Dyslexic Readers Improve without Training When Using a Computer-Guided Reading Strategy
Abstract
:1. Introduction
2. Experiment 1
2.1. Materials and Methods
2.1.1. Patients
2.1.2. Methods
2.2. Results
3. Experiment 2: Immediate Improvement in Reading Ability after Changing the Reading Strategy
3.1. Materials and Methods
3.1.1. Children with Dyslexia
3.1.2. Procedure
3.1.3. Statistics
3.2. Results
4. Discussion
4.1. The Role of Eye Movements in Dyslexia
4.2. Does Slow Reading Improve Reading Performance?
5. Conclusions and Outlook for Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, DSM 5; American Psychiatric Association: Washington, DC, USA, 2013; p. 67. [Google Scholar]
- Shaywitz, S.E.; Shaywitz, B.A.; Fletcher, J.M.; Escobar, M.D. Prevalence of reading disability in boys and girls. Results of the Connecticut Longitudinal Study. JAMA 1990, 264, 998–1002. [Google Scholar] [CrossRef]
- Katusic, S.K.; Colligan, R.C.; Barbesi, W.J.; Schaid, D.J.; Jacobsen, S.J. Incidence of reading disability in a population-based birth cohort, 1976–1982. Min. Mayo Clin. Proc. 2001, 76, 1081–1092. [Google Scholar] [CrossRef]
- Rutter, M.; Caspi, A.; Fergusson, D.; Horwood, L.J.; Goodman, R.; Maughan, B.; Moffitt, T.E.; Meltzer, H.; Carroll, J. Sex differences in developmental reading disability: New findings from 4 epidemiological studies. JAMA 2004, 291, 2007–2012. [Google Scholar] [CrossRef]
- Tallal, P. Auditory temporal perception, phonics, and reading disabilities in children. Brain Lang. 1980, 9, 182–198. [Google Scholar] [CrossRef]
- Tallal, P.; Miller, S.; Fitch, R.H. Neurobiological basis of speech: A case for the pre-eminence of temporal processing. Ann. N. Y. Acad. Sci. 1993, 682, 27–47. [Google Scholar] [CrossRef] [PubMed]
- Tallal, P.; Miller, S.L.; Bedi, G.; Byma, G.; Wang, X.; Nagarajan, S.S.; Schreiner, C.; Jenkins, W.M.; Merzenich, M.M. Language comprehension in language-learning impaired children improved with acoustically modified speech. Science 1996, 271, 81–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temple, E.; Deutsch, G.K.; Poldrack, R.A.; Miller, S.L.; Tallal, P.; Merzenich, M.M.; Gabrieli, J.D.E. Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proc. Natl. Acad. Sci. USA 2003, 100, 2860–2865. [Google Scholar] [CrossRef] [Green Version]
- Merzenich, M.M.; Jenkins, W.M.; Johnston, P.; Schreiner, C.; Miller, S.L.; Tallal, P. Temporal processing deficits of language-learning impaired children ameliorated by training. Science 1996, 271, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Tallal, P. Improving language and literacy is a matter if time. Nat. Rev. Neurosci. 2004, 5, 721–728. [Google Scholar] [CrossRef] [PubMed]
- McBride-Chang, C. What is phonological awareness? J. Educ. Psychol. 1995, 87, 179–192. [Google Scholar] [CrossRef]
- Liberman, I.Y.; Shankweiler, D.; Fischer, F.W.; Carter, B. Explicit syllable and phoneme segmentation in the young child. J. Exp. Child Psychol. 1974, 18, 201–212. [Google Scholar] [CrossRef]
- Wagner, R.K.; Torgesen, J.K. The nature of phonological processing and its causal role in the acquisition of reading skills. Psychol. Bull. 1987, 101, 101–192. [Google Scholar] [CrossRef]
- Goswami, U. Phonology, reading development, and dyslexia: A cross-linguistic perspective. Ann. Dyslexia 2002, 52, 139–163. [Google Scholar] [CrossRef]
- Kaminski, R.A.; Good, R.H. Toward a technology for assessing basic early literacy skills. School Psychol. Rev. 1996, 25, 215–227. [Google Scholar] [CrossRef]
- Torgesen, J.K.; Wagner, R.K.; Rashotte, C.A. Longitudinal studies of phonological processing and reading. J. Learn. Disabil. 1994, 27, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Nation, K.; Hulme, C. Phonemic segmentation, not onset-rime segmentation, predicts early reading and spelling skills. Read. Res. Quart. 1997, 32, 154–167. [Google Scholar] [CrossRef]
