; Devandra, A.; Nguyen, C.; Ahmed, S.; Kazembe, P.N.; Sharp, C. Factors associated with depression among adolescents living with HIV in Malawi. BMC Psychiatry 2015, 15, 264. [Google Scholar] [CrossRef] [Green Version]
- Ngum, P.A.; De Fon, P.N.; Ngu, R.C.; Verla, V.S.; Luma, H.N. Depression among HIV/aids patients on highly active antiretroviral therapy in the southwest regional hospitals of Cameroon: A cross-sectional study. Neurol. Ther. 2017, 6, 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abebe, H.; Shumet, S.; Nassir, Z.; Agidew, M.; Abebaw, D. Prevalence of Depressive Symptoms and Associated Factors among HIV-Positive Youth Attending ART Follow-Up in Addis Ababa, Ethiopia. AIDS Res. Treat. 2019, 1–7. [Google Scholar] [CrossRef]
- Simoni, J.M.; Safren, S.A.; Manhart, L.E.; Lyda, K.; Grossman, C.I.; Rao, D.; Mimiaga, M.J.; Wong, F.Y.; Catz, S.L.; Blank, M.B.; et al. Challenges in addressing depression in HIV research: Assessment, cultural context, and methods. AIDS Behav. 2011, 15, 376–388. [Google Scholar] [CrossRef] [Green Version]
- Bing, E.G.; Burnam, M.A.; Longshore, D.; Fleishman, J.A.; Sherbourne, C.D.; London, A.S.; Turner, B.J.; Eggan, F.; Beckman, R.; Vitiello, B.; et al. Psychiatric disorders and drug use among human immunodeficiency virus-infected adults in the United States. Arch. Gen. Psychiatry 2001, 58, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Birnbaum, H.; Bromet, E.; Hwang, I.; Sampson, N.; Shahly, V. Age differences in major depression: Results from the National Comorbidity Survey Replication (NCS-R). Psychol. Med. 2010, 40, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Tsao, J.C.; Dobalian, A.; Moreau, C.; Dobalian, K. Stability of anxiety and depression in a national sample of adults with human immunodeficiency virus. J. Nerv. Ment. Dis. 2004, 192, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, M.S.; Munjal, S. Prevalence of Depression in People Living with HIV/AIDS Undergoing ART and Factors Associated with it. J. Clin. Diagn. Res. 2014, 8, WC01–WC04. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Meyers, K.; Liu, X.; Li, X.; Zhang, T.; Xia, W.; Hou, J.; Song, A.; He, H.; Li, C.; et al. The Double Burdens of Mental Health Among AIDS Patients with Fully Successful Immune Restoration: A Cross-Sectional Study of Anxiety and Depression in China. Front. Psychiatry 2018, 24, 384. [Google Scholar] [CrossRef] [PubMed]
- Charlson, F.J.; Baxter, A.J.; Hui, G.C.; Shidhaye, R.; Whiteford, H.A. The burden of mental, neurological, and substance use disorders in China and India: A systematic analysis of community representative epidemiological studies. Lancet 2016, 388, 376–389. [Google Scholar] [CrossRef]
- Todd, J.V.; Cole, S.R.; Pence, B.W.; Lesko, C.R.; Bacchetti, P.; Cohen, M.H.; Feaster, D.J.; Gange, S.; Griswold, M.E.; Mack, W.; et al. Effects of antiretroviral therapy and depressive symptoms on all-cause mortality among HIV-infected women. Am. J. Epidemiol. 2017, 185, 869–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antelman, G.; Kaaya, S.; Wei, R.; Mbwambo, J.; Msamanga, G.I.; Fawzi, W.W.; Fawzi, M.C. Depressive symptoms increase risk of HIV disease progression and mortality among women in Tanzania. J. Acquir. Immune Defic. Syndr. 2007, 44, 470–477. [Google Scholar] [CrossRef]
- Helleberg, M.; Kronborg, G.; Larsen, C.S.; Pedersen, G.; Pedersen, C.; Gerstoft, J.; Obel, N. Causes of death among Danish HIV patients compared with population controls in the period 1995–2008. Infection 2012, 40, 627–634. [Google Scholar] [CrossRef]
- Adewuya, A.O.; Afolabi, M.O.; Ola, B.A.; Ogundele, O.; Ajibare, A.O.; Oladipo, B.F. Psychatric disorders among the HIV-positive population in Nigeria: A control study. J. Psychosom. Res. 2007, 63, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Dolder, C.R.; Patterson, T.L.; Dilip, V.J. HIV, psychosis and aging: Past, present and future. AIDS 2004, 18, S35–S42. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.J.; Jeste, D.V.; Gleghorn, A.; Sewell, D.D. New-onset psychosis in HIV infected patients. J. Clin. Psychiatry 1991, 52, 369–376. [Google Scholar] [PubMed]
- De Sousa, G.W.; Da Silva, C.A.H.; Barreto, R.D.; Negreiros de Matos, K.J.; Do Menino, J.S.L.T.; De Matos e Souza, F.G. Prevalence of bipolar disorder in a HIV-infected outpatient population. AIDS Care 2013, 25, 1499–1503. [Google Scholar] [CrossRef]
- Atkinson, J.H.; Higgins, J.A.; Vigil, O.; Dubrow, R.; Remien, R.H.; Steward, W.T.; Casey, C.Y.; Sikkema, K.J.; Correale, J.; Ake, C.; et al. Psychiatric context of acute/early HIV infection. The NIMH multisite acute HIV infection study: IV. AIDS Behav. 2009, 13, 1061–1067. [Google Scholar] [CrossRef] [Green Version]
