The Effects of Internal Attention on Knee Biomechanics in Volleyball Spike Jump through Augmented Video Feedback
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Procedure
2.3. Video Feedback Protocol
2.4. Data Processing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azhar, N.M.; Affandi, N.F.; Mail, M.S.Z.; Shaharudin, S. The effects of foot position on lower extremity kinematics during single leg squat among adolescent male athletes. J. Taibah Univ. Med. Sci. 2019, 14, 343–349. [Google Scholar]
- Zahradnik, D.; Jandacka, D.; Uchytil, J.; Farana, R.; Hamill, J. Lower extremity mechanics during landing after a volleyball block as a risk factor for anterior cruciate ligament injury. Phys. Sport 2015, 16, 53–58. [Google Scholar] [CrossRef]
- Yang, C.; Yao, W.; Garrett, W.E.; Givens, D.L.; Hacke, J.; Liu, H.; Yu, B. Effects of an Intervention Program on Lower Extremity Biomechanics in Stop-Jump and Side-Cutting Tasks. Am. J. Sports Med. 2018, 46, 3014–3022. [Google Scholar] [CrossRef] [PubMed]
- Noyes, F.R.; Jetter, A.W.; Grood, E.S.; Harms, S.P.; Gardner, E.J.; Levy, M.S. Anterior Cruciate Ligament Function in Providing Rotational Stability Assessed by Medial and Lateral Tibiofemoral Compartment Translations and Subluxations. Am. J. Sports Med. 2015, 43, 683–692. [Google Scholar] [CrossRef]
- Kanamori, A.; Zeminski, J.; Rudy, T.W.; Li, G.; Fu, F.H.; Woo, S.L.Y. The effect of axial tibial torque on the function of the anterior cruciate ligament: A biomechanical study of a simulated pivot shift test. Arthrosc. J. Arthrosc. Relat. Surg. 2002, 18, 394–398. [Google Scholar] [CrossRef]
- John, B.; Cronin, E.B.; Finn, L. Augmented Feedback Reduces Ground Reaction Forces in the Landing Phase of the Volleyball Spike Jump. J. Sport Rehabil. 2008, 17, 148–159. [Google Scholar]
- Parsons, J.L.; Alexander, M.J. Modifying spike jump landing biomechanics in female adolescent volleyball athletes using video and verbal feedback. J. Strength Cond. Res. 2012, 26, 1076–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Myer, G.D.; Ford, K.R.; Foss, K.D.B.; Goodman, A.; Ceasar, A.; Rauh, M.J.; Divine, J.G.; Hewett, T.E. The incidence and potential pathomechanics of patellofemoral pain in female athletes. Clin. Biomech. 2010, 25, 700–707. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.-G.; Zhu, L.-N.; Yan, J.; Yin, H.-C. Neural Basis of Working Memory Enhancement after Acute Aerobic Exercise: fMRI Study of Preadolescent Children. Front. Psychol. 2016, 7, 1804. [Google Scholar] [CrossRef] [Green Version]
- Brick, N.; MacIntyre, T.; Campbell, M. Attentional focus in endurance activity: New paradigms and future directions. Int. Rev. Sport Exerc. Psychol. 2014, 7, 106–134. [Google Scholar] [CrossRef]
- Hutchinson, J.C.; Karageorghis, C.I.; Black, J.D. The diabeates project: Perceptual, affective and psychophysiological effects of music and music-video in a clinical exercise setting. Can. J. Diabetes 2017, 41, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Jefferson, R.; Collins, J.; Whittle, M.; Radin, E.; O’Connor, J. The role of the quadriceps in controlling impulsive forces around heel strike. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1990, 204, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.J.; Hardy, J. Effects of attentional focus on skilled performance in golf. J. Appl. Sport Psychol. 2009, 21, 163–177. [Google Scholar] [CrossRef]
- Wulf, G.; McNevin, N.; Shea, C.H. The automaticity of complex motor skill learning as a function of attentional focus. Q. J. Exp. Psychol. Sect. A 2001, 54, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Milner, C.E.; Fairbrother, J.T.; Srivatsan, A.; Zhang, S. Simple verbal instruction improves knee biomechanics during landing in female athletes. Knee 2012, 19, 399–403. [Google Scholar] [CrossRef]
- Wulf, G.; Shea, C.; Park, J.-H. Attention and motor performance: Preferences for and advantages of an external focus. Res. Q. Exerc. Sport 2001, 72, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Wulf, G.; Su, J. An external focus of attention enhances golf shot accuracy in beginners and experts. Res. Q. Exerc. Sport 2007, 78, 384–389. [Google Scholar] [CrossRef]