- Muter, V.; Hulme, C.; Snowling, M.J.; Taylor, S. Segmentation, not rhyming, predicts early progress in learning to read. J. Exp. Child Psychol. 1998, 71, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Bruce, D. An analysis of word sounds by young children. Br. J. Educ. Psychol. 1964, 34, 158–170. [Google Scholar] [CrossRef]
- Yopp, H.K. A test for assessing phonemic awareness in young children. Read. Teach. 1995, 49, 20–29. [Google Scholar] [CrossRef]
- Ehri, L.C. Research on learning to read and spell: A personal historical perspective. Sci. Stud. Read. 1998, 2, 97–114. [Google Scholar] [CrossRef]
- Torgesen, J.K.; Wagner, R.K.; Rashotte, C.A. Prevention and remediation of severe reading disabilities: Keeping the end in mind. Sci. Stud. Read. 1997, 1, 217–234. [Google Scholar] [CrossRef]
- Bryant, P.E.; MacLean, M.; Bradley, L.L.; Crossland, J. Rhyme and alliteration, phoneme detection, and learning to read. Dev. Psychol. 1990, 26, 429–438. [Google Scholar] [CrossRef]
- Lawton, T. Training Direction-Discrimination Sensitivity Remediates a 22. Wide Spectrum of Reading Skills. Opt. Vis. Dev. 2007, 38, 37–51. [Google Scholar]
- Lawton, T. Filtered text and direction discrimination training improved 20. reading fluency for both dyslexic and normal readers. Optom. Vis. Dev. 2008, 39, 114–126. [Google Scholar]
- Lawton, T. Field of view, figure/ground discrimination, sequential memory, and nvigation skills improve following training on motion discrimination in older adults. Optom. Vis. Dev. 2009, 40, 82–93. [Google Scholar]
- Lawton, T.; Stephey, D. Training direction discrimination improves usable field of view, short term memory, and navigation in older adults. Optom. Vis. Dev. 2009, 40, 82–93. [Google Scholar]
- Lawton, T.; Shelley-Tremblay, J. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory. Front. Hum. Neurosci. 2017, 11, 236. [Google Scholar] [CrossRef] [Green Version]
- Biscaldi, M.; Gezeck, S.; Stuhr, V. Poor saccadic control correlates with dyslexia. Neuropsychologia 1998, 36, 1189–1202. [Google Scholar] [CrossRef]
- Biscaldi, M.; Fischer, B.; Hartnegg, K. Voluntary saccadic control in dyslexia. Perception 2000, 29, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Fischer, B.; Hartnegg, K. Effects of visual training on saccade control in dyslexia. Perception 2000, 29, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Caldani, S.; Gerard, C.L.; Peyre, H.; Bucci, M.P. Visual attentional training improves reading capabilities in children with dyslexia: An eye tracker study during a reading task. Brain Sci. 2020, 10, 558. [Google Scholar] [CrossRef]
- Duncan, L.G.; Seymour, P.H.K. How do children read multisyllabic words? Some preliminary observations. J. Res. Read. 2003, 26, 101–120. [Google Scholar] [CrossRef]
- Bhattacharya, A. Syllable-Based Reading Strategy for Mastery of Scientific Information. Remedial Spec. Educ. 2006, 27, 116–123. [Google Scholar] [CrossRef]
- Knight-McKenna, M. Syllable types. A strategy for reading multisyllabic words. Teach. Except. Child 2008, 40, 18–24. [Google Scholar]
- Müller, B.; Richter, T.; Karageorgos, P.; Krawietz, S.; Ennemoser, M. Effects of a Syllable-Based Reading Intervention in Poor-Reading Fourth Graders. Front. Psychol. 2017, 8, 1635. [Google Scholar] [CrossRef] [Green Version]
- Werth, R. Therapie von Lesestörungen durch Erkennen und Beheben der Ursachen. Ergother. Rehabil. 2006, 9, 6–11. [Google Scholar]
