Facilitatory rTMS over the Supplementary Motor Cortex Impedes Gait Performance in Parkinson Patients with Freezing of Gait
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Study Design
2.3. Clinical Assessment
2.4. 3D-Gait Analysis
2.5. Repetitive Transcranial Magnetic Stimulation
2.6. Statistics
3. Results
3.1. Selection of Gait Parameters
3.2. Impact of iTBS on Gait
3.2.1. Walking without Obstacles (P-I)
3.2.2. Passing through Narrow Space (P-II)
3.2.3. Turning towards the Side More Affected by PD (P-III)
3.2.4. Turning Away from the Side More Affected by PD (P-IV)
3.2.5. Overall Motor Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
References
- Nutt, J.G.; Bloem, B.R.; Giladi, N.; Hallett, M.; Horak, F.B.; Nieuwboer, A. Freezing of gait: Moving forward on a mysterious clinical phenomenon. Lancet. Neurol. 2011, 10, 734–744. [Google Scholar] [CrossRef]
- Okuma, Y.; Yanagisawa, N. The clinical spectrum of freezing of gait in Parkinson’s disease. Mov. Disord. 2008, 23 (Suppl. 2), S426–S430. [Google Scholar] [CrossRef]
- Nieuwboer, A.; Dom, R.; De Weerdt, W.; Desloovere, K.; Fieuws, S.; Broens-Kaucsik, E. Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson’s disease. Mov. Disord. 2001, 16, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Schaafsma, J.D.; Balash, Y.; Bartels, A.L.; Gurevich, T.; Giladi, N. Impaired regulation of stride variability in Parkinson’s disease subjects with freezing of gait. Exp. Brain Res. 2003, 149, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Plotnik, M.; Giladi, N.; Balash, Y.; Peretz, C.; Hausdorff, J.M. Is freezing of gait in Parkinson’s disease related to asymmetric motor function? Ann. Neurol. 2005, 57, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.J.; Shine, J.M. The Next Step: A Common Neural Mechanism for Freezing of Gait. Neuroscientist 2016, 22, 72–82. [Google Scholar] [CrossRef]
- Pozzi, N.G.; Canessa, A.; Palmisano, C.; Brumberg, J.; Steigerwald, F.; Reich, M.M.; Minafra, B.; Pacchetti, C.; Pezzoli, G.; Volkmann, J.; et al. Freezing of gait in Parkinson’s disease reflects a sudden derangement of locomotor network dynamics. Brain 2019, 142, 2037–2050. [Google Scholar] [CrossRef]
- Nachev, P.; Kennard, C.; Husain, M. Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 2008, 9, 856–869. [Google Scholar] [CrossRef]
- Potgieser, A.R.; de Jong, B.M.; Wagemakers, M.; Hoving, E.W.; Groen, R.J. Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition. Front. Hum. Neurosci. 2014, 8, 960. [Google Scholar] [CrossRef]
- Brugger, F.; Galovic, M.; Weder, B.J.; Kagi, G. Supplementary Motor Complex and Disturbed Motor Control—A Retrospective Clinical and Lesion Analysis of Patients after Anterior Cerebral Artery Stroke. Front. Neurol. 2015, 6, 209. [Google Scholar] [CrossRef]
- Della Sala, S.; Francescani, A.; Spinnler, H. Gait apraxia after bilateral supplementary motor area lesion. J. Neurol. Neurosurg. Psychiatry 2002, 72, 77–85. [Google Scholar] [CrossRef]
- Shine, J.M.; Matar, E.; Ward, P.B.; Bolitho, S.J.; Pearson, M.; Naismith, S.L.; Lewis, S.J. Differential neural activation patterns in patients with Parkinson’s disease and freezing of gait in response to concurrent cognitive and motor load. PLoS ONE 2013, 8, e52602. [Google Scholar] [CrossRef] [PubMed]
- Snijders, A.H.; Leunissen, I.; Bakker, M.; Overeem, S.; Helmich, R.C.; Bloem, B.R.; Toni, I. Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain 2011, 134, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Shine, J.M.; Matar, E.; Ward, P.B.; Frank, M.J.; Moustafa, A.A.; Pearson, M.; Naismith, S.L.; Lewis, S.J. Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 2013, 136, 3671–3681. [Google Scholar] [CrossRef] [PubMed]
- Brugger, F.; Wegener, R.; Walch, J.; Galovic, M.; Hagele-Link, S.; Bohlhalter, S.; Kagi, G. Altered activation and connectivity of the supplementary motor cortex at motor initiation in Parkinson’s disease patients with freezing. Clin. Neurophysiol. 2020, 131, 2171–2180. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, D.; Lange, F.; Seer, C.; Kopp, B.; Jahanshahi, M. Movement-related potentials in Parkinson’s disease. Clin. Neurophysiol. 2016, 127, 2509–2519. [Google Scholar] [CrossRef] [PubMed]
