Cerebrospinal Fluid Parameters in Antisense Oligonucleotide-Treated Adult 5q-Spinal Muscular Atrophy Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Protocol Approvals, Registrations, and Patient Consents
2.2. Participants and Sampling
2.3. Sample Analysis
2.4. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. CSF Routine Parameters
3.2.1. CSF Leukocyte Count and Oligoclonal Bands
3.2.2. CSF Total Protein, QAlbumin, and CSF Lactate
3.3. Comparison of CSF Routine Parameters under Conventional and CT-Guided Lumbar Puncture
3.4. Association of CSF Protein Values and Clinical Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rus, A.A. FDA Approval of Nusinersen for Spinal Muscular Atrophy Makes 2016 the Year of Splice Modulating Oligonucleotides. Nucleic Acid Ther. 2017, 27, 67–69. [Google Scholar]
- Kolb, S.J.; Kissel, J.T. Spinal Muscular Atrophy. Neurol. Clin. 2015, 33, 831–846. [Google Scholar] [CrossRef] [Green Version]
- Prior, T.; Leach, M.; Finanger, E. Spinal Muscular Atrophy. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Eds.; University of Washington: Seattle, WA, USA, 1993–2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1352/ (accessed on 14 November 2019).
- Butchbach, M.E.R. Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases. Front. Mol. Biosci. 2016, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.F.; Baker, B.F.; Pham, N.; Swayze, E.; Geary, R.S. Pharmacology of Antisense Drugs. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 81–105. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.N.; Lee, B.M.; DiDonato, C.J.; Singh, R.N. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Futur. Med. Chem. 2015, 7, 1793–1808. [Google Scholar] [CrossRef] [Green Version]
- Chiriboga, C.A.; Swoboda, K.J.; Darras, B.T.; Iannaccone, S.T.; Montes, J.; De Vivo, D.C.; Norris, D.A.; Bennett, C.F.; Bishop, K.M. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 2016, 86, 890–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2018, 378, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Finkel, R.S.; A Chiriboga, C.; Vajsar, J.; Day, J.W.; Montes, J.; De Vivo, D.C.; Yamashita, M.; Rigo, F.; Hung, G.; Schneider, E.; et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: A phase 2, open-label, dose-escalation study. Lancet 2016, 388, 3017–3026. [Google Scholar] [CrossRef]
- Wurster, C.D.; Günther, R.; Steinacker, P.; Dreyhaupt, J.; Wollinsky, K.; Uzelac, Z.; Witzel, S.; Kocak, T.; Winter, B.; Koch, J.C.; et al. Neurochemical markers in CSF of adolescent and adult SMA patients undergoing nusinersen treatment. Ther. Adv. Neurol. Disord. 2019, 12. [Google Scholar] [CrossRef]
- Wurster, C.D.; Koch, J.C.; Cordts, I.; Dreyhaupt, J.; Otto, M.; Uzelac, Z.; Witzel, S.; Winter, B.; Kocak, T.; Schocke, M.; et al. Routine Cerebrospinal Fluid (CSF) Parameters in Patients with Spinal Muscular Atrophy (SMA) Treated with Nusinersen. Front. Neurol. 2019, 10. [Google Scholar] [CrossRef]
- Gingele, S.; Hümmert, M.W.; Alvermann, S.; Jendretzky, K.F.; Bönig, L.; Brieskorn, M.; Schwenkenbecher, P.; Sühs, K.-W.; Müschen, L.H.; Osmanovic, A.; et al. Routine Cerebrospinal Fluid Cytology Reveals Unique Inclusions in Macrophages during treatment with Nusinersen. Front. Neurol. 2019, 10, 735. [Google Scholar] [CrossRef] [Green Version]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Prev. Med. 2007, 45, 247–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolte, B.; Totzeck, A.; Kizina, K.; Bolz, S.; Pietruck, L.; Mönninghoff, C.; Guberina, N.; Oldenburg, D.; Forsting, M.; Kleinschnitz, C.; et al. Feasibility and safety of intrathecal treatment with nusinersen in adult patients with spinal muscular atrophy. Ther. Adv. Neurol. Disord. 2018, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzone, E.S.; Mayhew, A.; Montes, J.; Ramsey, D.; Fanelli, L.; Young, S.D.; Salazar, R.; De Sanctis, R.; Pasternak, A.; Glanzman, A.; et al. Revised upper limb module for spinal muscular atrophy: Development of a new module. Muscle Nerve 2017, 55, 869–874. [Google Scholar] [CrossRef]
