An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps?
Abstract
:1. Introduction
2. The Discovery of GABA and Its Biological Functions
3. GABA Biosynthesis and Metabolic Pathways
4. GABA and Hydra: Available Evidence
5. The Microbiome of Hydra: Host–Microbe Interactions
6. GABA and Hydra: Open Questions
Funding
Conflicts of Interest
References
- Clarac, F.; Pearlstein, E. Invertebrate preparations and their contribution to neurobiology in the second half of the 20th century. Brain Res. Rev. 2007, 54, 113–161. [Google Scholar] [CrossRef]
- Arendt, D.; Tosches, M.A.; Marlow, H. From nerve net to nerve ring, nerve cord and brain — evolution of the nervous system. Nat. Rev. Neurosci. 2015, 17, 61–72. [Google Scholar] [CrossRef]
- Northcutt, R.G. Evolution of centralized nervous systems: Two schools of evolutionary thought. Proc. Natl. Acad. Sci. USA 2012, 109, 10626–10633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awapara, J.; Landua, A.J.; Fuerst, R.; Seale, R. Free γ-aminobutyric acid in brain. J. Biol. Chem. 1950, 187, 35–39. [Google Scholar] [CrossRef]
- Van der Kloot, W.G.; Robbins, J. The effects of γ-aminobutyric acid and picrotoxin on the junctional potential and the contraction of crayfish muscle. Cell. Mol. Life Sci. 1959, 15, 35–36. [Google Scholar] [CrossRef]
- Kravitz, E.A.; Potter, D.D.; Van Gelder, N.M. Gamma-Aminobutyric Acid and Other Blocking Substances extracted from Crab Muscle. Nat. Cell Biol. 1962, 194, 382–383. [Google Scholar] [CrossRef]
- Dudel, J.; Gryder, R.; Kaji, A.; Kuffler, S.W.; Potter, D.D. Gamma-aminobutyric acid and other blocking compounds in Crustacea: I. Central nervous system. J. Neurophysiol. 1963, 26, 721–728. [Google Scholar] [CrossRef]
- Smart, T.G.; Stephenson, F.A. A half century of γ-aminobutyric acid. Brain Neurosci. Adv. 2019, 3, 2398212819858249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, R.W.; Sieghart, W. International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update. Pharmacol. Rev. 2008, 60, 243–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowery, N.G. International Union of Pharmacology. XXXIII. Mammalian gamma -Aminobutyric AcidB Receptors: Structure and Function. Pharmacol. Rev. 2002, 54, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Szabadics, J.; Varga, C.; Molnár, G.; Oláh, S.; Barzó, P.; Tamás, G. Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits. Science 2006, 311, 233–235. [Google Scholar] [CrossRef]
- Ben-Ari, Y. Excitatory actions of GABA during development: The nature of the nurture. Nat. Rev. Neurosci. 2002, 3, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, K.; Schinder, A.F.; Wong, S.T.; Poo, M.-M. GABA Itself Promotes the Developmental Switch of Neuronal GABAergic Responses from Excitation to Inhibition. Cell 2001, 105, 521–532. [Google Scholar] [CrossRef] [Green Version]
- Zilberter, M. Reality of Inhibitory GABA in Neonatal Brain: Time to Rewrite the Textbooks? J. Neurosci. 2016, 36, 10242–10244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, D.F.; Kriegstein, A.R. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 2002, 3, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Goh, E.L.K.; Sailor, K.A.; Kitabatake, Y.; Ming, G.-L.; Song, H. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nat. Cell Biol. 2005, 439, 589–593. [Google Scholar] [CrossRef] [Green Version]
- Sernagor, E.; Chabrol, F.; Bony, G.; Cancedda, L. GABAergic control of neurite outgrowth and remodeling during development and adult neurogenesis: General rules and differences in diverse systems. Front. Cell. Neurosci. 2010, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- LoTurco, J.J.; Owens, D.F.; Heath, M.J.; Davis, M.B.; Kriegstein, A.R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 1995, 15, 1287–1298. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.D.; Kriegstein, A.R.; Ben-Ari, Y. GABA Regulates Stem Cell Proliferation before Nervous System Formation. Epilepsy Curr. 2008, 8, 137–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudolph, U.; Möhler, H. GABAA Receptor Subtypes: Therapeutic Potential in Down Syndrome, Affective Disorders, Schizophrenia, and Autism. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 483–507. [Google Scholar] [CrossRef] [Green Version]
- Krantis, A. GABA in the Mammalian Enteric Nervous System. News Physiol. Sci. Int. J. Physiol. Prod. Jt. Int. Union Physiol. Sci. Am. Physiol. Soc. 2000, 15, 284–290. [Google Scholar] [CrossRef]
- Mayer, E.A. Gut feelings: The emerging biology of gut–brain communication. Nat. Rev. Neurosci. 2011, 12, 453–466. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [Green Version]