- Little, S.; Brown, P. The functional role of beta oscillations in Parkinson’s disease. Parkinsonism Relat. Disord. 2014, 20 (Suppl. 1), S44–S48. [Google Scholar] [CrossRef]
- Hallett, M. Transcranial magnetic stimulation: A primer. Neuron 2007, 55, 187–199. [Google Scholar] [CrossRef]
- Shirota, Y.; Ohtsu, H.; Hamada, M.; Enomoto, H.; Ugawa, Y. Research Committee on rTMS Treatment of Parkinson’s Disease. Supplementary motor area stimulation for Parkinson disease: A randomized controlled study. Neurology 2013, 80, 1400–1405. [Google Scholar] [CrossRef]
- Tard, C.; Devanne, H.; Defebvre, L.; Delval, A. Single session intermittent theta-burst stimulation on the left premotor cortex does not alleviate freezing of gait in Parkinson’s disease. Neurosci. Lett. 2016, 628, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Paeng, S.H.; Kang, S.Y. Stimulation in Supplementary Motor Area Versus Motor Cortex for Freezing of Gait in Parkinson’s Disease. J. Clin. Neurol. 2018, 14, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, M.S.; Chang, W.H.; Cho, J.W.; Youn, J.Y.; Kim, Y.H. Effects of repetitive transcranial magnetic stimulation on freezing of gait in patients with Parkinsonism. Restor. Neurol. Neurosci. 2014, 32, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Mi, T.M.; Garg, S.; Ba, F.; Liu, A.P.; Wu, T.; Gao, L.L.; Dan, X.J.; Chan, P.; McKeown, M.J. High-frequency rTMS over the supplementary motor area improves freezing of gait in Parkinson’s disease: A randomized controlled trial. Parkinsonism Relat. Disord. 2019, 68, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Giladi, N.; Shabtai, H.; Simon, E.S.; Biran, S.; Tal, J.; Korczyn, A.D. Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat. Disord. 2000, 6, 165–170. [Google Scholar] [CrossRef]
- Richter, L.; Neumann, G.; Oung, S.; Schweikard, A.; Trillenberg, P. Optimal coil orientation for transcranial magnetic stimulation. PLoS ONE 2013, 8, e60358. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef]
- Talelli, P.; Cheeran, B.J.; Teo, J.T.; Rothwell, J.C. Pattern-specific role of the current orientation used to deliver Theta Burst Stimulation. Clin. Neurophysiol. 2007, 118, 1815–1823. [Google Scholar] [CrossRef]
- Orendurff, M.S.; Segal, A.D.; Berge, J.S.; Flick, K.C.; Spanier, D.; Klute, G.K. The kinematics and kinetics of turning: Limb asymmetries associated with walking a circular path. Gait Posture 2006, 23, 106–111. [Google Scholar] [CrossRef]
- Peterson, D.S.; Plotnik, M.; Hausdorff, J.M.; Earhart, G.M. Evidence for a relationship between bilateral coordination during complex gait tasks and freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 2012, 18, 1022–1026. [Google Scholar] [CrossRef][Green Version]
- Plotnik, M.; Giladi, N.; Hausdorff, J.M. Bilateral coordination of walking and freezing of gait in Parkinson’s disease. Eur. J. Neurosci. 2008, 27, 1999–2006. [Google Scholar] [CrossRef]
- Brittain, J.S.; Brown, P. Oscillations and the basal ganglia: Motor control and beyond. NeuroImage 2014, 85 Pt 2, 637–647. [Google Scholar] [CrossRef]
- Brown, P.; Marsden, C.D. Bradykinesia and impairment of EEG desynchronization in Parkinson’s disease. Mov. Disord. 1999, 14, 423–429. [Google Scholar] [CrossRef]
- Storzer, L.; Butz, M.; Hirschmann, J.; Abbasi, O.; Gratkowski, M.; Saupe, D.; Vesper, J.; Dalal, S.S.; Schnitzler, A. Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia. Ann. Neurol. 2017, 82, 592–601. [Google Scholar] [CrossRef]
- Toledo, J.B.; Lopez-Azcarate, J.; Garcia-Garcia, D.; Guridi, J.; Valencia, M.; Artieda, J.; Obeso, J.; Alegre, M.; Rodriguez-Oroz, M. High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease. Neurobiol. Dis. 2014, 64, 60–65. [Google Scholar] [CrossRef]
- Cadena-Valencia, J.; Garcia-Garibay, O.; Merchant, H.; Jazayeri, M.; de Lafuente, V. Entrainment and maintenance of an internal metronome in supplementary motor area. eLife 2018, 7. [Google Scholar] [CrossRef]