- Main, M.; Kairon, H.; Mercuri, E.; Muntoni, F. The Hammersmith Functional Motor Scale for Children with Spinal Muscular Atrophy: A Scale to Test Ability and Monitor Progress in Children with Limited Ambulation. Eur. J. Paediatr. Neurol. 2003, 7, 155–159. [Google Scholar] [CrossRef]
- Young, D.S.; Montes, J.; Kramer, S.S.; Marra, J.; Salazar, R.; Cruz, R.; Chiriboga, C.A.; Garber, C.E.; De Vivo, D.C. Six-minute walk test is reliable and valid in spinal muscular atrophy. Muscle Nerve 2016, 54, 836–842. [Google Scholar] [CrossRef]
- Schwenkenbecher, P.; Janssen, T.; Wurster, U.; Konen, F.F.; Neyazi, A.; Ahlbrecht, J.; Puppe, W.; Bönig, L.; Sühs, K.W.; Stangel, M.; et al. The Influence of Blood Contamination on Cerebrospinal Fluid Diagnostics. Front. Neurol. 2019, 10, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiber, H. Cerebrospinal fluid--physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Mult. Scler. 1998, 4, 99–107. [Google Scholar] [PubMed]
- Wurster, U. Demonstration of oligoclonal IgG in the unconcentrated CSF by silver stain. In Electrophoresis Berlin; Stathakos, D., Ed.; Walter de Gruyter and Co.: Berlin, Germany, 1983; Volume 1982, pp. 250–259. [Google Scholar]
- Ahlbrecht, J.; Hillebrand, L.K.; Schwenkenbecher, P.; Ganzenmueller, T.; Heim, A.; Wurster, U.; Stangel, M.; Sühs, K.-W.; Skripuletz, T. Cerebrospinal fluid features in adults with enteroviral nervous system infection. Int. J. Infect. Dis. 2018, 68, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skripuletz, T.; Pars, K.; Schulte, A.; Schwenkenbecher, P.; Yildiz, Ö.; Ganzenmueller, T.; Kuhn, M.; Spreer, A.; Wurster, U.; Pul, R.; et al. Varicella zoster virus infections in neurological patients: A clinical study. BMC Infect. Dis. 2018, 18, 238. [Google Scholar] [CrossRef] [PubMed]
- Skripuletz, T.; Schwenkenbecher, P.; Pars, K.; Stoll, M.; Conzen, J.; Bolat, S.; Pul, R.; Vonberg, R.-P.; Sedlacek, L.; Wurster, U.; et al. Importance of Follow-Up Cerebrospinal Fluid Analysis in Cryptococcal Meningoencephalitis. Dis. Markers 2014, 2014, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.; Skagervik, I.; Tumani, H.; Petzold, A.; Wick, M.; Kühn, H.-J.; Uhr, M.; Regeniter, A.; Brettschneider, J.; Otto, M.; et al. Cerebrospinal fluid analyses for the diagnosis of subarachnoid haemorrhage and experience from a Swedish study. What method is preferable when diagnosing a subarachnoid haemorrhage? Clin. Chem. Lab. Med. 2013, 51, 2073–2086. [Google Scholar] [CrossRef] [Green Version]
- Bönig, L.; Möhn, N.; Ahlbrecht, J.; Wurster, U.; Raab, P.; Puppe, W.; Sühs, K.-W.; Stangel, M.; Skripuletz, T.; Schwenkenbecher, P. Leptomeningeal Metastasis: The Role of Cerebrospinal Fluid Diagnostics. Front. Neurol. 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Brettschneider, J.; Claus, A.; Kassubek, J.; Tumani, H. Isolated blood–cerebrospinal fluid barrier dysfunction: Prevalence and associated diseases. J. Neurol. 2005, 252, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Hegen, H.; Auer, M.; Zeileis, A.; Deisenhammer, F. Upper reference limits for cerebrospinal fluid total protein and albumin quotient based on a large cohort of control patients: Implications for increased clinical specificity. Clin. Chem. Lab. Med. 2016, 54, 285–292. [Google Scholar] [CrossRef]