- Merikangas, K.R.; Akiskal, H.S.; Angst, J.; Greenberg, P.E.; Hirschfeld, R.M.; Petukhova, M.; Kessler, R.C. Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch. Gen. Psychiatry 2007, 64, 543–552. [Google Scholar] [CrossRef]
- Nakimuli-Mpungu, E.; Musisi, S.; Katabira, E.; Nachega, J.; Bass, J. Prevalence and factors associated with depressive disorders in an HIV+ patient population in southern Uganda. J. Affect. Disord. 2011, 135, 160–167. [Google Scholar] [CrossRef]
- Lyketsos, C.G.; Schwartz, J.; Fishman, M.; Treisman, G. AIDS mania. J. Neuropsychiatry Clin. Neurosci. 1997, 9, 277–279. [Google Scholar] [CrossRef]
- Kieburtz, K.; Zettelmaier, A.E.; Ketonen, L.; Tuite, M.; Caine, E.D. Manic syndrome in AIDS. Am. J. Psychiatry 1991, 148, 1068–1070. [Google Scholar] [CrossRef]
- Lyketsos, C.G.; Hanson, A.L.; Fishman, M.; Rosenblatt, A.; McHugh, P.R.; Treisman, G.J. Manic syndrome early and late in the course of HIV. Am. J. Psychiatry 1993, 150, 326–327. [Google Scholar] [CrossRef]
- Dougherty, R.H.; Skolasky, R.L., Jr.; McArthur, J.C. Progression of HIV-associated dementia treated with HAART. AIDS Read. 2002, 12, 69–74. [Google Scholar] [PubMed]
- Valcour, V.; Chalermchai, T.; Sailasuta, N.; Marovich, M.; Lerdlum, S.; Suttichom, D.; Suwanwela, N.C.; Jagodzinski, L.; Michael, N.; Spudich, S.; et al. RV254/SEARCH 010 Study Group. Central nervous system viral invasion and inflammation during acute HIV infection. Int. J. Infect. Dis. 2012, 206, 275–282. [Google Scholar] [CrossRef]
- Kumar, A.M.; Borodowsky, I.; Fernandez, B.; Gonzalez, L.; Kumar, M. Human immunodeficiency virus type 1 RNA levels in different regions of human brain: Quantification using real-time reverse transcriptase-polymerase chain reaction. J. Neurovirol. 2007, 13, 210–224. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, D.M.; Durham, L.C.; Scwartz, L.; Seth, P.; Maric, D.; Major, E.O. Human immunodeficiency virus type 1 infection of human brain-derived progenitor cells. J. Virol. 2004, 78, 7319–7328. [Google Scholar] [CrossRef] [Green Version]
- McMurtray, A.; Nakamoto, B.; Shikuma, C.; Valcour, V. Cortical atrophy and white matter hyperintensities in HIV: The Hawaii Aging with HIV Cohort Study. J. Stroke Cerebrovasc. Dis. 2008, 17, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Hestad, K.; McArthur, J.H.; Dal Pan, G.J.; Selnes, O.A.; Nance-Sproson, T.E.; Aylward, E.; Mathews, V.P.; McArthur, J.C. Regional brain atrophy in HIV-1 infection: Association with specific neuropsychological test performance. Acta Neurol. Scand. 1993, 88, 112–118. [Google Scholar] [CrossRef]
- Becker, J.T.; Sanders, J.; Madsen, S.K.; Ragin, A.; Kingsley, L.; Maruca, V.; Cohen, B.; Goodkin, K.; Martin, E.; Miller, E.N.; et al. Multicenter AIDS Cohort Study. Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain Imaging Behav. 2011, 5, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Vita, A.; De Peri, L.; Deste, G.; Sacchetti, E. Progressive loss of cortical gray matter in schizophrenia: A meta-analysis and meta-regression of longitudinal MRI studies. Transl. Psychiatry 2012, 2, e190. [Google Scholar] [CrossRef] [PubMed]
- Capuron, L.; Pagnoni, G.; Demetrashvili, M.; Lawson, D.H.; Fornwalt, F.B.; Woolwine, B.; Berns, G.S.; Nemeroff, C.B.; Miller, A.H. Basal Ganglia Hypermetabolism and Symptoms of Fatigue during Interferon-α Therapy. Neuropsychopharmacology 2007, 32, 2384–2392. [Google Scholar] [CrossRef]
- Kaul, M.; Lipton, S.A. Mechanisms of neuroimmunity and neurodegeneration associated with HIV-1 infection and AIDS. J. Neuroimmune Pharm. 2006, 1, 138–151. [Google Scholar] [CrossRef]
- Persidsky, Y.; Gendelman, H.E. Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J. Leukoc. Biol. 2003, 74, 691–701. [Google Scholar] [CrossRef]
- Xu, R.; Feng, X.; Xie, X.; Zhang, J.; Wu, D.; Xu, L. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res. 2012, 1436, 13–19. [Google Scholar] [CrossRef]
- Woollard, S.M.; Bhargavan, B.; Yu, F.; Kanmogne, G.D. Differential effects of Tat proteins derived from HIV-1 subtypes B and recombinant CRF02_AG on human brain microvascular endothelial cells: Implications for blood–brain barrier dysfunction. J. Cereb. Blood Flow Metab. 2014, 34, 1047–1059. [Google Scholar] [CrossRef] [Green Version]
- Banks, W.A.; Freed, E.O.; Wolf, K.M.; Robinson, S.M.; Franko, M.; Kumar, V.B. Transport of human immunodeficiency virus type 1 pseudoviruses across the blood–brain barrier: Role of envelope proteins and adsorptive endocytosis. J. Virol. 2001, 75, 4681–4691. [Google Scholar] [CrossRef] [Green Version]
- Banks, W.A.; Robinson, S.M.; Wolf, K.M.; Bess, J.W., Jr.; Arthur, L.O. Binding, internalization, and membrane incorporation of human immunodeficiency virus-1 at the blood–brain barrier is differentially regulated. Neuroscience 2004, 128, 143–153. [Google Scholar] [CrossRef]
