Deep Brain Stimulation of the Posterior Insula in Chronic Pain: A Theoretical Framework
Abstract
:1. Introduction
2. Neuroanatomical Studies
3. Brain Lesion Studies
4. Functional Imaging Studies
5. Intracranial Recordings during Painful Stimuli
6. Electrical Stimulation of the Insula in Humans
7. Non-Invasive Insular Stimulation in Patients with Chronic Pain
8. Previously Studied DBS Targets for Chronic Pain
9. Conclusions
- First, the optimal electrode target(s) within the insula and landmarks to achieve precise and consistent implantation will require further investigation. The experience gathered by epilepsy surgeons with SEEG implantation in the insula would certainly facilitate their safe and precise positioning. Furthermore, data gathered from intracranial electrical stimulation and recording in epileptic patients have helped to delineate the primary somatosensory region receiving spinothalamic input from the VMPo, most likely to directly affect pain perception [39,44]. Awake surgery with microelectrode recording during painful stimulation or intracranial stimulation would also help refine electrode positioning in the operating room. It would certainly be worthwhile to consider the implantation of additional electrodes in the middle or anterior insula to modulate the affective components of pain, in addition to its somatosensory components.
- Second, the selection of the proper patient population represents a significant challenge. As discussed in Section 4, studies have highlighted abnormal insular activity and connectivity in many chronic pain syndromes. However, chronic pain is an extremely heterogeneous condition, and it remains unclear which patients would most benefit from insular DBS. Fibromyalgia is the pain disorder with the clearer neuroimaging evidence pointing to circuit abnormalities centered on the insula, as the source of sensory and affective hypersensitivity to external and interoceptive stimuli [26]. However, the heterogeneity of the syndrome and its psychiatric comorbidities represent major challenges. Patients with fibromyalgia can be expected to be more sensitive to post-operative pain from the insertion of the electrode and battery. Demonstration of cost-effectiveness in a syndrome that carries important negative bias and misunderstanding in the general population and medical community might also prove challenging. Other promising patient populations include central neuropathic pain from stroke or spinal cord damage, complex regional pain syndrome, and post-amputation phantom pain. Whatever the source of chronic pain, patients will need to be managed at a tertiary-care chronic pain clinic, fail all conventional treatments, and have symptoms severe and incapacitating enough to justify the invasiveness and cost of DBS as a last-resort therapy.
- Third, there is little data from which to infer the potential effects of electrical stimulation of the posterior insula on the activity of pain networks or to infer which stimulation parameters would be most effective. Low-frequency stimulation of the posterior insula was shown to elicit pain [39], and high-frequency stimulation was shown to transiently increase temperature pain thresholds [43]. The exact neural mechanisms underlying these effects are currently unknown. Initially, since the clinical response elicited by high-frequency stimulation was similar to a lesion of the same region (for instance, the subthalamic nucleus), high-frequency stimulation was thought to functionally inactivate the neuronal bodies, from depolarization blockade and/or neurotransmitter depletion [136]. We have since understood that DBS pulses are propagated to anatomically connected regions by orthodromic and antidromic action potentials generated in axons in the vicinity of the target region, including afferents and efferents of the target, as well as nearby passing fibers [136]. DBS also modifies the neurotransmitter environment by its effect on astrocytes [136]. We currently do not have the neuroanatomical or computational knowledge to predict the effect of localized electrical stimulation on the activity of multiregional brain networks, although this is the subject of an ongoing investigation [137]. It is equally difficult to predict which stimulation parameters would better re-establish proper neuronal activity within the insular network. Based on preliminary evidence with high-frequency insula stimulation (150 Hz) [43] and experience with DBS of the ACC (130 Hz, 450 μs) [123], a region with a baseline neurophysiology that is similar to the insula [138], we intend to use an initial stimulation frequency of 130 Hz. The use of a sensing-enabled DBS system will help to better understand the effect of different stimulation parameters on insular neurophysiology.
- Fourth, regarding the intensity of stimulation, the risk of stimulation-induced seizure is an important concern. The insula is well known to be an epileptogenic structure [139], and non-invasive stimulation of the insula was shown to trigger partial insular seizure in a recent study [104]. DBS of the ACC—another well-known epileptogenic region—has also triggered partial seizures in some patients when stimulation intensity was increased too quickly, including continuing epilepsy after electrode removal in a patient [126]. To lower the risk of stimulation-induced seizure and better refine stimulation intensity throughout the day, the use of a sensing-enabled DBS system would be desirable [140]. Stimulation with the cycle mode, rather than prolonged continuous stimulation, has also been proposed to reduce the risk of seizures [140,141]. Moreover, subjective experience of pain varies throughout the day, and hence, there would be a possibility to modulate stimulation according to the sensing of brain activity—in other words, closed-loop stimulation [142]. In this regard, an important challenge will be to develop reliable, real-time decoders of the subjective pain state based on intracranial recordings. This is the subject of ongoing efforts by different research teams [142].