- Boonstra, E.; De Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 2015, 6, 1520. [Google Scholar] [CrossRef] [Green Version]
- Bessman, S.P.; Rossen, J.; Layne, E.C. γ-AMINOBUTYRIC ACID-GLUTAMIC ACID TRANSAMINATION IN BRAIN. J. Biol. Chem. 1953, 201, 385–391. [Google Scholar] [CrossRef]
- Roberts, E.; Frankel, S. γ-Aminobutyric acid in brain: Its formation from glutamic acid. J. Biol. Chem. 1950, 187, 55–63. [Google Scholar] [CrossRef]
- Bown, A.W.; Shelp, B.J. The Metabolism and Functions of [gamma]-Aminobutyric Acid. Plant Physiol. 1997, 115, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuriyama, K.; Sze, P. Blood-brain barrier to H3-γ-aminobutyric acid in normal and amino oxyacetic acid-treated animals. Neuropharmacology 1971, 10, 103–108. [Google Scholar] [CrossRef]
- Fenalti, G.; Law, R.H.P.; Buckle, A.M.; Langendorf, C.; Tuck, K.; Rosado, C.J.; Faux, N.G.; Mahmood, K.; Hampe, C.S.; Banga, J.P.; et al. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat. Struct. Mol. Biol. 2007, 14, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H. Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catal. B Enzym. 2000, 10, 67–79. [Google Scholar] [CrossRef]
- Erlander, M.G.; Tillakaratne, N.J.; Feldblum, S.; Patel, N.; Tobin, A.J. Two genes encode distinct glutamate decarboxylases. Neuron 1991, 7, 91–100. [Google Scholar] [CrossRef]
- Jin, H.; Wu, H.; Osterhaus, G.; Wei, J.; Davis, K.; Sha, D.; Floor, E.; Hsu, C.-C.; Kopke, R.D.; Wu, J.-Y. Demonstration of functional coupling between γ-aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles. Proc. Natl. Acad. Sci. USA 2003, 100, 4293–4298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukhareva, B.S.; Mamaeva, O.K. Glutamate decarboxylase: Computer studies of enzyme evolution. Biochemistry 2002, 67, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, V.B.; Osguthorpe, D.J.; Barnard, E.A.; Friday, A.E.; Lunt, G.G. Ligand-gated ion channels. Mol. Neurobiol. 1990, 4, 129–169. [Google Scholar] [CrossRef]
- Ramoino, P.; Gallus, L.; Paluzzi, S.; Raiteri, L.; Diaspro, A.; Fato, M.M.; Bonanno, G.; Tagliafierro, G.; Ferretti, C.; Manconi, R. The GABAergic-like system in the marine demosponge Chondrilla nucula. Microsc. Res. Tech. 2007, 70, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Leys, S.P.; Mah, J.L.; McGill, P.R.; Hamonic, L.; De Leo, F.C.; Kahn, A.S. Sponge Behavior and the Chemical Basis of Responses: A Post-Genomic View. Integr. Comp. Biol. 2019, 59, 751–764. [Google Scholar] [CrossRef]
- Martin, V.J. Photoreceptors of cubozoan jellyfish. Hydrobiologia 2004, 530, 135–144. [Google Scholar] [CrossRef]
- Marlow, H.Q.; Srivastava, M.; Matus, D.Q.; Rokhsar, D.; Martindale, M.Q. Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev. Neurobiol. 2009, 69, 235–254. [Google Scholar] [CrossRef] [PubMed]
- Delgado, L.M.; Couve, E.; Schmachtenberg, O. GABA and glutamate immunoreactivity in tentacles of the sea anemone Phymactis papillosa (LESSON 1830). J. Morphol. 2010, 271, 845–852. [Google Scholar] [CrossRef]
- Levy, S.; Brekhman, V.; Bakhman, A.; Malik, A.; Sebé-Pedrós, A.; Kosloff, M.; Lotan, T. Ectopic activation of GABAB receptors inhibits neurogenesis and metamorphosis in the cnidarian Nematostella vectensis. Nat. Ecol. Evol. 2021, 5, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Girosi, L.; Ferrando, S.; Beltrame, F.; Ciarcia, G.; Diaspro, A.; Fato, M.; Magnone, M.; Raiteri, L.; Ramoino, P.; Tagliafierro, G. Gamma-aminobutyric acid and related molecules in the sea fan Eunicella cavolini (Cnidaria: Octocorallia): A biochemical and immunohistochemical approach. Cell Tissue Res. 2007, 329, 187–196. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Mol. Biol. Rev. 2003, 67, 429–453. [Google Scholar] [CrossRef] [Green Version]
- Corringer, P.J.; Baaden, M.; Bocquet, N.; Delarue, M.; Dufresne, V.; Nury, H.; Prevost, M.; Van Renterghem, C. Atomic structure and dynamics of pentameric Ligand-gated Ion Channels: New insight from bacterial homologues to its membrane environment. J. Physiol. 2010, 588, 565–572. [Google Scholar] [CrossRef]
- Elliott, G.R.D.; Leys, S.P. Evidence for glutamate, GABA, and NO in coordinating behaviour in the sponge, Ephydatia muelleri (Demospongiae, Spongillidae). J. Exp. Biol. 2010, 213, 2310–2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kass-Simon, G.; Pierobon, P. Cnidarian chemical neurotransmission, an updated overview. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 146, 9–25. [Google Scholar] [CrossRef]