- Maslin, C.L.V.; Kedzierska, K.; Webseter, N.; Muller, W.; Crowe, S. Transendothelial migration of monocytes: The underlying molecular mechanisms and consequences of HIV-1 infection. Curr. HIV Res. 2005, 3, 303–317. [Google Scholar] [CrossRef]
- Annunziata, P. Blood–brain barrier changes during invasion of the central nervous system by HIV-1. J. Neurol. 2003, 250, 901–906. [Google Scholar] [CrossRef]
- Feng, Y.; Broder, C.C.; Kennedy, P.E.; Berger, E.A. HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor. Science 1996, 272, 872–877. [Google Scholar] [CrossRef]
- Deng, H.; Liu, R.; Ellmeier, W.; Choe, S.; Unutmaz, D.; Burkhart, M.; Di Marzio, P.; Marmon, S.; Sutton, R.E.; Hill, C.M.; et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996, 381, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Dragic, T.; Litwin, V.; Allaway, G.P.; Martin, S.R.; Huang, Y.; Nagashima, K.A.; Cayanan, C.; Maddon, P.J.; Koup, R.A.; Moore, J.P.; et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996, 381, 667–673. [Google Scholar] [CrossRef]
- Crowe, S.; Zhu, T.; Muller, W.A. The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J. Leukoc. Biol. 2003, 74, 635–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierson, T.; McArthur, J.; Siliciano, R.S. Reservoirs for HIV-1: Mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Ann. Rev. Immunol. 2002, 18, 665–708. [Google Scholar] [CrossRef] [PubMed]
- Rosadas, C.; Puccioni-Sohler, M. Relevance of retrovirus quantification in cerebrospinal fluid for neurologic diagnosis. J. Biomed. Sci. 2015, 22, 66. [Google Scholar] [CrossRef] [Green Version]
- Christo, P.P.; Greco, D.B.; Aleixo, A.W.; Livramento, J.A. Factors influencing cerebrospinal fluid and plasma HIV-1 RNA detection rate in patients with and without opportunistic neurological disease during the HAART era. BMC Infect. Dis. 2007, 7, 147. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, G.; MacLean, A.G.; Philipp, M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat. Inflam. 2013, 480739. [Google Scholar] [CrossRef] [Green Version]
- Chivero, E.T.; Guo, M.; Periyasamy, P.; Liao, K.; Callen, S.E.; Buch, S. HIV Tat primes and activates microglial NLRP3 inflammasome-mediated neuroinflammation. J. Neurosci. 2017, 37, 3599–3609. [Google Scholar] [CrossRef] [Green Version]
- Von Bernhardi, R.; Eugenin-von Bernhardi, L.; Eugenin, J. Microglial cell dysregulation in brain aging and neurodegeneration. Front. Aging Neurosci. 2015, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Molin, M.D.; Ganguli, G.; Padhi, A.; Jena, P.; Selchow, P.; Sengupta, S.; Meuli, M.; Sander, P.; Sonawane, A. Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages. Tuberculosis 2016, 96, 44–57. [Google Scholar] [CrossRef]
- Churchill, M.; Nath, A. Where does HIV hide? A focus on the central nervous system. Curr. Opin. HIV AIDS 2013, 8, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Bissel, S.J.; Wiley, C.A. Human immunodeficiency virus infection of the brain: Pitfalls in evaluating infected/affected cell populations. Brain Pathol. 2004, 14, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Scarano, F.; Martin-Garcia, J. The neuropathogenesis of AIDS. Nat. Rev. Immunol. 2005, 5, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Pu, H.; Tian, J.; Flora, G.; Lee, Y.W.; Nath, A.; Hennig, B.; Toborek, M. HIV-1 Tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol. Cell Neurosci. 2003, 24, 224–237. [Google Scholar] [CrossRef]
- Bencheikh, M.; Bentsman, G.; Sarkissian, N.; Canki, M.; Volsky, D.J. Replication of different clones of human immunodeficiency virus type 1 in primary fetal human astrocytes: Enhancement of viral gene expression by Nef. J. Neurovirol. 1999, 5, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Calcagno, A.; Atzori, C.; Romito, A.; Vai, D.; Audagnotto, S.; Stella, M.L.; Montrucchio, C.; Imperiale, D.; Di Perri, G.; Bonora, S. Blood brain barrier impairment is associated with cerebrospinal fluid markers of neuronal damage in HIV-positive patients. J. Neurovirol. 2016, 22, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Katafiasz, B.; Fox, H.; Xiong, H. HIV-1 gp120-Induced Axonal Injury Detected by Accumulation of β-Amyloid Precursor Protein in Adult Rat Corpus Callosum. J. Neuroimmune Pharmacol. 2011, 6, 650–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, K.F.; Hahn, Y.K.; Adjan, V.V.; Zou, S.; Buch, S.K.; Nath, A.; Bruce-Keller, A.J.; Knapp, P.E. HIV-1 Tat and morphine have interactive effects on oligodendrocyte survival and morphology. Glia 2009, 57, 194–206. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; Fuss, B.; Fitting, S.; Hahn, Y.K.; Hauser, K.F.; Knapp, P.E. Oligodendrocytes are targets of HIV-1 Tat: NMDA and AMPA receptor-mediated effects on survival and development. J. Neurosci. 2015, 35, 11384–11398. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Balinang, J.M.; Paris, J.J.; Hauser, K.F.; Fuss, B.; Knapp, P.E. Effects of HIV-1 Tat on oligodendrocyte viability are mediated by CaMKIIbeta-GSK3beta interactions. J. Neurochem. 2019, 149, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Hauser, K.F.; Wojna, E.F.; Booze, R.M.; Maragos, W.; Predengarst, M.; Cass, W.; Turchan, J.T. Molecular Basis for Interactions of HIV and Drugs of Abuse. J. Acquir. Immune Defic. Syndr. 2002, 31, S62–S69. [Google Scholar] [CrossRef]