- Werth, R. Rapid improvement of reading performance in children with dyslexia by altering the reading strategy: A novel approach to diagnoses und therapy of reading deficiencies. Restor. Neurol. Neurosci. 2018, 36, 679–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werth, R. What causes Dyslexia? Identifying the causes and effective compensatory therapy. Restor. Neurol. Neurosci. 2019, 37, 591–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, W.; Hodson, A.; O’Hare, A.; Boyle, J.; Durrani, T.; McCartney, E.; Mattey, M.; Naftalin, L.; Watson, J. Effects of computer-based intervention through acoustically modified speech (Fast ForWord) in severe mixed receptive-expressive language impairment: Outcomes from a randomized controlled trial. J. Speech Lang. Hear. Res. 2005, 48, 715–729. [Google Scholar] [CrossRef]
- Gillam, R.B.; Loeb, D.F.; Hoffman, L.M.; Bohman, T.; Champlin, C.A.; Thibodeau, L.; Widen, J.; Brandel, J.; Friel-Patti, S. The efficacy of Fast ForWord Language intervention in school-age children with language impairment: A randomized controlled trial. J. Speech Lang. Hear. Res. 2008, 51, 87–119. [Google Scholar] [CrossRef] [Green Version]
- Uwer, R.; Albrecht, R.; von Suchodoletz, W. Automatic processing of tones and speech stimuli in children with specific language impairment. Dev. Med. Child Neurol. 2002, 44, 527–532. [Google Scholar] [CrossRef]
- Mengler, E.D.; Hogben, J.H.; Michie, P.; Bishop, D.V. Poor frequency discrimination is related to oral language disorder in children: A psychoacoustic study. Dyslexia 2005, 1, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Strong, G.K.; Torgerson, C.J.; Torgerson, D.; Hulme, C. A systematic meta-analytic review of evidence for the effectiveness of the ‘Fast ForWord’ language intervention program. J. Child Psychol. Psychiatry 2011, 52, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Stuart, G.W.; McAnally, K.I.; McKay, A.; Johnston, M.; Castles, A. A test of the magnocellular deficit theory of dyslexia in an adult sample. Cogn. Neuropsychol. 2006, 23, 1215–1229. [Google Scholar] [CrossRef] [PubMed]
- Skottun, B.C.; Skoyles, J.R. Coherent motion, magnocellular sensitivity and the causation of dyslexia. Int. J. Neurosci. 2008, 118, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Amitay, S.; Ben-Yehudah, G.; Banai, K.; Ahissar, M. Disabled readers suffer from visual and auditory impairments but not from a specific magnocellular deficit. Brain 2002, 125, 2272–2285. [Google Scholar] [CrossRef] [Green Version]
- Galuschka, K.; Ise, E.; Krick, K.; Schulte-Körne, G. Effectiveness of treatment approaches for children and adolescents with reading disabilities: A meta-analysis of randomized controlled trials. PLoS ONE 2014, 9, e89900. [Google Scholar] [CrossRef] [Green Version]
- Geiger, G.; Lettvin, J.Y. Peripheral vision in persons with dyslexia. N. Engl. J. Med. 1987, 316, 1238–1243. [Google Scholar] [CrossRef]
- Rayner, K.; Murphy, L.A.; Henderson, M.; Pollatsek, A. Selective attentional dyslexia. Cogn. Neuropsychol. 1989, 6, 357–378. [Google Scholar] [CrossRef]
- Geiger, G.; Lettvin, J.Y.; Fahle, M. Dyslexic children learn a new visual strategy for reading: A controlled experiment. Vis. Res. 1993, 34, 1223–1233. [Google Scholar] [CrossRef]
- Martelli, M.; Di Filippo, G.; Spinelli, D.; Zoccolotti, P. Crowding, reading, and developmental dyslexia. J. Vis. 2009, 9, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, D.; De Luca, M.; Judica, A.; Zoccolotti, P. Crowding effects on word identification in developmental dyslexia. Cortex 2002, 38, 179–200. [Google Scholar] [CrossRef]