- Williams, A.M.; Ford, P.R. Promoting a skills-based agenda in Olympic sports: The role of skill-acquisition specialists. J. Sports Sci. 2009, 27, 1381–1392. [Google Scholar] [CrossRef]
- Gabbett, T.J. The training—injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Mizner, R.L.; Kawaguchi, J.K.; Chmielewski, T.L. Muscle strength in the lower extremity does not predict postinstruction improvements in the landing patterns of female athletes. J. Orthop. Sports Phys. Ther. 2008, 38, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Krosshaug, T.; Slauterbeck, J.R.; Engebretsen, L.; Bahr, R. Biomechanical analysis of anterior cruciate ligament injury mechanisms: Three-dimensional motion reconstruction from video sequences. Scand. J. Med. Sci. Sports 2007, 17, 508–519. [Google Scholar] [CrossRef]
- Donnelly, C.J. A novel method to determines statistical effect magnitude using SPM for gait analysis. ISBS Proc. Arch. 2020, 38, 100. [Google Scholar]
- Serrien, B.; Goossens, M.; Baeyens, J.-P. Statistical parametric mapping of biomechanical one-dimensional data with Bayesian inference. Int. Biomech. 2019, 6, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, P.X.; Menzel, H.-J.K.; Guidotti, F.; Bell, J.; von Duvillard, S.P.; Wagner, H. Spike jump biomechanics in male versus female elite volleyball players. J. Sports Sci. 2019, 37, 2411–2419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, B.; Gabriel, D.; Noble, L.; An, K.-N. Estimate of the Optimum Cutoff Frequency for the Butterworth Low-Pass Digital Filter. J. Appl. Biomech. 1999, 15, 318–329. [Google Scholar] [CrossRef]
- Cappozzo, A.; Cappello, A.; Della Croce, U.; Pensalfini, F. Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans. Biomed. Eng. 1997, 44, 1165–1174. [Google Scholar] [CrossRef]
- Pataky, T.C. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Macpherson, J.M. Postural orientation and equilibrium. Compr. Physiol. 2010, 29, 255–292. [Google Scholar] [CrossRef]
- Marchant, D.C.; Greig, M.; Scott, C. Attentional focusing instructions influence force production and muscular activity during isokinetic elbow flexions. J. Strength Cond. Res. 2009, 23, 2358–2366. [Google Scholar] [CrossRef] [Green Version]
- Wulf, G.; McConnel, N.; Gärtner, M.; Schwarz, A. Enhancing the learning of sport skills through external-focus feedback. J Mot Behav 2002, 34, 171–182. [Google Scholar] [CrossRef]
- Vance, J.; Wulf, G.; Töllner, T.; McNevin, N.; Mercer, J. EMG activity as a function of the performer’s focus of attention. J. Mot. Behav. 2004, 36, 450–459. [Google Scholar] [CrossRef]
- Bates, N.A.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Timing differences in the generation of ground reaction forces between the initial and secondary landing phases of the drop vertical jump. Clin. Biomech. 2013, 28, 796–799. [Google Scholar] [CrossRef] [Green Version]
- Cortes, N.; Onate, J.; Abrantes, J.; Gagen, L.; Dowling, E.; Van Lunen, B. Effects of gender and foot-landing techniques on lower extremity kinematics during drop-jump landings. J. Appl. Biomech. 2007, 23, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Lin, C.F.; Garrett, W.E. Lower extremity biomechanics during the landing of a stop-jump task. Clin. Biomech. 2006, 21, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, Y.; Woo, S.L.; Loh, J.C.; Tsuda, E.; Tang, P.; McMahon, P.J.; Debski, R.E. A quantitative analysis of valgus torque on the ACL: A human cadaveric study. J. Orthop. Res. 2003, 21, 1107–1112. [Google Scholar] [CrossRef]
- Kanamori, A.; Woo, S.L.; Ma, C.B.; Zeminski, J.; Rudy, T.W.; Li, G.; Livesay, G.A. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy 2000, 16, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Buchanan, T.S. Strategies of muscular support of varus and valgus isometric loads at the human knee. J. Biomech. 2001, 34, 1257–1267. [Google Scholar] [CrossRef]
- Wang, L.I.; Gu, C.Y.; Chen, W.L.; Chang, M.S. Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks. J. Sports Sci. Med. 2010, 9, 134–139. [Google Scholar] [PubMed]