- Fields, J.; Dumaop, W.; Eleuteri, S.; Campos, S.; Serger, E.; Trejo, M.; Kosberg, K.; Adame, A.; Spencer, B.; Rockenstein, E.; et al. HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: Implications for HIV-associated neurocognitive disorders. J. Neurosci. 2015, 35, 1921–1938. [Google Scholar] [CrossRef] [Green Version]
- Kyei, G.B.; Dinkins, C.; Davis, A.S.; Roberts, E.; Singh, S.B.; Dong, C.; Wu, L.; Kominami, E.; Ueno, T.; Yamamoto, A.; et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J. Cell Biol. 2009, 186, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Alford, K.; Banerjee, S.; Nixon, E.; O’Brien, C.; Pounds, O.; Butler, A.; Elphick, C.; Henshaw, P.; Anderson, S.; Vera, J.H. Assessment and Management of HIV-Associated Cognitive Impairment: Experience from a Multidisciplinary Memory Service for People Living with HIV. Brain Sci. 2019, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelman, B.B.; Lisinicchia, J.G.; Morgello, S.; Masliah, E.; Commins, D.; Achim, C.L.; Fox, H.S.; Kolson, D.L.; Grant, I.; Singer, E.; et al. Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort. J. Acquir. Immune Defic. Syndr. 2013, 62, 487–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaton, R.K.; Franklin, D.R., Jr.; Deutsch, R.; Letendre, S.; Ellis, R.J.; Casaletto, K.; Marquine, M.J.; Woods, S.P.; Vaida, F.; Atkinson, J.H.; et al. Neurocognitive change in the era of HIV combination antiretroviral therapy: The longitudinal CHARTER study. Clin. Infect. Dis. 2015, 60, 473–480. [Google Scholar] [CrossRef]
- Asahchop, E.L.; Meziane, O.; Mamik, M.K.; Chan, W.F.; Branton, W.G.; Resch, L.; Gill, M.J.; Haddad, E.; Guimond, J.V.; Wainberg, M.A.; et al. Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain. Retrovirology 2017, 14, 47. [Google Scholar] [CrossRef] [PubMed]
- Anthony, I.C.; Ramage, S.N.; Carnie, F.W.; Simmonds, P.; Bell, J.E. Influence of HAART on HIV-related CNS disease and neuroinflammation. J. Neuropathol. Exp. Neurol. 2005, 64, 529–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanmarti, M.; Ibáñez, L.; Huertas, S.; Badenes, D.; Dalmau, D.; Slevin, M.; Krupinski, J.; Popa-Wagner, A.; Jaen, A. HIV-associated neurocognitive disorders. J. Mol. Psychiatry 2014, 2, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marra, C.M.; Zhao, Y.; Clifford, D.B.; Letendre, S.; Evans, S.; Henry, K.; Ellis, R.J.; Rodriguez, B.; Coombs, R.W.; Schifitto, G.; et al. Impact of combination antiretroviral therapy on cerebrospinal fluidz HIV RNA and neurocognitive performance. AIDS 2009, 23, 1359–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akay, C.; Cooper, M.; Odeleye, A.; Jensen, B.K.; White, M.G.; Vassoler, F.; Gannon, P.J.; Mankowski, J.; Dorsey, J.L.; Buch, A.M.; et al. Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J. Neurovirol. 2014, 20, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Bates, T.E.; Strangward, M.; Keelan, J.; Davey, G.P.; Munro, P.M.; Clark, J.B. Inhibition of N-acetylaspartate production: Implications for 1H MRS studies in vivo. NeuroReport 1996, 7, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
- Schweinsburg, B.C.; Taylor, M.J.; Alhassoon, O.M.; Gonzalez, R.; Brown, G.G.; Ellis, R.J.; Letendre, S.; Videen, J.S.; McCutchan, J.A.; Patterson, T.L.; et al. HNRC Group. Brain mitochondrial injury in human immunodeficiency virus-seropositive (HIV+) individuals taking nucleoside reverse transcriptase inhibitors. J. Neurovirol. 2005, 11, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Koczor, C.A.; Torres, R.; Le, W. The Role of Transporters in the Toxicity of Nucleoside and Nucleotide Analogs. Expert Opin. Drug Metab. Toxicol. 2012, 8, 665–676. [Google Scholar] [CrossRef]
- Apostolova, N.; Blas-García, A.; Esplugues, J.V. Mitochondrial interference by anti-HIV drugs: Mechanisms beyond Pol-γ inhibition. Trends Pharmacol. Sci. 2011, 32, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Maagaard, A.; Kvale, D. Long term adverse effects related to nucleoside reverse transcriptase inhibitors: Clinical impact of mitochondrial toxicity. Scand. J. Infect. Dis. 2009, 41, 808–817. [Google Scholar] [CrossRef]
