Facilitatory rTMS over the Supplementary Motor Cortex Impedes Gait Performance in Parkinson Patients with Freezing of Gait
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Study Design
2.3. Clinical Assessment
2.4. 3D-Gait Analysis
2.5. Repetitive Transcranial Magnetic Stimulation
2.6. Statistics
3. Results
3.1. Selection of Gait Parameters
3.2. Impact of iTBS on Gait
3.2.1. Walking without Obstacles (P-I)
3.2.2. Passing through Narrow Space (P-II)
3.2.3. Turning towards the Side More Affected by PD (P-III)
3.2.4. Turning Away from the Side More Affected by PD (P-IV)
3.2.5. Overall Motor Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
References
- Nutt, J.G.; Bloem, B.R.; Giladi, N.; Hallett, M.; Horak, F.B.; Nieuwboer, A. Freezing of gait: Moving forward on a mysterious clinical phenomenon. Lancet. Neurol. 2011, 10, 734–744. [Google Scholar] [CrossRef]
- Okuma, Y.; Yanagisawa, N. The clinical spectrum of freezing of gait in Parkinson’s disease. Mov. Disord. 2008, 23 (Suppl. 2), S426–S430. [Google Scholar] [CrossRef]
- Nieuwboer, A.; Dom, R.; De Weerdt, W.; Desloovere, K.; Fieuws, S.; Broens-Kaucsik, E. Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson’s disease. Mov. Disord. 2001, 16, 1066–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausdorff, J.M.; Schaafsma, J.D.; Balash, Y.; Bartels, A.L.; Gurevich, T.; Giladi, N. Impaired regulation of stride variability in Parkinson’s disease subjects with freezing of gait. Exp. Brain Res. 2003, 149, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Plotnik, M.; Giladi, N.; Balash, Y.; Peretz, C.; Hausdorff, J.M. Is freezing of gait in Parkinson’s disease related to asymmetric motor function? Ann. Neurol. 2005, 57, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.J.; Shine, J.M. The Next Step: A Common Neural Mechanism for Freezing of Gait. Neuroscientist 2016, 22, 72–82. [Google Scholar] [CrossRef]
- Pozzi, N.G.; Canessa, A.; Palmisano, C.; Brumberg, J.; Steigerwald, F.; Reich, M.M.; Minafra, B.; Pacchetti, C.; Pezzoli, G.; Volkmann, J.; et al. Freezing of gait in Parkinson’s disease reflects a sudden derangement of locomotor network dynamics. Brain 2019, 142, 2037–2050. [Google Scholar] [CrossRef] [Green Version]
- Nachev, P.; Kennard, C.; Husain, M. Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 2008, 9, 856–869. [Google Scholar] [CrossRef]
- Potgieser, A.R.; de Jong, B.M.; Wagemakers, M.; Hoving, E.W.; Groen, R.J. Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition. Front. Hum. Neurosci. 2014, 8, 960. [Google Scholar] [CrossRef] [Green Version]
- Brugger, F.; Galovic, M.; Weder, B.J.; Kagi, G. Supplementary Motor Complex and Disturbed Motor Control—A Retrospective Clinical and Lesion Analysis of Patients after Anterior Cerebral Artery Stroke. Front. Neurol. 2015, 6, 209. [Google Scholar] [CrossRef] [Green Version]
- Della Sala, S.; Francescani, A.; Spinnler, H. Gait apraxia after bilateral supplementary motor area lesion. J. Neurol. Neurosurg. Psychiatry 2002, 72, 77–85. [Google Scholar] [CrossRef]
- Shine, J.M.; Matar, E.; Ward, P.B.; Bolitho, S.J.; Pearson, M.; Naismith, S.L.; Lewis, S.J. Differential neural activation patterns in patients with Parkinson’s disease and freezing of gait in response to concurrent cognitive and motor load. PLoS ONE 2013, 8, e52602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snijders, A.H.; Leunissen, I.; Bakker, M.; Overeem, S.; Helmich, R.C.; Bloem, B.R.; Toni, I. Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain 2011, 134, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Shine, J.M.; Matar, E.; Ward, P.B.; Frank, M.J.; Moustafa, A.A.; Pearson, M.; Naismith, S.L.; Lewis, S.J. Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 2013, 136, 3671–3681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brugger, F.; Wegener, R.; Walch, J.; Galovic, M.; Hagele-Link, S.; Bohlhalter, S.; Kagi, G. Altered activation and connectivity of the supplementary motor cortex at motor initiation in Parkinson’s disease patients with freezing. Clin. Neurophysiol. 2020, 131, 2171–2180. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, D.; Lange, F.; Seer, C.; Kopp, B.; Jahanshahi, M. Movement-related potentials in Parkinson’s disease. Clin. Neurophysiol. 2016, 127, 2509–2519. [Google Scholar] [CrossRef] [PubMed]