- Sussmuth, S.D.; Tumani, H.; Ecker, D.; Ludolph, A.C. Amyotrophic lateral sclerosis: Disease stage related changes of tau protein and S100 beta in cerebrospinal fluid and creatine kinase in serum. Neurosci. Lett. 2003, 353, 57–60. [Google Scholar] [CrossRef] [PubMed]
- McCudden, C.R.; Brooks, J.; Figurado, P.; Bourque, P.R. Cerebrospinal Fluid Total Protein Reference Intervals Derived from 20 Years of Patient Data. Clin. Chem. 2017, 63, 1856–1865. [Google Scholar] [CrossRef]
- Castellazzi, M.; Morotti, A.; Tamborino, C.; Alessi, F.; Pilotto, S.; Baldi, E.; Caniatti, L.M.; Trentini, A.; Casetta, I.; Granieri, E.; et al. Increased age and male sex are independently associated with higher frequency of blood–cerebrospinal fluid barrier dysfunction using the albumin quotient. Fluids Barriers CNS 2020, 17, 1–9. [Google Scholar] [CrossRef]
- Kessler, T.; Latzer, P.; Schmid, D.; Warnken, U.; Saffari, A.; Ziegler, A.; Kollmer, J.; Möhlenbruch, M.; Ulfert, C.; Herweh, C.; et al. Cerebrospinal fluid proteomic profiling in nusinersen-treated patients with spinal muscular atrophy. J. Neurochem. 2020, 153, 650–661. [Google Scholar] [CrossRef]
- Huy, N.T.; Thao, N.T.H.; Diep, D.T.N.; Kikuchi, M.; Zamora, J.; Hirayama, K. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: A systemic review and meta-analysis. Crit. Care 2010, 14, R240. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.; Cudkowicz, M.; Shaw, P.J.; Andersen, P.M.; Atassi, N.; Bucelli, R.C.; Genge, A.; Glass, J.; Ladha, S.; Ludolph, A.L.; et al. Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N. Engl. J. Med. 2020, 383, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.; Freischmidt, A.; Ludolph, A.C.; Weishaupt, J.H. Gene-specific treatment approaches in amyotrophic lateral sclerosis in the present and future. Nervenarzt 2020, 91, 287–293. [Google Scholar] [CrossRef]
- Miller, T.; Cudkowicz, M.; Shaw, P.; Benett, F.; Lane, R.; Graham, D.; Nestorov, I.; Fanning, L.; Chang, I.; McNeill, M.; et al. C11 safety, PK, PD, and exploratory efficacy in single and multiple dose study of a SOD1 antisense oligonucleotide (tofersen) in participants with ALS. Platform Communications. Abstract Book-30th International Symposium on ALS/MND (Complete printable file). Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 1–99. [Google Scholar]
- Ticozzi, N.; Tiloca, C.; Mencacci, N.E.; Morelli, C.; Doretti, A.; Rusconi, D.; Colombrita, C.; Sangalli, D.; Verde, F.; Finelli, P.; et al. Oligoclonal bands in the cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated mutations. J. Neurol. 2012, 260, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinraza (nusinersen). Communicating Hydrocephalus Not Related to Meningitis or Bleeding Reported. Available online: https://www.hpra.ie/docs/default-source/default-document-library/important-safety-information (accessed on 23 December 2020).
SMA (Total) | SMA 2 | SMA 3/4 | |
---|---|---|---|
n | 28 | 10 | 18 |
Women | 10 (35.7%) | 4 (40%) | 6 (33.3%) |
Age, years (range) | 36 (19–65) | 34 (20–51) | 39 (19–65) |
SMN2 copy ≥3 | 15 (53.6%) | 1 (10%) | 14 (82.4%) |
Disease duration, years (range) | 32.5 (2–61.5) | 33.25 (19.42–50) | 31.75 (2–61.5) |
HFMSE | 9.5 (0–63) | 0.5 (0–11) | 35 (3–63) |
6MWT (m) | 390 (0–512) | 0 | 390 (42–512) |
RULM | 18.5 (0–37) | 9.5 (0–21) | 29 (12–37) |
CT-guided LP | 13 (46.4%) | 10 (100%) | 3 (16.7%) |
Abnormal CSF leukocyte count at baseline (%) | 0 (0%) | 0 (0%) | 0 (0%) |
Abnormal CSF lactate at baseline (%) | 0 (0%) | 0 (0%) | 0 (0%) |
Abnormal CSF–blood barrier dysfunction at baseline (%) | 6 (21.4%) | 2 (20%) | 4 (22.2%) |