- Brinkman, K.; Kakuda, T.N. Mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors: A looming obstacle for long-term antiretroviral therapy? Curr. Opin. Infect. Dis. 2000, 13, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Lewis, W.; Day, B.J.; Copeland, W.C. Mitochondrial toxicity of NRTI antiviral drugs: An integrated cellular perspective. Nat. Rev. Drug Discov. 2003, 2, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Kohler, J.J.; Lewis, W. A brief overview of mechanisms of mitochondrial toxicity from NRTIs. Environ. Mol. Mutagenes. 2007, 48, 166–172. [Google Scholar] [CrossRef]
- Côté, H.C. Possible ways nucleoside analogues can affect mitochondrial DNA content and gene expression during HIV therapy. Antivir. Ther. 2005, 10, M3–M11. [Google Scholar] [PubMed]
- Martin, A.M.; Hammond, E.; Nolan, D.; Pace, C.; Den Boer, M.; Taylor, L.; Moore, H.; Martinez, O.P.; Christiansen, F.T.; Mallal, S. Accumulation of mitochondrial DNA mutations in human immunodeficiency virus-infected patients treated with nucleoside-analogue reverse-transcriptase inhibitors. Am. J. Hum. Genet. 2003, 72, 549–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, U.A.; Venhoff, N. Multiple mitochondrial DNA deletions and lactic acidosis in an HIV-infected patient under antiretroviral therapy. AIDS 2001, 15, 1449–1450. [Google Scholar] [CrossRef]
- Selvaraj, S.; Ghebremichael, M.; Li, M.; Foli, Y.; Langs-Barlow, A.; Ogbuagu, A.; Barakat, L.; Tubridy, E.; Edifor, R.; Lam, W.; et al. Antiretroviral therapy-induced mitochondrial toxicity: Potential mechanisms beyond polymerase-γ inhibition. Clin. Pharmacol. Ther. 2014, 96, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Huber-Ruano, I.; Pastor-Anglada, M. Transport of nucleotide analogs across the plasma membrane: A clue to understanding drug-induced cytotoxicity. Curr. Drug Metab. 2009, 10, 347–358. [Google Scholar] [CrossRef]
- Miller, D.S. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci. 2010, 31, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funes, H.A.; Apostolova, N.; Alegre, F.; Blas-Garcia, A.; Alvarez, A.; Marti-Cabrera, M.; Esplugues, J.V. Neuronal bioenergetics and acute mitochondrial dysfunction: A clue to understanding the central nervous system side effects of efavirenz. J. Infect. Dis. 2014, 210, 1385–1395. [Google Scholar] [CrossRef]
- Muñoz-Moreno, J.A.; Fumaz, C.R.; Ferrer, M.J.; González-García, M.; Moltó, J.; Negredo, E.; Clotet, B. Neuropsychiatric symptoms associated with efavirenz: Prevalence, correlates, and management. A neurobehavioral review. AIDS Rev. 2009, 11, 103–109. [Google Scholar] [PubMed]
- Mollan, K.R.; Tierney, C.; Hellwege, J.N.; Eron, J.J.; Hudgens, M.G.; Gulick, R.M.; Haubrich, R.; Sax, P.E.; Campbell, T.B.; Daar, E.S.; et al. AIDS Clinical Trials Group. Race/Ethnicity and the Pharmacogenetics of Reported Suicidality with Efavirenz Among Clinical Trials Participants. J. Infect. Dis. 2017, 216, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Mollan, K.R.; Smurzynski, M.; Eron, J.J.; Daar, E.S.; Campbell, T.B.; Sax, P.E.; Gulick, R.M.; Na, L.; O’Keefe, L.; Robertson, K.R.; et al. Association between efavirenz as initial therapy for HIV-1 infection and increased risk for suicidal ideation or attempted or completed suicide: An analysis of trial data. Ann. Intern. Med. 2014, 161, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Arenas-Pinto, A.; Grund, B.; Sharma, S.; Martinez, E.; Cummins, N.; Fox, J.; Klingman, K.L.; Sedlacek, D.; Collins, S.; Flynn, P.M.; et al. Risk of Suicidal Behavior with Use of Efavirenz: Results from the Strategic Timing of Antiretroviral Treatment Trial. Clin. Infect. Dis. 2018, 67, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Ciavatta, V.T.; Bichler, E.K.; Speigel, I.A.; Elder, C.C.; Teng, S.L.; Tyor, W.R.; García, P.S. In vitro and Ex vivo Neurotoxic Effects of Efavirenz are Greater than Those of Other Common Antiretrovirals. Neurochem. Res. 2017, 42, 3220–3232. [Google Scholar] [CrossRef]
- Thompson, A.; Silverman, B.; Dzeng, L.; Treisman, G. Psychotropic Medications and HIV. Clin. Infect. Dis. 2006, 42, 1305–1310. [Google Scholar] [CrossRef]
- Hill, L.; Lee, K.C. Pharmacotherapy considerations in patients with HIV and psychiatric disorders: Focus on antidepressants and antipsychotics. Ann. Pharmacother. 2013, 47, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, D.; Hsu, A.; Qian, J.; Lamm, J.E.; Cavanaugh, J.H.; Leonard, J.M.; Granneman, G.R. Effect of fluoxetine on pharmacokinetics of ritonavir. Antimicrob. Agents Chemother. 1998, 42, 3107–3112. [Google Scholar] [CrossRef] [Green Version]
- NORVIR® [Package Insert]; AbbVie Inc.: North Chicago, IL, USA, 2020.