- Anctil, M. Neurotransmission-Evolving Systems. In The Wiley Handbook of Evolutionary Neuroscience; Wiley: Hoboken, NJ, USA,, 2016; pp. 279–306. [Google Scholar]
- Concas, A.; Pierobon, P.; Mostallino, M.; Mariño, G.; Minei, R.; Biggio, G. Modulation of γ-aminobutyric acid (GABA) receptors and the feeding response by neurosteroids in Hydra vulgaris. Neuroscience 1998, 85, 979–988. [Google Scholar] [CrossRef]
- Kass-Simon, G.; Pannaccione, A.; Pierobon, P. GABA and glutamate receptors are involved in modulating pacemaker activity in hydra. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 136, 329–342. [Google Scholar] [CrossRef]
- Scappaticci, A.; Kass-Simon, G. NMDA and GABAB receptors are involved in controlling nematocyst discharge in hydra. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 150, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, L.A.; Kass-Simon, G. The two nerve rings of the hypostomal nervous system of Hydra vulgaris—an immunohistochemical analysis. Cell Tissue Res. 2016, 366, 255–269. [Google Scholar] [CrossRef]
- Pierobon, P. Regional modulation of the response to glutathione in Hydra vulgaris. J. Exp. Biol. 2015, 218, 2226–2232. [Google Scholar] [CrossRef] [Green Version]
- Concas, A.; Imperatore, R.; Santoru, F.; Locci, A.; Porcu, P.; Cristino, L.; Pierobon, P. Immunochemical Localization of GABAA Receptor Subunits in the Freshwater Polyp Hydra vulgaris (Cnidaria, Hydrozoa). Neurochem. Res. 2016, 41, 2914–2922. [Google Scholar] [CrossRef]
- Bosch, T.C.G.; Guillemin, K.; McFall-Ngai, M. Evolutionary “Experiments” in Symbiosis: The Study of Model Animals Provides Insights into the Mechanisms Underlying the Diversity of Host–Microbe Interactions. BioEssays 2019, 41, e1800256. [Google Scholar] [CrossRef] [PubMed]
- Klimovich, A.; Giacomello, S.; Björklund, Å.; Faure, L.; Kaucka, M.; Giez, C.; Murillo-Rincon, A.P.; Matt, A.-S.; Willoweit-Ohl, D.; Crupi, G.; et al. Prototypical pacemaker neurons interact with the resident microbiota. Proc. Natl. Acad. Sci. USA 2020, 117, 17854–17863. [Google Scholar] [CrossRef]
- Murillo-Rincon, A.P.; Klimovich, A.; Pemöller, E.; Taubenheim, J.; Mortzfeld, B.; Augustin, R.; Bosch, T.C.G. Spontaneous body contractions are modulated by the microbiome of Hydra. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Scott, E.M.; Jakoby, W.B. Soluble γ-Aminobutyric-Glutamic Transaminase from Pseudomonas fluorescens. J. Biol. Chem. 1959, 234, 932–936. [Google Scholar] [CrossRef]
- Anctil, M. Chemical transmission in the sea anemone Nematostella vectensis: A genomic perspective. Comp. Biochem. Physiol. Part D Genom. Proteom. 2009, 4, 268–289. [Google Scholar] [CrossRef]
- Wong, W.Y.; Simakov, O.; Bridge, D.M.; Cartwright, P.; Bellantuono, A.J.; Kuhn, A.; Holstein, T.W.; David, C.N.; Steele, R.E.; Martínez, D.E. Expansion of a single transposable element family is associated with genome-size increase and radiation in the genus Hydra. Proc. Natl. Acad. Sci. USA 2019, 116, 22915–22917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisthen, H.L.; Theis, K.R. Animal–microbe interactions and the evolution of nervous systems. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150052. [Google Scholar] [CrossRef]
Bacteria | Sponges | Cnidaria | |
---|---|---|---|
GABA metabolism | GAD, GAD genes GABA-T | GAD, GAD genes GABA-T | GAD GABA-T |
GABA sensors | GABA transporters GLIC, ELIC receptors | GABA transporters GABAB receptors | VGAT GABA receptors |
plcGABA production and cellular localization | GABA | GABA choanocytes, pinacocytes | GABA Sensory neurons Nerve fibers |
Physiological role(s) | The GAD system contributes to survival in acidic environments by increase in internal pH and alkalinization of external fluids | GABAergic inhibitory regulation of water flow, body contraction, and feeding in response to external signals | Neuronal signaling Photic perception Regulation of nematocyst discharge Modulation of neurogenesis, development |
References | [36,37] | [38,39,40,41,42] | |
Additional references | [43,44] | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierobon, P. An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps? Brain Sci. 2021, 11, 437. https://doi.org/10.3390/brainsci11040437
Pierobon P. An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps? Brain Sciences. 2021; 11(4):437. https://doi.org/10.3390/brainsci11040437
Chicago/Turabian StylePierobon, Paola. 2021. "An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps?" Brain Sciences 11, no. 4: 437. https://doi.org/10.3390/brainsci11040437