- Fifth, the outcome measures of insular DBS will require thoughtful considerations. Of course, pain ratings on the visual analog scale, quality-of-life ratings, pain interference with daily activities, mood, medication use, and cortical electrophysiology measurements will represent important outcome measures. Appropriate trial designs with sham stimulation groups will be of utmost importance, given the high risk of the placebo effect. Finally, it will be important to monitor the persistence of the effect over time, as previous trials of DBS for chronic pain with other target regions have all shown initially encouraging results, which proved only temporary over time in most patients [4,11].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Savage, S.R. Long-term opioid therapy: Assessment of consequences and risks. J. Pain Symptom Manage. 1996, 11, 274–286. [Google Scholar] [CrossRef]
- Burchiel, K.J.; Raslan, A.M. Contemporary concepts of pain surgery. J. Neurosurg. 2019, 130, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Viswanath, O.; Urits, I.; Bouley, E.; Peck, J.M.; Thompson, W.; Kaye, A.D. Evolving Spinal Cord Stimulation Technologies and Clinical Implications in Chronic Pain Management. Curr. Pain Headache Rep. 2019, 23, 39. [Google Scholar] [CrossRef] [PubMed]
- Frizon, L.A.; Yamamoto, E.A.; Nagel, S.J.; Simonson, M.T.; Hogue, O.; Machado, A.G. Deep Brain Stimulation for Pain in the Modern Era: A Systematic Review. Neurosurgery 2019. [Google Scholar] [CrossRef] [PubMed]
- North, R.B.; Kidd, D.H.; Farrokhi, F.; Piantadosi, S.A. Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: A randomized, controlled trial. Neurosurgery 2005, 56, 98–106, discussion 106–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, K.; Taylor, R.S.; Jacques, L.; Eldabe, S.; Meglio, M.; Molet, J.; Thomson, S.; O’Callaghan, J.; Eisenberg, E.; Milbouw, G.; et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: A multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 2007, 132, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Taylor, R.S.; Jacques, L.; Eldabe, S.; Meglio, M.; Molet, J.; Thomson, S.; O’Callaghan, J.; Eisenberg, E.; Milbouw, G.; et al. The effects of spinal cord stimulation in neuropathic pain are sustained: A 24-month follow-up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation. Neurosurgery 2008, 63, 762–770, discussion 770. [Google Scholar] [CrossRef] [PubMed]
- Kemler, M.A.; De Vet, H.C.; Barendse, G.A.; Van Den Wildenberg, F.A.; Van Kleef, M. The effect of spinal cord stimulation in patients with chronic reflex sympathetic dystrophy: Two years’ follow-up of the randomized controlled trial. Ann. Neurol. 2004, 55, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Kemler, M.A.; de Vet, H.C.; Barendse, G.A.; van den Wildenberg, F.A.; van Kleef, M. Effect of spinal cord stimulation for chronic complex regional pain syndrome Type I: Five-year final follow-up of patients in a randomized controlled trial. J. Neurosurg. 2008, 108, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Kemler, M.A.; Barendse, G.A.; van Kleef, M.; de Vet, H.C.; Rijks, C.P.; Furnee, C.A.; van den Wildenberg, F.A. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N. Engl. J. Med. 2000, 343, 618–624. [Google Scholar] [CrossRef]
- Coffey, R.J. Deep brain stimulation for chronic pain: Results of two multicenter trials and a structured review. Pain Med. 2001, 2, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, S.M.; Green, A.; Aziz, T. The Current State of Deep Brain Stimulation for Chronic Pain and Its Context in Other Forms of Neuromodulation. Brain Sci. 2018, 8, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bittar, R.G.; Kar-Purkayastha, I.; Owen, S.L.; Bear, R.E.; Green, A.; Wang, S.; Aziz, T.Z. Deep brain stimulation for pain relief: A meta-analysis. J. Clin. Neurosci. 2005, 12, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Navratilova, E.; Porreca, F. Reward and motivation in pain and pain relief. Nat. Neurosci. 2014, 17, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Larrea, L.; Peyron, R. Pain matrices and neuropathic pain matrices: A review. Pain 2013, 154 (Suppl. 1), S29–S43. [Google Scholar] [CrossRef] [Green Version]
- Bushnell, M.C.; Ceko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013, 14, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, A.D.; Zhang, E.T.; Blomqvist, A. Association of spinothalamic lamina I neurons and their ascending axons with calbindin-immunoreactivity in monkey and human. Pain 2002, 97, 105–115. [Google Scholar] [CrossRef]