- Rescriptor® (Delavirdine Mesylate) [Package Insert]; Pfizer Pharmaceuticals LLC: Research Triangle Park, NC, USA, 2012.
- De Maat, M.M.; Huitema, A.D.; Mulder, J.W.; Meenhorst, P.L.; Van Gorp, E.C.M.; Mairuhu, A.T.A.; Beijnen, J.H. Drug interaction of fluvoxamine and fluoxetine with nevirapine in HIV-1–infected individuals. Clin. Drug Investig. 2003, 23, 629–637. [Google Scholar] [CrossRef]
- Van der Lee, M.J.; Blenke, A.A.; Rongen, G.A.; Verwey-van Wissen, C.P.; Koopmans, P.P.; Pharo, C.; Burger, D.M. Interaction study of the combined use of paroxetine and fosamprenavir-ritonavir in healthy subjects. Antimicrob. Agents Chemother. 2007, 51, 4098–4104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents with HIV. Department of Health and Human Services. Available online: https://clinicalinfo.hiv.gov/sites/default/files/inline-files/AdultandAdolescentGL.pdf (accessed on 10 October 2020).
- Greenblatt, D.J.; Von Moltke, L.L.; Harmatz, J.S.; Fogelman, S.M.; Chen, G.; Graf, J.A.; Mertzanis, P.; Byron, S.; Culm, K.E.; Granda, B.W.; et al. Short-term exposure to low-dose ritonavir impairs clearance and enhances adverse effects of trazodone. J. Clin. Pharmacol. 2003, 43, 414–422. [Google Scholar] [CrossRef]
- Product Information. Desyrel® (Trazodone); Bristol-Myers Squibb: Princeton, NJ, USA, 2020.
- Hesse, L.M.; Von Moltke, L.L.; Shader, R.I.; Greenblatt, D.J. Ritonavir, efavirenz, and nelfinavir inhibit CYP2B6 activity in vitro: Potential drug interactions with bupropion. Drug Metab. Dispos. 2001, 29, 100–102. [Google Scholar] [PubMed]
- Robertson, S.M.; Maldarelli, F.; Natarajan, V.; Formentini, E.; Alfaro, R.M.; Penzak, S.R. Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J. Acquir. Immune Defic. Syndr. 2008, 49, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Jernigan, M.G.; Kipp, G.M.; Rather, A.; Jenkins, M.T.; Chung, A.M. Clinical implications and management of drug-drug interactions between antiretroviral agents and psychotropic medications. Ment. Health Clin. 2013, 2, 274–285. [Google Scholar] [CrossRef]
- Park, J.; Vousden, M.; Brittain, C.; McConn, D.J.; Lavarone, L.; Ascher, J.; Sutherland, M.A.; Muir, K.T. Dose-related reduction in bupropion plasma concentrations by ritonavir. J. Clin. Pharmacol. 2010, 50, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Penzak, S.R.; Reddy, Y.S.; Grimsley, S.R. Depression in patients with HIV infection. Am. J. Health Syst. Pharm. 2000, 57, 376–386. [Google Scholar] [CrossRef]
- Aung, G.L.; O’Brien, J.G.; Tien, P.G.; Kawamoto, L.S. Increased aripiprazole concentrations in an HIV-positive male concurrently taking duloxetine, darunavir, and ritonavir. Ann. Pharmacother. 2010, 44, 1850–1854. [Google Scholar] [CrossRef]
- Seroquel® (Quetiapine Fumarate) [Package Insert]; AstraZeneca Pharmaceuticals LLP: Wilmington, DC, USA, 2012.