- Zorzi, M.; Barbiero, C.; Facoetti, A.; Lonciari, I.; Carrozzi, M.; Montico, M.; Bravar, L.; George, F.; Pech-Georgel, C.; Ziegler, J.C. Extra-large letter spacing improves reading in dyslexia. Proc. Natl. Acad. Sci USA 2012, 109, 11455–11459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitney, D.; Levi, D.M. Visual crowding: A fundamental limit on conscious perception and object recognition. Trends Cogn. Sci. 2011, 15, 160–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gori, S.; Facoetti, A. How the visual aspects can be crucial in reading acquisition? The intriguing case of crowding and developmental dyslexia. J. Vis. 2015, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, M.L.; Facoetti, A.; Pesenti, S.; Cattaneo, C.; Molteni, M.; Geiger, G. Wider recognition in peripheral vision common to different subtypes of dyslexia. Vis. Res. 2004, 44, 2413–2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, R.G.; Haslerud, G.M. Influence on extreme peripheral vision of attention to a visual or auditory task. J. Exp. Psychol. 1964, 68, 269–272. [Google Scholar] [CrossRef]
- Engel, F.L. Visual conspicuity, directed attention and retinal locus. Vis. Res. 1971, 11, 563–576. [Google Scholar] [CrossRef]
- Ikeda, M.; Takeuchi, T. Influence of foveal load on the functional visual field. Perc. Psychophys. 1975, 18, 225–260. [Google Scholar] [CrossRef]
- Henderson, J.M.; Ferreira, F. Effects of foveal processing difficulty on the perceptual span in reading: Implication for attention and eye movement control. J. Exp. Psychol. Learn. Mem. Cogn. 1990, 16, 417–429. [Google Scholar] [CrossRef]
- Handy, T.C.; Kingstone, A.; Mangun, G.R. Spatial distribution of visual attention: Perceptual sensitivity and response latency. Percept. Psychophys. 1996, 58, 613–627. [Google Scholar] [CrossRef]
- Facoetti, A.; Paganoni, P.; Turatto, M.; Marzola, V.; Mascetti, G.G. Visual spatial attention in developmental dyslexia. Cortex 2000, 36, 109–123. [Google Scholar] [CrossRef]
- Carrasco, M.; Williams, P.E.; Yeshurun, Y. Covert attention increases spatial resolution with or without masks: Support for signal enhancement. J. Vis. 2002, 2, 467–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosse, M.L.; Tainturier, M.J.; Valdois, S. Developmental dyslexia: The visual attention span deficit hypothesis. Cognition 2007, 104, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Franceschini, S.; Gori, S.; Ruffino, M.; Pedrolli, K.; Facoetti, A. A causal link between visual spatial attention and reading acquisition. Curr. Biol. 2012, 22, 814–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Schneps, M.H.; Masyn, K.E.; Thomson, J.M. The effects of visual attention span and phonological decoding in reading comprehension in dyslexia: A path analysis. Dyslexia 2016, 22, 322–344. [Google Scholar] [CrossRef] [PubMed]
- Linder, M.; Grissemann, H. Zürcher Lesetest, 6th ed.; Huber: Bern, Switzerland, 2000. [Google Scholar]
- Petermann, F.; Petermann, U. (Eds.) HAWIK-IV, 3rd ed.; Huber: Bern, Switzerland, 2010. [Google Scholar]
- Werth, R.; Barner, T. Celeco Software-Package for the Diagnosis and Therapy of Dyslexia; Celeco: Munich, Germany, 2019. [Google Scholar]
- Hedges, L.; Olkin, I. Statistical Methods for Metaanalysis; Academic Press: San Diego, CA, USA, 1985. [Google Scholar]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Metaanalysis; Wiley: Chichester, UK, 2009. [Google Scholar]
- Harms, H. Die Technik der statischen Perimetrie. Ophthalmologica 1969, 158, 387–405. [Google Scholar] [CrossRef] [PubMed]
- Krakau, C.E. Temporal summation and perimetry. Ophthalmic Res. 1989, 21, 49–55. [Google Scholar] [CrossRef]
- Sandberg, K.; Bibby, B.M.; Timmermans, B.; Cleeremans, A.; Overgaard, M. Measuring consciousness: Task accuracy and awareness as sigmoid functions of stimulus duration. Conscious. Cogn. 2011, 20, 1659–1675. [Google Scholar] [CrossRef]
- Windey, B.; Vermeiren, A.; Atas, A.; Cleeremans, A. The graded and dichotomous nature of visual awareness. Philos. Trans. R Soc. B Biol. Sci. 2014, 369, 20130282. [Google Scholar] [CrossRef] [Green Version]