Positive OCB at baseline (%) | 2 (7.1%) | 2 (20%) | 0 (0%) |
Time Point | d0 | d14 | d28 | d63 | m6 | m10 | m14 | m18 | m22 |
---|---|---|---|---|---|---|---|---|---|
CSF leukocyte count (cells/µL) | 1.0 (0.0–4.0) | 1.0 (0.0–33.0) | 1.0 (0.0–12.0) | 2.0 (0.0–5.0) | 1.0 (0.0–3.0) | 1.0 (0.0–3.0) | 1.0 (0.3–4.0) | 0.0 (0.0–2.0) | 1.0 (1.0–1.0) |
n = 26 | n = 25 | n = 23 | n = 25 | n = 23 | n = 18 | n = 13 | n = 7 | n = 2 | |
CSF lactate (mmol/L) | 1.5 (1.26–1.96) | 1.45 (1.17–1.96) | 1.42 (1.25–1.72) | 1.44 (1.27–1.79) | 1.38 (1.24–1.92) | 1.42 (1.17–1.88) | 1.41 (1.18–2.06) | 1.28 (1.16–1.61) | 1.32 (1.20–1.43) |
n = 22 | n = 18 | n = 16 | n = 20 | n = 19 | n = 16 | n = 11 | n = 7 | n = 2 | |
CSF total protein (mg/L) | 353 (211–588) | 367 (211–587) | 371 (210–583) | 414.5 (198–817) | 447 (258–748) | 409 (187–624) | 375 (173–907) | 415.5 (239–606) | 266 (214–318) |
n = 25 | n = 19 | n = 15 | n = 22 | n = 18 | n = 17 | n = 13 | n = 6 | n = 2 | |
QAlbumin (×10−3) | 4.85 (1.6–9.04) | 4.82 (2.73–10.57) | 4.79 (1.94–9.46) | 5.77 (2.88–11.92) | 5.79 (3.4–13.67) | 5.01 (1.83–11.23) | 4.41 (1.76–16.26) | 5.33 (1.98–8.94) | 2.54 (1.88–3.2) |
n = 24 | n = 19 | n = 14 | n = 23 | n = 18 | n = 17 | n = 13 | n = 6 | n = 2 |
Time Point | n | CSF–Blood Barrier Dysfunction | |
---|---|---|---|
Yes | No | ||
d0 | 24 | 6 (25%) | 18 |
d14 | 19 | 3 (15.8%) | 16 |
d28 | 14 | 1 (7.1%) | 13 |
d63 | 22 | 7 (31.8%) | 15 |
m6 | 18 | 7 (38.9%) | 11 |
m10 | 17 | 5 (29.4%) | 12 |
m14 | 13 | 3 (23.1%) | 10 |
m18 | 6 | 2 (33.3%) | 4 |
m22 | 2 | 0 | 2 |
CSF Total Protein as a Dependent Variable | QAlbumin as a Dependent Variable | |||||||
---|---|---|---|---|---|---|---|---|
Numerator df | Denominator df | F | p Value | Numerator df | Denominator df | F | p Value | |
Sex | 1 | 82 | 0.444 | 0.507 | 1 | 83 | 0.456 | 0.501 |
Age | 1 | 82 | 0.444 | 0.834 | 1 | 83 | 7.214 | 0.009 |
Time point | 7 | 82 | 1.83 | 0.092 | 7 | 83 | 1.421 | 0.208 |
LP method | 1 | 82 | 0.569 | 0.453 | 1 | 83 | 5.461 | 0.022 |
Time point and sex | 7 | 82 | 0.256 | 0.969 | 7 | 83 | 0.332 | 0.937 |
Time point and age | 7 | 82 | 1.634 | 0.137 | 7 | 83 | 1.367 | 0.23 |
Time point and LP method | 7 | 82 | 0.228 | 0.977 | 7 | 83 | 0.566 | 0.782 |
LP method and age | 1 | 82 | 0.00 | 0.995 | 1 | 83 | 7.308 | 0.008 |
Time point and sex and age | 7 | 82 | 0.105 | 0.998 | 7 | 83 | 0.334 | 0.936 |
Time point and sex and LP method | 7 | 82 | 1.093 | 0.375 | 7 | 83 | 0.974 | 0.456 |
Time Point and age and LP method | 6 | 82 | 0.25 | 0.958 | 6 | 83 | 0.747 | 0.613 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müschen, L.H.; Osmanovic, A.; Binz, C.; Jendretzky, K.F.; Ranxha, G.; Bronzlik, P.; Abu-Fares, O.; Wiehler, F.; Möhn, N.; Hümmert, M.W.; et al. Cerebrospinal Fluid Parameters in Antisense Oligonucleotide-Treated Adult 5q-Spinal Muscular Atrophy Patients. Brain Sci. 2021, 11, 296. https://doi.org/10.3390/brainsci11030296
Müschen LH, Osmanovic A, Binz C, Jendretzky KF, Ranxha G, Bronzlik P, Abu-Fares O, Wiehler F, Möhn N, Hümmert MW, et al. Cerebrospinal Fluid Parameters in Antisense Oligonucleotide-Treated Adult 5q-Spinal Muscular Atrophy Patients. Brain Sciences. 2021; 11(3):296. https://doi.org/10.3390/brainsci11030296
Chicago/Turabian StyleMüschen, Lars Hendrik, Alma Osmanovic, Camilla Binz, Konstantin F. Jendretzky, Gresa Ranxha, Paul Bronzlik, Omar Abu-Fares, Flavia Wiehler, Nora Möhn, Martin W. Hümmert, and et al. 2021. "Cerebrospinal Fluid Parameters in Antisense Oligonucleotide-Treated Adult 5q-Spinal Muscular Atrophy Patients" Brain Sciences 11, no. 3: 296. https://doi.org/10.3390/brainsci11030296