- Jacobs, B.S.; Colbers, A.P.; Velthoven-Graafland, K.; Schouwenberg, B.J.J.W.; Burgera, D.M. Effect of fosamprenavir/ritonavir on the pharmacokinetics of single-dose olanzapine in healthy volunteers. Int. J. Antimicrob. Agents 2014, 44, 173–177. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Von Moltke, L.L.; Harmatz, J.S.; Durol, A.L.B.; Daily, J.P.; Graf, J.A.; Mertzanis, P.; Hoffman, J.L.; Shader, R.A. Alprazolam-ritonavir interaction: Implications for product labeling. Clin. Pharmacol. Ther. 2000, 67, 335–341. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Wright, C.E. Clinical pharmacokinetics of alprazolam. Therapeutic implications. Clin. Pharmacokinet. 1993, 24, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, T.; Tseng, A.L. Interactions between recreational drugs and antiretroviral agents. Ann. Pharmacother. 2002, 36, 1598–1613. [Google Scholar] [CrossRef] [PubMed]
- Palkama, V.J.; Ahonen, J.; Neuvonen, P.J.; Olkkola, K.T. Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin. Pharmacol. Ther. 1999, 66, 33–39. [Google Scholar] [CrossRef]
- NAYZILAM® (Midazolam) Nasal Spray, CIV. [Package Insert]; UCB, Inc.: Smyrna, GA, USA, 2020.
- Whittington, R.A.; Virág, L.; Gratuzeb, M.; Lewkowitz-Shpuntoff, H.; Cheheltanana, M.; Petry, F.; Poitras, I.; Morin, F.; Planel, E. Administration of the benzodiazepine midazolam increases tau phosphorylation in the mouse brain. Neurobiol. Aging 2019, 75, 11–24. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Chen, X.; Wu, T.; Li, L.; Fei, X. Risk of Dementia in Long-Term Benzodiazepine Users: Evidence from a Meta-Analysis of Observational Studies. J. Clin. Neurol. 2019, 15, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.T.; Leung, W.C.; Li, V.; Wong, K.W.; Chu, W.M.; Leung, K.C.; Ng, Y.Z.; Kai, Y.G.; Shea, Y.F.; Chang, S.R.; et al. Association between high cumulative dose of benzodiazepine in Chinese patients and risk of dementia: A preliminary retrospective case–control study. Psychogeriatrics 2017, 17, 310–316. [Google Scholar] [CrossRef]
- Ko, A.; Kang, G.; Hattler, J.B.; Galadima, H.I.; Zhang, J.; Li, Q.; Kim, W.K. Macrophages but not Astrocytes Harbor HIV DNA in the Brains of HIV-1-Infected Aviremic Individuals on Suppressive Antiretroviral Therapy. J. Neuroimmune Pharmacol. 2019, 14, 110–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, L.; Cho, H.J.; Toborek, M. Blood–brain barrier pericytes as a target for HIV-1 infection. Brain 2019, 142, 502–511. [Google Scholar] [CrossRef]
- Cho, H.J.; Kuo, A.M.; Bertrand, L.; Toborek, M. HIV alters gap junctionmediated intercellular communication in human brain pericytes. Front. Mol. Neurosci. 2017, 10, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potash, M.J.; Chao, W.; Bentsman, G.; Paris, N.; Saini, M.; Nitkiewicz, J.; Belem, P.; Sharer, L.; Brooks, A.I.; Volsky, D.J. A mouse model for study of systemic HIV-1 infection, antiviral immune responses, and neuroinvasiveness. Proc. Natl. Acad. Sci. USA 2005, 102, 3760–3765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, S.; Castro, V.; Toborek, M. Infection of human pericytes by HIV-1 disrupts the integrity of the blood–brain barrier. J. Cell. Mol. Med. 2012, 16, 2950–2957. [Google Scholar] [CrossRef] [PubMed]
- Letendre, S.L.; Mills, A.M.; Tashima, K.T.; Thomas, D.A.; Min, S.S.; Chen, S.; Song, I.H.; Piscitelli, S.C. ING116070: A Study of the Pharmacokinetics and Antiviral Activity of Dolutegravir in Cerebrospinal Fluid in HIV-1–Infected, Antiretroviral Therapy–Naive Subjects. Clin. Infect. Dis. 2014, 7, 1032–1037. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, C.; Welz, T.; Sabranski, M.; Kolb, M.; Wolf, E.; Stellbrink, H.J.; Wyen, C. Higher rates of neuropsychiatric adverse events leading to dolutegravir discontinuation in women and older patients. HIV Med. 2017, 18, 56–63. [Google Scholar] [CrossRef]
- Scheper, H.; Van Holten, N.; Hovens, J.; De Boer, M. Severe depression as a neuropsychiatric side effect induced by dolutegravir. HIV Med. 2018, 19, e58–e59. [Google Scholar] [CrossRef]