- Mulholland, P.J.; Tony Redmond, T.; Garway-Heath, D.F.; Zlatkova, M.B.; Anderson, R.S. The Effect of Age on the Temporal Summation of Achromatic Perimetric Stimuli. Investig. Ophthalmol Vis. Sci. 2015, 56, 6467–6472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauny, A.; de Heering, A.; Muñoz Moldes, S.; Martin, J.-R.; de Beir, A.; Cleeremans, A. Unconscious categorization of sub-millisecond complex images. PLoS ONE 2020, 15, e0236467. [Google Scholar] [CrossRef]
- Holmes, R.; Victora, M.; Wang, R.F.; Kwiat, P.G. Measuring temporal summation in visual detection with a single-photon source. Vis. Res. 2017, 140, 33–43. [Google Scholar] [CrossRef]
- Stigliani, A.; Jeska, B.; Grill-Spector, K. Encoding model of temporal processing in human visual cortex. Proc. Natl. Acad. Sci. USA 2017, 114, E11047–E11056. [Google Scholar] [CrossRef] [Green Version]
- De Luca, M.; Di Pace, E.; Judica, A.; Spinelli, D.; Zoccolotti, P. Eye movement patterns in linguistic and non-linguistic tasks in developmental surface dyslexia. Neuropsychologia 1999, 37, 1407–1420. [Google Scholar] [CrossRef]
- Pavlidis, G.T. Do eye movements hold the key to dyslexia? Neuropsychologia 1981, 19, 57–64. [Google Scholar] [CrossRef]
- Rayner, K. Do faulty eye movements cause dyslexia? Dev Neuropsychol 1985, 1, 3–15. [Google Scholar] [CrossRef]
- Trauzettel-Klosinski, S.; Kloitzsch, A.M.; Dürrwächter, U.; Sokolov, A.N.; Reinhard, J. Eye movements in German speaking children with and without dyslexia when reading aloud. Acta Ophthalmol. 2010, 88, 681–691. [Google Scholar] [CrossRef]
- Seassau, M.; Gerard, C.L.; Bui-Quoc, E.; Bucci, M.P. Binocular saccade coordination in reading and visual search: A developmental study in typical reader and dyslexic children. Front. Integr. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judica, A.; De Luca, M.; Spinelli, D.; Zoccolotti, P. Training of developmental surface dyslexia improves reading performance and shortens eye fixation duration in reading. Neuropsychol. Rehabil. 2002, 12, 177–198. [Google Scholar] [CrossRef]
- Solan, H.A.; Larson, S.; Shelley-Tremblay, J.; Ficarra, A.; Silverman, M. Role of visual attention in cognitive control of oculomotor readiness in students with reading disabilities. J. Learn. Disabil. 2001, 34, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Bucci, M.P. Visual training could be useful for improving reading capabilities in dyslexia. Appl. Neuropsychol. Child 2019, 13, 1–10. [Google Scholar] [CrossRef]
- Balint, R. Seelenlähmung des “Schauens“, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschr. Psychiat Neurol. 1909, 25, 51–81. [Google Scholar] [CrossRef] [Green Version]
- Poppelreuter, W. Die Psychischen Schädigungen Durch Kopfschuß im Kriege 1914–1918. Bd. I. Die Störungen der Niederen und Höheren Sehleistungen durch Verletzungen des Okzipitalhirns; L. Voss: Leipzig, Germany, 1917. [Google Scholar]
- Williams, D.M.; Gassel, M. Visual function in patients with homonymous hemianopia. Brain 1962, 85, 175–250. [Google Scholar] [CrossRef]
- Posner, M.I. Orienting of attention. Quart. J. Exp. Psychol. 1980, 32, 3–25. [Google Scholar] [CrossRef]
- Posner, M.I.; Cohen, Y.; Rafal, R.D. Neural systems control of spatial orientation. Phil. Trans. R Soc. Lond. B 1982, 298, 187–198. [Google Scholar]
- Jonides, J. Voluntary versus automatic control over the mind´s eye´s movement. In Attention and Performance IX; Long, J., Baddeley, A., Eds.; Erlbaum: Hillsdale, NJ, USA, 1981; pp. 187–203. [Google Scholar]
- McConkie, G.W.; Rainer, K. The span of effective stimulus during a fixation in reading. Perc. Psychophys. 1975, 17, 578–586. [Google Scholar] [CrossRef] [Green Version]
- McConkie, G.W.; Rainer, K. Assymetry of the perceptual span in reading. Bull. Psychol. Soc. 1976, 8, 365–368. [Google Scholar] [CrossRef] [Green Version]
- Rainer, K. Eye movements and the perceptual span in beginning and skilled readers. J. Exp. Child Psychol. 1986, 41, 211–236. [Google Scholar] [CrossRef]