- Craig, A.D. Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus in the long-tailed macaque monkey. J. Comp. Neurol. 2014, 522, 36–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, A.D. Pain mechanisms: Labeled lines versus convergence in central processing. Annu. Rev. Neurosci. 2003, 26, 1–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wager, T.D.; Atlas, L.Y.; Lindquist, M.A.; Roy, M.; Woo, C.W.; Kross, E. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 2013, 368, 1388–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segerdahl, A.R.; Mezue, M.; Okell, T.W.; Farrar, J.T.; Tracey, I. The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 2015, 18, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.D.; Kwan, C.L.; Crawley, A.P.; Mikulis, D.J. Event-related fMRI of pain: Entering a new era in imaging pain. Neuroreport 1998, 9, 3019–3023. [Google Scholar] [CrossRef] [PubMed]
- Kurth, F.; Zilles, K.; Fox, P.T.; Laird, A.R.; Eickhoff, S.B. A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct. Funct. 2010, 214, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Napadow, V.; LaCount, L.; Park, K.; As-Sanie, S.; Clauw, D.J.; Harris, R.E. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010, 62, 2545–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napadow, V.; Kim, J.; Clauw, D.J.; Harris, R.E. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 2012, 64, 2398–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, C.M.; Schrepf, A.; Vatansever, D.; Larkin, T.E.; Mawla, I.; Ichesco, E.; Kochlefl, L.; Harte, S.E.; Clauw, D.J.; Mashour, G.A.; et al. Functional and neurochemical disruptions of brain hub topology in chronic pain. Pain 2019, 160, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Ichesco, E.; Schmidt-Wilcke, T.; Bhavsar, R.; Clauw, D.J.; Peltier, S.J.; Kim, J.; Napadow, V.; Hampson, J.P.; Kairys, A.E.; Williams, D.A.; et al. Altered resting state connectivity of the insular cortex in individuals with fibromyalgia. J. Pain 2014, 15, 815–826.e811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichesco, E.; Puiu, T.; Hampson, J.P.; Kairys, A.E.; Clauw, D.J.; Harte, S.E.; Peltier, S.J.; Harris, R.E.; Schmidt-Wilcke, T. Altered fMRI resting-state connectivity in individuals with fibromyalgia on acute pain stimulation. Eur. J. Pain 2016, 20, 1079–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, F.J.; Wang, S.J.; Lin, Y.Y.; Fuh, J.L.; Ko, Y.C.; Wang, P.N.; Chen, W.T. Altered insula-default mode network connectivity in fibromyalgia: A resting-state magnetoencephalographic study. J. Headache Pain 2017, 18, 89. [Google Scholar] [CrossRef]
- Harte, S.E.; Ichesco, E.; Hampson, J.P.; Peltier, S.J.; Schmidt-Wilcke, T.; Clauw, D.J.; Harris, R.E. Pharmacologic attenuation of cross-modal sensory augmentation within the chronic pain insula. Pain 2016, 157, 1933–1945. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.E.; Sundgren, P.C.; Pang, Y.; Hsu, M.; Petrou, M.; Kim, S.H.; McLean, S.A.; Gracely, R.H.; Clauw, D.J. Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia. Arthritis Rheum. 2008, 58, 903–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, R.E.; Sundgren, P.C.; Craig, A.D.; Kirshenbaum, E.; Sen, A.; Napadow, V.; Clauw, D.J. Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis Rheum. 2009, 60, 3146–3152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, R.E.; Napadow, V.; Huggins, J.P.; Pauer, L.; Kim, J.; Hampson, J.; Sundgren, P.C.; Foerster, B.; Petrou, M.; Schmidt-Wilcke, T.; et al. Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology 2013, 119, 1453–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyke, T.L.; Osmotherly, P.G.; Baines, S. Measuring Glutamate Levels in the Brains of Fibromyalgia Patients and a Potential Role for Glutamate in the Pathophysiology of Fibromyalgia Symptoms: A Systematic Review. Clin. J. Pain 2017, 33, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Berthier, M.; Starkstein, S.; Leiguarda, R. Asymbolia for pain: A sensory-limbic disconnection syndrome. Ann. Neurol. 1988, 24, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, N. Disconnexion syndromes in animals and man. II. Brain 1965, 88, 585–644. [Google Scholar] [CrossRef] [Green Version]
- Geschwind, N. Disconnexion syndromes in animals and man. I. Brain 1965, 88, 237–294. [Google Scholar] [CrossRef] [Green Version]
- Ostrowsky, K.; Magnin, M.; Ryvlin, P.; Isnard, J.; Guenot, M.; Mauguiere, F. Representation of pain and somatic sensation in the human insula: A study of responses to direct electrical cortical stimulation. Cereb. Cortex 2002, 12, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, L.; Isnard, J.; Peyron, R.; Mauguiere, F. Stimulation of the human cortex and the experience of pain: Wilder Penfield’s observations revisited. Brain 2012, 135, 631–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzola, L.; Isnard, J.; Peyron, R.; Guenot, M.; Mauguiere, F. Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 2009, 146, 99–104. [Google Scholar] [CrossRef]