- De Boer, M.G.J.; Van den Berk, G.E.L.; Van Holten, N.; Oryszcyn, J.E.; Dorama, W.; Moha, D.A.; Brinkman, K. Intolerance of dolutegravir-containing combination antiretroviral therapy regimens in real-life clinical practice. AIDS 2016, 30, 2831–2834. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Chowdhury, P.; Nagesh, P.K.B.; Rahman, M.A.; Zhi, K.; Yallapu, M.M.; Kumar, S. Novel elvitegravir nanoformulation for drug delivery across the blood–brain barrier to achieve HIV-1 suppression in the CNS macrophages. Sci. Rep. 2020, 10, 3835. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Zhi, K.; Nagesh, P.K.B.; Sinha, N.; Chowdhury, P.; Chen, H.; Gorantla, S.; Yallapu, M.M.; Kumar, S. An Elvitegravir Nanoformulation Crosses the Blood–Brain Barrier and Suppresses HIV-1 Replication in Microglia. Viruses 2020, 12, 564. [Google Scholar] [CrossRef]
Cells | Co-Receptors Expressed on the Cell’s Surface | HIV-1 Induced Pathological Changes |
---|---|---|
Microglia Macrophages | CD4, CCR5, CXCR4 Full HIV-1 replication |
|
Astrocytes | Very few express CCR5, CXCR4 Limited HIV-1 replication, do not produce full-ledged viral particles |
|
Oligodendrocytes | Limited expression of CXCR4 Debated if HIV-1 can replicate in oligodendrocytes in vivo |
|
Neurons | Do not express co-receptors Cannot be infected with HIV-1 |
|
Drug | P450 Cytochrome Substrate | Inhibitor | Inducer | Co-Administration of Drugs (Concentration) |
---|---|---|---|---|
Antidepressants: | ||||
Fluoxetine | CYP2D6 | CYP2D6, CYP3A4 | - | PIs (ritonavir) ↑ NNRTIs (delavirdine) ↑ |
Paroxetine | CYP2D6 | CYP2D6 | - | PIs ↑ |
Sertraline | CYP2D6 | CYP2D6 | - | PIs ↑ |
Fluvoxamine | CYP2D6 | CYP2D6, CYP1A2, CYP3A4 | - | PIs ↑ NNRTIs (nevirapine) ↑ |
Tryciclic Antidepressants (TCAs): | ||||
Trazodone | CYP3A4, CYP2D6 | - | - | |
Bupropion | CYP2B6 | - | - | |
Amitriptyline | CYP2D6 | - | - | |
Desipramine | CYP2D6 | - | - | |
Doxepin | CYP2D6 | - | - | |
Imipramine | CYP2D6, CYP1A2 | - | - | |
Nortriptyline | CYP2D6 | - | - | |
Neuroleptics: | ||||
Risperidone | CYP3A4, CYP2D6 | - | - | |
Aripiprazole | CYP3A4, CYP2D6 | - | - | |
Quetiapine | CYP3A4 | - | - | |
Ziprasidone | CYP3A4 | - | - | |
Olanzapine | CYP1A2 | - | - | |
Anxiolytics: | ||||
Bensodiazepines | ||||
Alprazolam | CYP3A4 | - | - | |
Midazolam | CYP3A4, CYP2B6 | CYP3A4 | - | |
Triazolam | CYP3A4 | - | - | |
Estrazolam | CYP3A4 | - | - | |
Non-nucleoside reverse transcriptase inhibitors (NNRTIs): | ||||
Delaverdine | CYP3A4, CYP2D6 | CYP3A4, CYP2B6 | - | |
Nevirapine | CYP3A4, CYP2D6 | - | CYP3A4, CYP2B6 | Fluoxetine ↓ |
Efavirenz | CYP3A4, CYP2B6, CYP2A6 | CYP3A4, CYP2B6 | CYP3A4, CYP2B6 | Sertraline ↓ Bupropion ↑↓ (efavirenz dose dependent) |
Etravirine | CYP3A4 | - | CYP3A4 | Midazolam ↑ |
Protease inhibitors (PIs): | ||||
Ritonavir | CYP3A4, CYP2D6 | CYP3A4, CYP2B6, CYP2D6 | CYP3A4, CYP2B6, CYP1A2 | Risperidone ↑ Aripiprazole ↑ Ziprasidone ↑ Quetiapine ↑ Trazadone ↑ Benzodiazepines ↑ ↓ Bupropion ↓ Paroxetine ↓ Sertraline ↓ Olanzapine |
Darunavir | CYP3A4 | CYP3A4 | - | Risperidone ↑ Quetiapine ↑ Aripiprazole ↑ Trazadone ↑ ↓ Paroxetine ↓ Sertraline |
Nelfinavir | CYP3A4, CYP2D6 | CYP3A4, CYP2B6 | CYP2B6 | Bupropion ↑ |
Indinavir | CYP3A4 | CYP3A4 | - | Risperidone ↑ Aripiprazole ↑ |
Saquinavir | CYP3A | CYP3A4 | - | Midazolam ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosik, M.; Lavrov, V.; Svitich, O. HIV Infection and Related Mental Disorders. Brain Sci. 2021, 11, 248. https://doi.org/10.3390/brainsci11020248
Nosik M, Lavrov V, Svitich O. HIV Infection and Related Mental Disorders. Brain Sciences. 2021; 11(2):248. https://doi.org/10.3390/brainsci11020248
Chicago/Turabian StyleNosik, Marina, Vyacheslav Lavrov, and Oxana Svitich. 2021. "HIV Infection and Related Mental Disorders" Brain Sciences 11, no. 2: 248. https://doi.org/10.3390/brainsci11020248
APA StyleNosik, M., Lavrov, V., & Svitich, O. (2021). HIV Infection and Related Mental Disorders. Brain Sciences, 11(2), 248. https://doi.org/10.3390/brainsci11020248