- Sell, T.C.; Ferris, C.M.; Abt, J.P.; Tsai, Y.S.; Myers, J.B.; Fu, F.H.; Lephart, S.M. Predictors of proximal tibia anterior shear force during a vertical stop-jump. J. Orthop. Res. 2007, 25, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Ford, K.R.; Hewett, T.E. Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. J. Athl. Train. 2004, 39, 352. [Google Scholar] [PubMed]
- Wulf, G.; Dufek, J.S.; Lozano, L.; Pettigrew, C. Increased jump height and reduced EMG activity with an external focus. Hum. Mov. Sci. 2010, 29, 440–448. [Google Scholar] [CrossRef] [PubMed]
Parameters | Pre | Post | T | P |
---|---|---|---|---|
First peak vGRF (BW) | 2.71 ± 0.32 | 1.41 ± 0.21 | 7.618 | 0.001 * |
Second peak vGRF (BW) | 1.91 ± 0.14 | 1.72 ± 0.18 | 2.286 | 0.071 |
Third peak vGRF(BW) | 1.54 ± 0.11 | 1.45 ± 0.17 | 1.369 | 0.213 |
First loading rate (BW/S) | 81.16 ± 10.61 | 50.58 ± 23.79 | 4.205 | 0.004 * |
Second loading rate (BW/S) | 58.03 ± 4.37 | 57.31 ± 7.30 | 0.254 | 0.808 |
Impulse (BWs) | 0.60 ± 0.07 | 0.53 ± 0.04 | 1.712 | 0.131 |
Parameters | Pre | Post | T | P |
---|---|---|---|---|
Approaching velocity (m/s) | 0.49 ± 0.07 | 0.46 ± 0.11 | 0.751 | 0.477 |
Initial contact flexion angle (°) | −46.23 ± 6.64 | −51.53 ± 8.93 | 2.179 | 0.049 * |
Maximal flexion angle (°) | −102.90 ± 12.36 | −108.53 ± 8.15 | 3.242 | 0.006 * |
Maximal flexion angular velocity (°/s) | −240.93 ± 26.62 | −237.17 ± 27.67 | 0.848 | 0.413 |
Maximal extension angular velocity (°/s) | 449.21 ± 59.88 | 435.85 ± 72.70 | −0.073 | 0.943 |
Maximal extension moment (Nm/kg) | 3.75 ± 0.48 | 3.51 ± 0.43 | 3.962 | 0.001 * |
Maximal flexion moment (Nm/kg) | −1.86 ± 0.63 | −1.19 ± 0.55 | −3.711 | 0.002 * |
Maximal flexion power (W/kg) | −20.46 ± 3.84 | −20.52 ± 4.71 | −0.677 | 0.518 |
Maximal extension power (W/kg) | 20.36 ± 3.47 | 21.26 ± 1.60 | 0.249 | 0.811 |
Maximal abduction angle (°) | 5.36 ± 1.29 | 6.08 ± 2.03 | −1.238 | 0.304 |
Maximal adduction angle (°) | −3.81 ± 1.91 | −3.64 ± 2.68 | −0.353 | 0.747 |
Maximal abduction angular velocity (°/s) | 385.99 ± 106.10 | 354.53 ± 103.38 | 0.989 | 0.340 |
Maximal adduction angular velocity (°/s) | −343.37 ± 52.92 | −338.13 ± 69.47 | 0.307 | 0.763 |
Maximal abduction moment (Nm/kg) | 0.55 ± 0.18 | 0.29 ± 0.05 | 3.069 | 0.037 * |
Maximal adduction moment (Nm/kg) | −0.49 ± 0.07 | −0.48 ± 0.12 | −0.081 | 0.939 |
Maximal abduction power (w/kg) | 0.37 ± 0.13 | 0.60 ± 0.17 | −2.258 | 0.087 |
Maximal adduction power (w/kg) | −0.29 ± 0.10 | −0.40 ± 0.14 | 1.166 | 0.308 |
Maximal external rotation angle (°) | 9.57 ± 1.33 | 4.84 ± 4.46 | 2.610 | 0.121 |
Maximal internal rotation angle (°) | −3.51 ± 1.08 | −6.09 ± 1.59 | 1.961 | 0.189 |
Maximal external rotation angular velocity (°/s) | 101.15 ± 9.16 | 95.83 ± 37.29 | 0.288 | 0.785 |
Maximal internal rotation angular velocity (°/s) | −3.41 ± 5.23 | −21.41 ± 10.82 | 5.209 | 0.003 * |
Maximal external rotation moment (Nm/kg) | 1.34 ± 0.31 | 1.08 ± 0.19 | 2.348 | 0.041 * |
Maximal internal rotation moment (Nm/kg) | −0.24 ± 0.12 | −0.37 ± 0.22 | 2.813 | 0.018 * |
Maximal external rotation power (w/kg) | 0.56 ± 0.55 | 0.88 ± 0.34 | 1.900 | 0.099 |
Maximal internal rotation power (w/kg) | −0.59 ± 0.14 | −0.44 ± 0.22 | −1.524 | 0.171 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Li, X.; Huang, H. The Effects of Internal Attention on Knee Biomechanics in Volleyball Spike Jump through Augmented Video Feedback. Brain Sci. 2021, 11, 541. https://doi.org/10.3390/brainsci11050541
Wang A, Li X, Huang H. The Effects of Internal Attention on Knee Biomechanics in Volleyball Spike Jump through Augmented Video Feedback. Brain Sciences. 2021; 11(5):541. https://doi.org/10.3390/brainsci11050541
Chicago/Turabian StyleWang, Aiwen, Xiaohan Li, and Huiming Huang. 2021. "The Effects of Internal Attention on Knee Biomechanics in Volleyball Spike Jump through Augmented Video Feedback" Brain Sciences 11, no. 5: 541. https://doi.org/10.3390/brainsci11050541
APA StyleWang, A., Li, X., & Huang, H. (2021). The Effects of Internal Attention on Knee Biomechanics in Volleyball Spike Jump through Augmented Video Feedback. Brain Sciences, 11(5), 541. https://doi.org/10.3390/brainsci11050541