- Mazzola, L.; Isnard, J.; Mauguiere, F. Somatosensory and pain responses to stimulation of the second somatosensory area (SII) in humans. A comparison with SI and insular responses. Cereb. Cortex 2006, 16, 960–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frot, M.; Faillenot, I.; Mauguiere, F. Processing of nociceptive input from posterior to anterior insula in humans. Hum. Brain Mapp. 2014, 35, 5486–5499. [Google Scholar] [CrossRef] [PubMed]
- Denis, D.J.; Marouf, R.; Rainville, P.; Bouthillier, A.; Nguyen, D.K. Effects of insular stimulation on thermal nociception. Eur. J. Pain 2016, 20, 800–810. [Google Scholar] [CrossRef] [PubMed]
- Afif, A.; Minotti, L.; Kahane, P.; Hoffmann, D. Anatomofunctional organization of the insular cortex: A study using intracerebral electrical stimulation in epileptic patients. Epilepsia 2010, 51, 2305–2315. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D.; Bushnell, M.C.; Zhang, E.T.; Blomqvist, A. A thalamic nucleus specific for pain and temperature sensation. Nature 1994, 372, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D.; Blomqvist, A. Is there a specific lamina I spinothalamocortical pathway for pain and temperature sensations in primates? J. Pain 2002, 3, 95–101, discussion 113–104. [Google Scholar] [CrossRef]
- Craig, A.D. Lamina I, but not lamina V, spinothalamic neurons exhibit responses that correspond with burning pain. J. Neurophysiol. 2004, 92, 2604–2609. [Google Scholar] [CrossRef] [PubMed]
- Blomqvist, A.; Zhang, E.T.; Craig, A.D. Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 2000, 123 Pt 3, 601–619. [Google Scholar] [CrossRef] [Green Version]
- Evrard, H.C. The Organization of the Primate Insular Cortex. Front. Neuroanat. 2019, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Evrard, H.C.; Logothetis, N.K.; Craig, A.D. Modular architectonic organization of the insula in the macaque monkey. J. Comp. Neurol. 2014, 522, 64–97. [Google Scholar] [CrossRef]
- Baumgartner, U.; Tiede, W.; Treede, R.D.; Craig, A.D. Laser-evoked potentials are graded and somatotopically organized anteroposteriorly in the operculoinsular cortex of anesthetized monkeys. J. Neurophysiol. 2006, 96, 2802–2808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strigo, I.A.; Craig, A.D. Interoception, homeostatic emotions and sympathovagal balance. Philos. Trans. R. Soc. Lond B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.L.; Pelzer, P.; Heinl, C.; Tang, W.; Gangadharan, V.; Flor, H.; Sprengel, R.; Kuner, T.; Kuner, R. A pathway from midcingulate cortex to posterior insula gates nociceptive hypersensitivity. Nat. Neurosci. 2017, 20, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Berthier, M.L.; Starkstein, S.E.; Nogues, M.A.; Robinson, R.G.; Leiguarda, R.C. Bilateral sensory seizures in a patient with pain asymbolia. Ann. Neurol. 1990, 27, 109. [Google Scholar] [CrossRef] [PubMed]
- Veldhuijzen, D.S.; Greenspan, J.D.; Kim, J.H.; Lenz, F.A. Altered pain and thermal sensation in subjects with isolated parietal and insular cortical lesions. Eur. J. Pain 2010, 14, 535.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenspan, J.D.; Lee, R.R.; Lenz, F.A. Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain 1999, 81, 273–282. [Google Scholar] [CrossRef]
- Greenspan, J.D.; Winfield, J.A. Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum. Pain 1992, 50, 29–39. [Google Scholar] [CrossRef]
- Masson, C.; Koskas, P.; Cambier, J.; Masson, M. Left pseudothalamic cortical syndrome and pain asymbolia. Rev. Neurol. 1991, 147, 668–670. [Google Scholar] [PubMed]
- Starr, C.J.; Sawaki, L.; Wittenberg, G.F.; Burdette, J.H.; Oshiro, Y.; Quevedo, A.S.; Coghill, R.C. Roles of the insular cortex in the modulation of pain: Insights from brain lesions. J. Neurosci. 2009, 29, 2684–2694. [Google Scholar] [CrossRef] [PubMed]
- Isnard, J.; Magnin, M.; Jung, J.; Mauguiere, F.; Garcia-Larrea, L. Does the insula tell our brain that we are in pain? Pain 2011, 152, 946–951. [Google Scholar] [CrossRef]
- Montavont, A.; Mauguiere, F.; Mazzola, L.; Garcia-Larrea, L.; Catenoix, H.; Ryvlin, P.; Isnard, J. On the origin of painful somatosensory seizures. Neurology 2015, 84, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, K.; Garcia-Larrea, L.; Tremblay, L.; Montavont, A.; Catenoix, H.; Rheims, S.; Guenot, M.; Isnard, J. Pain behavior without pain sensation: An epileptic syndrome of “symbolism for pain”? Pain 2020, 161, 502–508. [Google Scholar] [CrossRef]
- Garcia-Larrea, L.; Perchet, C.; Creac’h, C.; Convers, P.; Peyron, R.; Laurent, B.; Mauguiere, F.; Magnin, M. Operculo-insular pain (parasylvian pain): A distinct central pain syndrome. Brain 2010, 133, 2528–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, A.D.; Chen, K.; Bandy, D.; Reiman, E.M. Thermosensory activation of insular cortex. Nat. Neurosci. 2000, 3, 184–190. [Google Scholar] [CrossRef]