- Little, S.; Brown, P. The functional role of beta oscillations in Parkinson’s disease. Parkinsonism Relat. Disord. 2014, 20 (Suppl. 1), S44–S48. [Google Scholar] [CrossRef]
- Hallett, M. Transcranial magnetic stimulation: A primer. Neuron 2007, 55, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Shirota, Y.; Ohtsu, H.; Hamada, M.; Enomoto, H.; Ugawa, Y. Research Committee on rTMS Treatment of Parkinson’s Disease. Supplementary motor area stimulation for Parkinson disease: A randomized controlled study. Neurology 2013, 80, 1400–1405. [Google Scholar] [CrossRef]
- Tard, C.; Devanne, H.; Defebvre, L.; Delval, A. Single session intermittent theta-burst stimulation on the left premotor cortex does not alleviate freezing of gait in Parkinson’s disease. Neurosci. Lett. 2016, 628, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Paeng, S.H.; Kang, S.Y. Stimulation in Supplementary Motor Area Versus Motor Cortex for Freezing of Gait in Parkinson’s Disease. J. Clin. Neurol. 2018, 14, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, M.S.; Chang, W.H.; Cho, J.W.; Youn, J.Y.; Kim, Y.H. Effects of repetitive transcranial magnetic stimulation on freezing of gait in patients with Parkinsonism. Restor. Neurol. Neurosci. 2014, 32, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Mi, T.M.; Garg, S.; Ba, F.; Liu, A.P.; Wu, T.; Gao, L.L.; Dan, X.J.; Chan, P.; McKeown, M.J. High-frequency rTMS over the supplementary motor area improves freezing of gait in Parkinson’s disease: A randomized controlled trial. Parkinsonism Relat. Disord. 2019, 68, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Giladi, N.; Shabtai, H.; Simon, E.S.; Biran, S.; Tal, J.; Korczyn, A.D. Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat. Disord. 2000, 6, 165–170. [Google Scholar] [CrossRef]
- Richter, L.; Neumann, G.; Oung, S.; Schweikard, A.; Trillenberg, P. Optimal coil orientation for transcranial magnetic stimulation. PLoS ONE 2013, 8, e60358. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Talelli, P.; Cheeran, B.J.; Teo, J.T.; Rothwell, J.C. Pattern-specific role of the current orientation used to deliver Theta Burst Stimulation. Clin. Neurophysiol. 2007, 118, 1815–1823. [Google Scholar] [CrossRef]
- Orendurff, M.S.; Segal, A.D.; Berge, J.S.; Flick, K.C.; Spanier, D.; Klute, G.K. The kinematics and kinetics of turning: Limb asymmetries associated with walking a circular path. Gait Posture 2006, 23, 106–111. [Google Scholar] [CrossRef]
- Peterson, D.S.; Plotnik, M.; Hausdorff, J.M.; Earhart, G.M. Evidence for a relationship between bilateral coordination during complex gait tasks and freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 2012, 18, 1022–1026. [Google Scholar] [CrossRef] [Green Version]
- Plotnik, M.; Giladi, N.; Hausdorff, J.M. Bilateral coordination of walking and freezing of gait in Parkinson’s disease. Eur. J. Neurosci. 2008, 27, 1999–2006. [Google Scholar] [CrossRef]
- Brittain, J.S.; Brown, P. Oscillations and the basal ganglia: Motor control and beyond. NeuroImage 2014, 85 Pt 2, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.; Marsden, C.D. Bradykinesia and impairment of EEG desynchronization in Parkinson’s disease. Mov. Disord. 1999, 14, 423–429. [Google Scholar] [CrossRef]
- Storzer, L.; Butz, M.; Hirschmann, J.; Abbasi, O.; Gratkowski, M.; Saupe, D.; Vesper, J.; Dalal, S.S.; Schnitzler, A. Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia. Ann. Neurol. 2017, 82, 592–601. [Google Scholar] [CrossRef] [Green Version]
- Toledo, J.B.; Lopez-Azcarate, J.; Garcia-Garcia, D.; Guridi, J.; Valencia, M.; Artieda, J.; Obeso, J.; Alegre, M.; Rodriguez-Oroz, M. High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease. Neurobiol. Dis. 2014, 64, 60–65. [Google Scholar] [CrossRef]
- Cadena-Valencia, J.; Garcia-Garibay, O.; Merchant, H.; Jazayeri, M.; de Lafuente, V. Entrainment and maintenance of an internal metronome in supplementary motor area. eLife 2018, 7. [Google Scholar] [CrossRef]