- Gompf, F.; Pflug, A.; Laufs, H.; Kell, C.A. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing. Front. Hum. Neurosci. 2017, 11, 582. [Google Scholar] [CrossRef] [PubMed]
- Nieuwboer, A.; De Weerdt, W.; Dom, R.; Lesaffre, E. A frequency and correlation analysis of motor deficits in Parkinson patients. Disabil. Rehabil. 1998, 20, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Pieruccini-Faria, F.; Jones, J.A.; Almeida, Q.J. Motor planning in Parkinson’s disease patients experiencing freezing of gait: The influence of cognitive load when approaching obstacles. Brain Cogn. 2014, 87, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Schecklmann, M.; Schmaußer, M.; Klinger, F.; Kreuzer, P.M.; Krenkel, L.; Langguth, B. Resting motor threshold and magnetic field output of the figure-of-8 and the double-cone coil. Sci. Rep. 2020, 10, 1644. [Google Scholar] [CrossRef]
Number of Participants | 12 |
---|---|
Age (years) | 64.30 (52.8–68.3) |
Sex (male / female) | 10/2 |
Disease duration (years) | 12.5 (10.5–15.0) |
Hoehn and Yahr | 2.0 (2.0–2.8) |
UPDRS I | 3.0 (0.5–4.0) |
UPDRS II | 16.5 (10.3–20.8) |
UPDRS III (OFF) (blinded) | 30.0 (25.3–33.8) |
UPDRS III (OFF) (unblinded, incl. rigidity item) | 37.0 (31.0–43.8) |
FOG-Q | 10.5 (10.0–11.8) |
FOG duration (years since symptom onset) | 3.0 (1.0–8.0) |
Visit with Sham Stimulation | Visit with Real iTBS | p-Value | |
---|---|---|---|
Hemisphere contralateral to the clinically more affected side | |||
RMT | 86.25 ± 9.78 | 87.50 ± 11.51 | 0.78 |
AMT | 73.67 ± 6.17 | 73.00 ± 8.56 | 0.83 |
Hemisphere contralateral to the clinically less affected side | |||
RMT | 83.92 ± 15.24 | 82.67 ± 14.46 | 0.84 |
AMT | 70.33 ± 10.45 | 70.25 ± 10.37 | 0.99 |
Gait Parameters | Walking without Obstacles | Passing through Narrow Spaces | Turning towards More Affected Side | Turning towards Less Affected Side | p-Value |
---|---|---|---|---|---|
more affected side | |||||
stride time (s) | 1.01 ± 0.06 | 1.06 ± 0.10 | 0.99 ± 0.21 | 1.02 ± 0.14 | 0.007 |
stride length (m) | 1.13 ± 0.18 | 1.07 ± 0.18 | 0.38 ± 0.14 | 0.40 ± 0.15 | <0.001 |
DLST (%) | 30.04 ± 4.48 | 31.44 ± 5.24 | 41.16 ± 7.22 | 38.97 ± 6.47 | <0.001 |
walking speed (m/s) | 1.13 ± 0.20 | 1.02 ± 0.21 | 0.38 ± 0.11 | 0.39 ± 0.14 | <0.001 |
less affected side | |||||
stride time (s) | 1.01 ± 0.06 | 1.06 ± 0.10 | 0.99 ± 0.22 | 1.01 ± 0.12 | 0.017 |
stride length (m) | 1.13 ± 0.18 | 1.07 ± 0.18 | 0.38 ± 0.16 | 0.39 ± 0.10 | <0.001 |
DLST (%) | 30.17 ± 4.39 | 31.49 ± 4.96 | 41.98 ± 7.56 | 39.26 ± 7.06 | <0.001 |
walking speed (m/s) | 1.12 ± 0.20 | 1.01 ± 0.21 | 0.38 ± 0.15 | 0.39 ± 0.10 | <0.001 |
both legs | |||||
gait asymmetry (%) | 4.61 ± 5.20 | 5.85 ± 6.46 | 15.93 ± 11.40 | 15.53 ± 13.96 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brugger, F.; Wegener, R.; Baty, F.; Walch, J.; Krüger, M.T.; Hägele-Link, S.; Bohlhalter, S.; Kägi, G. Facilitatory rTMS over the Supplementary Motor Cortex Impedes Gait Performance in Parkinson Patients with Freezing of Gait. Brain Sci. 2021, 11, 321. https://doi.org/10.3390/brainsci11030321
Brugger F, Wegener R, Baty F, Walch J, Krüger MT, Hägele-Link S, Bohlhalter S, Kägi G. Facilitatory rTMS over the Supplementary Motor Cortex Impedes Gait Performance in Parkinson Patients with Freezing of Gait. Brain Sciences. 2021; 11(3):321. https://doi.org/10.3390/brainsci11030321
Chicago/Turabian StyleBrugger, Florian, Regina Wegener, Florent Baty, Julia Walch, Marie T. Krüger, Stefan Hägele-Link, Stephan Bohlhalter, and Georg Kägi. 2021. "Facilitatory rTMS over the Supplementary Motor Cortex Impedes Gait Performance in Parkinson Patients with Freezing of Gait" Brain Sciences 11, no. 3: 321. https://doi.org/10.3390/brainsci11030321
APA StyleBrugger, F., Wegener, R., Baty, F., Walch, J., Krüger, M. T., Hägele-Link, S., Bohlhalter, S., & Kägi, G. (2021). Facilitatory rTMS over the Supplementary Motor Cortex Impedes Gait Performance in Parkinson Patients with Freezing of Gait. Brain Sciences, 11(3), 321. https://doi.org/10.3390/brainsci11030321