- Baliki, M.N.; Baria, A.T.; Apkarian, A.V. The cortical rhythms of chronic back pain. J. Neurosci. 2011, 31, 13981–13990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Mawla, I.; Kong, J.; Lee, J.; Gerber, J.; Ortiz, A.; Kim, H.; Chan, S.T.; Loggia, M.L.; Wasan, A.D.; et al. Somatotopically specific primary somatosensory connectivity to salience and default mode networks encodes clinical pain. Pain 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceko, M.; Shir, Y.; Ouellet, J.A.; Ware, M.A.; Stone, L.S.; Seminowicz, D.A. Partial recovery of abnormal insula and dorsolateral prefrontal connectivity to cognitive networks in chronic low back pain after treatment. Hum. Brain Mapp. 2015, 36, 2075–2092. [Google Scholar] [CrossRef]
- Hashmi, J.A.; Baliki, M.N.; Huang, L.; Baria, A.T.; Torbey, S.; Hermann, K.M.; Schnitzer, T.J.; Apkarian, A.V. Shape shifting pain: Chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain 2013, 136, 2751–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, D.B.; Lange, G.; Ciccone, D.S.; Liu, W.C.; Steffener, J.; Natelson, B.H. Functional imaging of pain in patients with primary fibromyalgia. J. Rheumatol. 2004, 31, 364–378. [Google Scholar] [PubMed]
- Gracely, R.H.; Petzke, F.; Wolf, J.M.; Clauw, D.J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002, 46, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Flodin, P.; Martinsen, S.; Mannerkorpi, K.; Lofgren, M.; Bileviciute-Ljungar, I.; Kosek, E.; Fransson, P. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy. Neuroimage Clin. 2015, 9, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flodin, P.; Martinsen, S.; Lofgren, M.; Bileviciute-Ljungar, I.; Kosek, E.; Fransson, P. Fibromyalgia is associated with decreased connectivity between pain- and sensorimotor brain areas. Brain Connect. 2014, 4, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.Y.; Kilpatrick, L.A.; Labus, J.S.; Gupta, A.; Katibian, D.; Ashe-McNalley, C.; Stains, J.; Heendeniya, N.; Smith, S.R.; Tillisch, K.; et al. Sex and disease-related alterations of anterior insula functional connectivity in chronic abdominal pain. J. Neurosci. 2014, 34, 14252–14259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- As-Sanie, S.; Kim, J.; Schmidt-Wilcke, T.; Sundgren, P.C.; Clauw, D.J.; Napadow, V.; Harris, R.E. Functional Connectivity is Associated With Altered Brain Chemistry in Women With Endometriosis-Associated Chronic Pelvic Pain. J. Pain 2016, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kutch, J.J.; Yani, M.S.; Asavasopon, S.; Kirages, D.J.; Rana, M.; Cosand, L.; Labus, J.S.; Kilpatrick, L.A.; Ashe-McNalley, C.; Farmer, M.A.; et al. Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP: Research Network Neuroimaging Study. Neuroimage Clin. 2015, 8, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Choi, S.H.; Jang, J.H.; Lee, D.H.; Lee, K.J.; Lee, W.J.; Moon, J.Y.; Kim, Y.C.; Kang, D.H. Impaired insula functional connectivity associated with persistent pain perception in patients with complex regional pain syndrome. PLoS ONE 2017, 12, e0180479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichesco, E.; Quintero, A.; Clauw, D.J.; Peltier, S.; Sundgren, P.M.; Gerstner, G.E.; Schmidt-Wilcke, T. Altered functional connectivity between the insula and the cingulate cortex in patients with temporomandibular disorder: A pilot study. Headache 2012, 52, 441–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cottam, W.J.; Iwabuchi, S.J.; Drabek, M.M.; Reckziegel, D.; Auer, D.P. Altered connectivity of the right anterior insula drives the pain connectome changes in chronic knee osteoarthritis. Pain 2018, 159, 929–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baliki, M.N.; Petre, B.; Torbey, S.; Herrmann, K.M.; Huang, L.; Schnitzer, T.J.; Fields, H.L.; Apkarian, A.V. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 2012, 15, 1117–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, R.J.; Friedman, D.P.; Mishkin, M. A modality-specific somatosensory area within the insula of the rhesus monkey. Brain Res. 1993, 621, 116–120. [Google Scholar] [CrossRef]
- Robinson, C.J.; Burton, H. Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J. Comp. Neurol. 1980, 192, 69–92. [Google Scholar] [CrossRef] [PubMed]