- Rayner, K.; Slattery, T.J.; Bélanger, N.N. Eye movements, the percepzual span, and reading speed. Bull. Rev. 2010, 17, 834–839. [Google Scholar] [CrossRef] [Green Version]
- Pavlidis, G.T. Eye movements in dyslexia: Their diagnostic significance. J. Learn. Disabil. 1985, 18, 42–50. [Google Scholar] [CrossRef]
- Rayner, K.; Pollatsek, A. Eye movement control during reading: Evidence for direct control. Quart. J. Exp. Psychola. Human Exp. Psychol. 1982, 33, 351–373. [Google Scholar] [CrossRef] [PubMed]
- Eden, G.F.F.; Stein, J.F.F.; Wood, H.M.M.; Wood, F.B.B. Differences in eye movements and reading problems in dyslexic and normal children. Vis. Res. 1994, 34, 1345–1358. [Google Scholar] [CrossRef]
- Hyönä, J.; Olson, R.K. Eye fixation patterns among dyslexic and normal readers: Effect of word length and word frequency. J. Exp. Psychol Learn. Mem. Cogn. 1995, 21, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Hutzler, F.; Kronbichler, M.; Jacobs, A.M.; Wimmer, H. Perhaps correlational but not causal: No effect of dyslexic readers´ magnocellular system on their eye movements during reading. Neuropsychologia 2006, 44, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Stein, J. What is developmental dyslexia? Brain Sci. 2018, 8, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, J. Reply to: The relationship between eye movements and reading difficulties, Blythe, Kirkby & Liversedge. Brain Sci. 2018, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Blythe, H.I.; Kirkby, J.A.; Liversedge, S.P. Comments on: “What is developmental dyslexia?” Brain Sci. 2018, 8, 26. The relationship between eye movements and reading difficulties. Brain Sci. 2018, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Green, D.G. Regional variations in the visual acuity for interference fringes on the retina. J. Physiol. 1970, 207, 351–356. [Google Scholar] [CrossRef]
- Pavlidis, G.T. Eye movement differences between dyslexics, normal, and retarded readers while sequentially fixating digits. Am. J. Optom. Physiol. Opt. 1985, 62, 820–832. [Google Scholar] [CrossRef]
- Brown, B.; Haegerstrom-Portnoy, G.; Adams, A.J.; Yingling, C.D.; Galin, D.; Herron, J.; Marcus, M. Predictive eye movements do not discriminate between dyslexic and control children. Neuropsychologia 1983, 21, 121–128. [Google Scholar] [CrossRef]
Fixation Time Milliseconds | Number of Letters Recognized | |||
---|---|---|---|---|
3 Letters | 4 Letters | 5 Letters | 6 Letters | |
Number of Subjects Who Recognized > 95% of the Pseudowords Correctly | ||||
250 ms | TG: 3 CG: 3 | TG: 2 CG: 3 | TG: 3 CG: 4 | TG: 2 CG: 1 |
300 ms | TG: 2 CG: 3 | TG: 1 CG: 1 | TG: 3 CG: 2 | |
350 ms | TG: 1 CG: 2 | TG: 3 CG: 2 | TG: 1 CG: 1 | |
400 ms | TG: 1 CG: 1 | TG: 1 CG: 1 | TG: 1 CG: | TG: 1 CG: 1 |
450 ms | TG: 1 CG: | TG: CG: 1 | TG: CG: | |
500 ms | TG: 1 CG: 1 | TG: 2 CG: 1 | TG: 1 CG: 2 | |
∑ Subjects | TG: 9 CG: 10 | TG: 9 CG: 9 | TG: 9 CG: 9 | TG: 3 CG:2 |
Speech Onset Latency | X = 1456.45 ms SD = 473.08 ms | X = 1404.84 ms SD = 705.60 ms | X = 1466.39 ms SD = 562.96 ms | X = 1393.86 ms SD = 484.52 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Werth, R. Dyslexic Readers Improve without Training When Using a Computer-Guided Reading Strategy. Brain Sci. 2021, 11, 526. https://doi.org/10.3390/brainsci11050526
Werth R. Dyslexic Readers Improve without Training When Using a Computer-Guided Reading Strategy. Brain Sciences. 2021; 11(5):526. https://doi.org/10.3390/brainsci11050526
Chicago/Turabian StyleWerth, Reinhard. 2021. "Dyslexic Readers Improve without Training When Using a Computer-Guided Reading Strategy" Brain Sciences 11, no. 5: 526. https://doi.org/10.3390/brainsci11050526
APA StyleWerth, R. (2021). Dyslexic Readers Improve without Training When Using a Computer-Guided Reading Strategy. Brain Sciences, 11(5), 526. https://doi.org/10.3390/brainsci11050526