- Gompf, F.; Pflug, A.; Laufs, H.; Kell, C.A. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing. Front. Hum. Neurosci. 2017, 11, 582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwboer, A.; De Weerdt, W.; Dom, R.; Lesaffre, E. A frequency and correlation analysis of motor deficits in Parkinson patients. Disabil. Rehabil. 1998, 20, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Pieruccini-Faria, F.; Jones, J.A.; Almeida, Q.J. Motor planning in Parkinson’s disease patients experiencing freezing of gait: The influence of cognitive load when approaching obstacles. Brain Cogn. 2014, 87, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Schecklmann, M.; Schmaußer, M.; Klinger, F.; Kreuzer, P.M.; Krenkel, L.; Langguth, B. Resting motor threshold and magnetic field output of the figure-of-8 and the double-cone coil. Sci. Rep. 2020, 10, 1644. [Google Scholar] [CrossRef]
Number of Participants | 12 |
---|---|
Age (years) | 64.30 (52.8–68.3) |
Sex (male / female) | 10/2 |
Disease duration (years) | 12.5 (10.5–15.0) |
Hoehn and Yahr | 2.0 (2.0–2.8) |
UPDRS I | 3.0 (0.5–4.0) |
UPDRS II | 16.5 (10.3–20.8) |
UPDRS III (OFF) (blinded) | 30.0 (25.3–33.8) |
UPDRS III (OFF) (unblinded, incl. rigidity item) | 37.0 (31.0–43.8) |
FOG-Q | 10.5 (10.0–11.8) |
FOG duration (years since symptom onset) | 3.0 (1.0–8.0) |
Visit with Sham Stimulation | Visit with Real iTBS | p-Value | |
---|---|---|---|
Hemisphere contralateral to the clinically more affected side | |||
RMT | 86.25 ± 9.78 | 87.50 ± 11.51 | 0.78 |
AMT | 73.67 ± 6.17 | 73.00 ± 8.56 | 0.83 |
Hemisphere contralateral to the clinically less affected side | |||
RMT | 83.92 ± 15.24 | 82.67 ± 14.46 | 0.84 |
AMT | 70.33 ± 10.45 | 70.25 ± 10.37 | 0.99 |
Gait Parameters | Walking without Obstacles | Passing through Narrow Spaces | Turning towards More Affected Side | Turning towards Less Affected Side | p-Value |
---|---|---|---|---|---|
more affected side | |||||
stride time (s) | 1.01 ± 0.06 | 1.06 ± 0.10 | 0.99 ± 0.21 | 1.02 ± 0.14 | 0.007 |
stride length (m) | 1.13 ± 0.18 | 1.07 ± 0.18 | 0.38 ± 0.14 | 0.40 ± 0.15 | <0.001 |
DLST (%) | 30.04 ± 4.48 | 31.44 ± 5.24 | 41.16 ± 7.22 | 38.97 ± 6.47 | <0.001 |
walking speed (m/s) | 1.13 ± 0.20 | 1.02 ± 0.21 | 0.38 ± 0.11 | 0.39 ± 0.14 | <0.001 |
less affected side | |||||
stride time (s) | 1.01 ± 0.06 | 1.06 ± 0.10 | 0.99 ± 0.22 | 1.01 ± 0.12 | 0.017 |
stride length (m) | 1.13 ± 0.18 | 1.07 ± 0.18 | 0.38 ± 0.16 | 0.39 ± 0.10 | <0.001 |
DLST (%) | 30.17 ± 4.39 | 31.49 ± 4.96 | 41.98 ± 7.56 | 39.26 ± 7.06 | <0.001 |
walking speed (m/s) | 1.12 ± 0.20 | 1.01 ± 0.21 | 0.38 ± 0.15 | 0.39 ± 0.10 | <0.001 |
both legs | |||||
gait asymmetry (%) | 4.61 ± 5.20 | 5.85 ± 6.46 | 15.93 ± 11.40 | 15.53 ± 13.96 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brugger, F.; Wegener, R.; Baty, F.; Walch, J.; Krüger, M.T.; Hägele-Link, S.; Bohlhalter, S.; Kägi, G. Facilitatory rTMS over the Supplementary Motor Cortex Impedes Gait Performance in Parkinson Patients with Freezing of Gait. Brain Sci. 2021, 11, 321. https://doi.org/10.3390/brainsci11030321
Brugger F, Wegener R, Baty F, Walch J, Krüger MT, Hägele-Link S, Bohlhalter S, Kägi G. Facilitatory rTMS over the Supplementary Motor Cortex Impedes Gait Performance in Parkinson Patients with Freezing of Gait. Brain Sciences. 2021; 11(3):321. https://doi.org/10.3390/brainsci11030321
Chicago/Turabian StyleBrugger, Florian, Regina Wegener, Florent Baty, Julia Walch, Marie T. Krüger, Stefan Hägele-Link, Stephan Bohlhalter, and Georg Kägi. 2021. "Facilitatory rTMS over the Supplementary Motor Cortex Impedes Gait Performance in Parkinson Patients with Freezing of Gait" Brain Sciences 11, no. 3: 321. https://doi.org/10.3390/brainsci11030321
APA StyleBrugger, F., Wegener, R., Baty, F., Walch, J., Krüger, M. T., Hägele-Link, S., Bohlhalter, S., & Kägi, G. (2021). Facilitatory rTMS over the Supplementary Motor Cortex Impedes Gait Performance in Parkinson Patients with Freezing of Gait. Brain Sciences, 11(3), 321. https://doi.org/10.3390/brainsci11030321