- Frot, M.; Magnin, M.; Mauguiere, F.; Garcia-Larrea, L. Human SII and posterior insula differently encode thermal laser stimuli. Cereb. Cortex 2007, 17, 610–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frot, M.; Mauguiere, F. Dual representation of pain in the operculo-insular cortex in humans. Brain 2003, 126, 438–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frot, M.; Garcia-Larrea, L.; Guenot, M.; Mauguiere, F. Responses of the supra-sylvian (SII) cortex in humans to painful and innocuous stimuli. A study using intra-cerebral recordings. Pain 2001, 94, 65–73. [Google Scholar] [CrossRef]
- Frot, M.; Rambaud, L.; Guenot, M.; Mauguiere, F. Intracortical recordings of early pain-related CO2-laser evoked potentials in the human second somatosensory (SII) area. Clin. Neurophysiol. 1999, 110, 133–145. [Google Scholar] [CrossRef]
- Bastuji, H.; Frot, M.; Perchet, C.; Magnin, M.; Garcia-Larrea, L. Pain networks from the inside: Spatiotemporal analysis of brain responses leading from nociception to conscious perception. Hum. Brain Mapp. 2016, 37, 4301–4315. [Google Scholar] [CrossRef]
- Bastuji, H.; Frot, M.; Perchet, C.; Hagiwara, K.; Garcia-Larrea, L. Convergence of sensory and limbic noxious input into the anterior insula and the emergence of pain from nociception. Sci. Rep. 2018, 8, 13360. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, R. Cushing, Penfield, and cortical stimulation. J. Neurosurg. 2018, 130, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Penfield, W.; Faulk, M.E., Jr. The insula; further observations on its function. Brain 1955, 78, 445–470. [Google Scholar] [CrossRef] [PubMed]
- Pollatos, O.; Herbert, B.M.; Mai, S.; Kammer, T. Changes in interoceptive processes following brain stimulation. Philos. Trans. R. Soc. Lond B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papagno, C.; Pisoni, A.; Mattavelli, G.; Casarotti, A.; Comi, A.; Fumagalli, F.; Vernice, M.; Fava, E.; Riva, M.; Bello, L. Specific disgust processing in the left insula: New evidence from direct electrical stimulation. Neuropsychologia 2016, 84, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Oppenheimer, S.M.; Gelb, A.; Girvin, J.P.; Hachinski, V.C. Cardiovascular effects of human insular cortex stimulation. Neurology 1992, 42, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, L.; Royet, J.P.; Catenoix, H.; Montavont, A.; Isnard, J.; Mauguiere, F. Gustatory and olfactory responses to stimulation of the human insula. Ann. Neurol. 2017, 82, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, B.L.; Rasmussen, T. Stimulation studies of insular cortex of Macaca mulatta. J. Neurophysiol. 1953, 16, 343–351. [Google Scholar] [CrossRef]
- Caruana, F.; Jezzini, A.; Sbriscia-Fioretti, B.; Rizzolatti, G.; Gallese, V. Emotional and social behaviors elicited by electrical stimulation of the insula in the macaque monkey. Curr. Biol. 2011, 21, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afif, A.; Minotti, L.; Kahane, P.; Hoffmann, D. Middle short gyrus of the insula implicated in speech production: Intracerebral electric stimulation of patients with epilepsy. Epilepsia 2010, 51, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Afif, A.; Hoffmann, D.; Minotti, L.; Benabid, A.L.; Kahane, P. Middle short gyrus of the insula implicated in pain processing. Pain 2008, 138, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, L.; Mauguiere, F.; Isnard, J. Functional mapping of the human insula: Data from electrical stimulations. Rev. Neurol. 2019, 175, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chang, M.C. Effect of Repetitive Transcranial Magnetic Stimulation on Pain Management: A Systematic Narrative Review. Front. Neurol. 2020, 11, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brighina, F.; Curatolo, M.; Cosentino, G.; De Tommaso, M.; Battaglia, G.; Sarzi-Puttini, P.C.; Guggino, G.; Fierro, B. Brain Modulation by Electric Currents in Fibromyalgia: A Structured Review on Non-invasive Approach With Transcranial Electrical Stimulation. Front. Hum. Neurosci. 2019, 13, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, S.; Jacobs, M.; Cho, S.S.; Boileau, I.; Blumberger, D.; Heilig, M.; Wilson, A.; Daskalakis, Z.J.; Strafella, A.P.; Zangen, A.; et al. Deep TMS of the insula using the H-coil modulates dopamine release: A crossover [(11)C] PHNO-PET pilot trial in healthy humans. Brain Imaging Behav. 2018, 12, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Ciampi de Andrade, D.; Galhardoni, R.; Pinto, L.F.; Lancelotti, R.; Rosi, J., Jr.; Marcolin, M.A.; Teixeira, M.J. Into the island: A new technique of non-invasive cortical stimulation of the insula. Neurophysiol. Clin. 2012, 42, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, P.A.; Wang, H.; Srivanitchapoom, P.; Schwandt, M.; Heilig, M.; Hallett, M. Lack of Target Engagement Following Low-Frequency Deep Transcranial Magnetic Stimulation of the Anterior Insula. Neuromodulation 2019, 22, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, C.; Algoet, M.; Mouraux, A. Deep continuous theta burst stimulation of the operculo-insular cortex selectively affects Adelta-fibre heat pain. J. Physiol. 2018, 596, 4767–4787. [Google Scholar] [CrossRef] [PubMed]
- Galhardoni, R.; Aparecida da Silva, V.; Garcia-Larrea, L.; Dale, C.; Baptista, A.F.; Barbosa, L.M.; Menezes, L.M.B.; de Siqueira, S.; Valerio, F.; Rosi, J., Jr.; et al. Insular and anterior cingulate cortex deep stimulation for central neuropathic pain: Disassembling the percept of pain. Neurology 2019, 92, e2165–e2175. [Google Scholar] [CrossRef]
- Zugaib, J.; Souza, V.H. Transcranial magnetic stimulation for neuromodulation of the operculo-insular cortex in humans. J. Physiol. 2019, 597, 677–678. [Google Scholar] [CrossRef]
- Olds, J.; Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 1954, 47, 419–427. [Google Scholar] [CrossRef]
- Gol, A. Relief of pain by electrical stimulation of the septal area. J. Neurol. Sci. 1967, 5, 115–120. [Google Scholar] [CrossRef]
- Reynolds, D.V. Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 1969, 164, 444–445. [Google Scholar] [CrossRef] [PubMed]
- Mayer, D.J.; Wolfle, T.L.; Akil, H.; Carder, B.; Liebeskind, J.C. Analgesia from electrical stimulation in the brainstem of the rat. Science 1971, 174, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.E.; Akil, H. Pain reduction by electrical brain stimulation in man. Part 1: Acute administration in periaqueductal and periventricular sites. J. Neurosurg. 1977, 47, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.E.; Akil, H. Pain reduction by electrical brain stimulation in man. Part 2: Chronic self-administration in the periventricular gray matter. J. Neurosurg. 1977, 47, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.A.; Wang, S.; Peachey, T.; Lu, G.; Shlugman, D.; Stein, J.F.; Aziz, T.Z.; Green, A.L. Elevated gamma band power in humans receiving naloxone suggests dorsal periaqueductal and periventricular gray deep brain stimulation produced analgesia is opioid mediated. Exp. Neurol. 2013, 239, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Hosobuchi, Y.; Adams, J.E.; Linchitz, R. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 1977, 197, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Maarrawi, J.; Peyron, R.; Mertens, P.; Costes, N.; Magnin, M.; Sindou, M.; Laurent, B.; Garcia-Larrea, L. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 2007, 69, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Tasker, R.R. Thalamotomy for pain: Lesion localization by detailed thalamic mapping. Can. J. Surg. 1969, 12, 62–74. [Google Scholar]
- Mark, V.H.; Ervin, F.R.; Hackett, T.P. Clinical aspects of stereotactic thalamotomy in the human. Part I. The treatment of chronic severe pain. Arch. Neurol. 1960, 3, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Mazars, G.J. Intermittent stimulation of nucleus ventralis posterolateralis for intractable pain. Surg. Neurol. 1975, 4, 93–95. [Google Scholar] [CrossRef]
- Mazars, G.; Merienne, L.; Ciolocca, C. [Intermittent analgesic thalamic stimulation. Preliminary note]. Rev. Neurol. 1973, 128, 273–279. [Google Scholar] [PubMed]
- Mazars, G.; Merienne, L.; Cioloca, C. Treatment of certain types of pain with implantable thalamic stimulators. Neurochirurgie 1974, 20, 117–124. [Google Scholar] [PubMed]
- Spooner, J.; Yu, H.; Kao, C.; Sillay, K.; Konrad, P. Neuromodulation of the cingulum for neuropathic pain after spinal cord injury. Case report. J. Neurosurg. 2007, 107, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.A.; Green, A.L.; Aziz, T.Z. Deep brain stimulation for pain. Handb. Clin. Neurol. 2013, 116, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Boccard, S.G.J.; Prangnell, S.J.; Pycroft, L.; Cheeran, B.; Moir, L.; Pereira, E.A.C.; Fitzgerald, J.J.; Green, A.L.; Aziz, T.Z. Long-Term Results of Deep Brain Stimulation of the Anterior Cingulate Cortex for Neuropathic Pain. World Neurosurg. 2017, 106, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Boccard, S.G.; Pereira, E.A.; Aziz, T.Z. Deep brain stimulation for chronic pain. J. Clin. Neurosci. 2015, 22, 1537–1543. [Google Scholar] [CrossRef]
- Boccard, S.G.; Fitzgerald, J.J.; Pereira, E.A.; Moir, L.; Van Hartevelt, T.J.; Kringelbach, M.L.; Green, A.L.; Aziz, T.Z. Targeting the affective component of chronic pain: A case series of deep brain stimulation of the anterior cingulate cortex. Neurosurgery 2014, 74, 628–635, discussion 635–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslen, H.; Cheeran, B.; Pugh, J.; Pycroft, L.; Boccard, S.; Prangnell, S.; Green, A.L.; FitzGerald, J.; Savulescu, J.; Aziz, T. Unexpected Complications of Novel Deep Brain Stimulation Treatments: Ethical Issues and Clinical Recommendations. Neuromodulation 2018, 21, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollingworth, M.; Sims-Williams, H.P.; Pickering, A.E.; Barua, N.; Patel, N.K. Single Electrode Deep Brain Stimulation with Dual Targeting at Dual Frequency for the Treatment of Chronic Pain: A Case Series and Review of the Literature. Brain Sci. 2017, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Hunsche, S.; Sauner, D.; Runge, M.J.; Lenartz, D.; El Majdoub, F.; Treuer, H.; Sturm, V.; Maarouf, M. Tractography-guided stimulation of somatosensory fibers for thalamic pain relief. Stereotact Funct. Neurosurg. 2013, 91, 328–334. [Google Scholar] [CrossRef]
- Lempka, S.F.; Malone, D.A., Jr.; Hu, B.; Baker, K.B.; Wyant, A.; Ozinga, J.G.; Plow, E.B.; Pandya, M.; Kubu, C.S.; Ford, P.J.; et al. Randomized clinical trial of deep brain stimulation for poststroke pain. Ann. Neurol. 2017, 81, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Boccard, S.G.; Pereira, E.A.; Moir, L.; Aziz, T.Z.; Green, A.L. Long-term outcomes of deep brain stimulation for neuropathic pain. Neurosurgery 2013, 72, 221–230, discussion 231. [Google Scholar] [CrossRef]
- Rasche, D.; Rinaldi, P.C.; Young, R.F.; Tronnier, V.M. Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg. Focus 2006, 21, E8. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Toth, C.; Nath, R.K. Deep brain stimulation for intractable pain: A 15-year experience. Neurosurgery 1997, 40, 736–746, discussion 746–737. [Google Scholar] [CrossRef] [PubMed]
- Abreu, V.; Vaz, R.; Rebelo, V.; Rosas, M.J.; Chamadoira, C.; Gillies, M.J.; Aziz, T.Z.; Pereira, E.A.C. Thalamic Deep Brain Stimulation for Neuropathic Pain: Efficacy at Three Years’ Follow-Up. Neuromodulation 2017, 20, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Hamani, C.; Schwalb, J.M.; Rezai, A.R.; Dostrovsky, J.O.; Davis, K.D.; Lozano, A.M. Deep brain stimulation for chronic neuropathic pain: Long-term outcome and the incidence of insertional effect. Pain 2006, 125, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Katayama, Y.; Obuchi, T.; Kano, T.; Kobayashi, K.; Oshima, H.; Fukaya, C. Thalamic sensory relay nucleus stimulation for the treatment of peripheral deafferentation pain. Stereotact Funct. Neurosurg. 2006, 84, 180–183. [Google Scholar] [CrossRef]
- Jakobs, M.; Fomenko, A.; Lozano, A.M.; Kiening, K.L. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol. Med. 2019, 11. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qiao, S.; Sani, O.G.; Sedillo, J.I.; Ferrentino, B.; Pesaran, B.; Shanechi, M.M. Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation. Nat. Biomed. Eng. 2021, 5, 324–345. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.S.; Seminowicz, D.A.; Davis, K.D. Two systems of resting state connectivity between the insula and cingulate cortex. Hum. Brain Mapp. 2009, 30, 2731–2745. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Nguyen, D.B.; Malak, R.; Bouthillier, A. Insular cortex epilepsy: An overview. Can. J. Neurol. Sci. 2009, 36 (Suppl. 2), S58–S62. [Google Scholar]
- Huang, Y.; Cheeran, B.; Green, A.L.; Denison, T.J.; Aziz, T.Z. Applying a Sensing-Enabled System for Ensuring Safe Anterior Cingulate Deep Brain Stimulation for Pain. Brain Sci. 2019, 9, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ridder, D.; De Mulder, G.; Verstraeten, E.; Van der Kelen, K.; Sunaert, S.; Smits, M.; Kovacs, S.; Verlooy, J.; Van de Heyning, P.; Moller, A.R. Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL J. Otorhinolaryngol. Relat. Spec. 2006, 68, 48–54, discussion 54–45. [Google Scholar] [CrossRef] [PubMed]
- Shirvalkar, P.; Veuthey, T.L.; Dawes, H.E.; Chang, E.F. Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain. Front. Comput. Neurosci. 2018, 12, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergeron, D.; Obaid, S.; Fournier-Gosselin, M.-P.; Bouthillier, A.; Nguyen, D.K. Deep Brain Stimulation of the Posterior Insula in Chronic Pain: A Theoretical Framework. Brain Sci. 2021, 11, 639. https://doi.org/10.3390/brainsci11050639
Bergeron D, Obaid S, Fournier-Gosselin M-P, Bouthillier A, Nguyen DK. Deep Brain Stimulation of the Posterior Insula in Chronic Pain: A Theoretical Framework. Brain Sciences. 2021; 11(5):639. https://doi.org/10.3390/brainsci11050639
Chicago/Turabian StyleBergeron, David, Sami Obaid, Marie-Pierre Fournier-Gosselin, Alain Bouthillier, and Dang Khoa Nguyen. 2021. "Deep Brain Stimulation of the Posterior Insula in Chronic Pain: A Theoretical Framework" Brain Sciences 11, no. 5: 639. https://doi.org/10.3390/brainsci11050639
APA StyleBergeron, D., Obaid, S., Fournier-Gosselin, M. -P., Bouthillier, A., & Nguyen, D. K. (2021). Deep Brain Stimulation of the Posterior Insula in Chronic Pain: A Theoretical Framework. Brain Sciences, 11(5), 639. https://doi.org/10.3390/brainsci11050639