Impact of Repetitive Transcranial Magnetic Stimulation (rTMS) on Theory of Mind and Executive Function in Major Depressive Disorder and Its Correlation with Brain-Derived Neurotrophic Factor (BDNF): A Randomized, Double-Blind, Sham-Controlled Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Randomization Procedure
2.3. Participants
2.4. Repetitive Transcranial Magnetic Stimulation (rTMS)
3. Measures
3.1. 17-Items Hamilton Depression Rating Scale (HAMD-17)
3.2. Facial Emotion Identification Test (FEIT)
3.3. Hinting Task (HT)
3.4. Wisconsin Card Sorting Test (WCST)
3.5. Procedure
3.6. Data Analysis
3.7. Ethics
4. Results
4.1. Demographic Characteristics
4.2. Safety and Tolerability
4.3. Analysis of Depressive Symptoms
4.4. Analysis of ToM
4.5. Analysis of EF
4.6. Analysis of BDNF
4.7. Correlation Analysis of BDNF with Depressive Symptoms, ToM, and EF
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
rTMS | repetitive transcranial magnetic stimulation |
ToM | theory of mind |
EF | executive function |
MDD | major depressive disorder |
BDNF | brain-derived neurotrophic factor |
HAMD-17 | 17-items hamilton depression rating scale |
FEIT | facial emotion identification test |
HT | hinting task |
WCST | wisconsin card sorting test |
CC | categories completed |
RE | response errors |
RPE | response perseverative errors |
nRPE | non response perseverative errors |
References
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Prim. 2016, 2, 16065. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; He, H.; Yang, J.; Feng, X.; Zhao, F.; Lyu, J. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J. Psychiatr. Res. 2020, 126, 134–140. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analy-sis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Fu, T.; Yin, R.; Zhang, Q.; Shen, B. Prevalence of depression and anxiety in systemic lupus erythematosus: A systematic review and meta-analysis. BMC Psychiatry 2017, 17, 2341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidi, J.; Fava, G.A. Sequential Combination of Pharmacotherapy and Psychotherapy in Major Depressive Disorder. JAMA Psychiatry 2021, 78, 261. [Google Scholar] [CrossRef]
- CONVERGE Consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nat. Cell Biol. 2015, 523, 588–591. [Google Scholar] [CrossRef]
- Khundakar, A.; Morris, C.; Oakley, A.; McMeekin, W.; Thomas, A.J. Morphometric analysis of neuronal and glial cell pathology in the dorsolateral prefrontal cortex in late-life depression. Br. J. Psychiatry 2018, 195, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, W.; Rolls, E.; Qiu, J.; Liu, W.; Tang, Y.; Huang, C.-C.; Wang, X.; Zhang, J.; Lin, W.; Zheng, L.; et al. Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression. Brain 2016, 139, 3296–3309. [Google Scholar] [CrossRef]
- Price, R.B.; Duman, R. Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model. Mol. Psychiatry 2019, 25, 530–543. [Google Scholar] [CrossRef] [PubMed]
- Koelkebeck, K.; Liedtke, C.; Kohl, W.; Alferink, J.; Kret, M. Attachment style moderates theory of mind abilities in depression. J. Affect. Disord. 2017, 213, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.R.P.; Yamamoto, T.; Arias-Carrion, O.; Rocha, N.B.F.; Nardi, A.E.; Machado, S.; Cardoso, A. Executive Function Impairments in Patients with Depression. CNS Neurol. Disord. Drug Targets 2014, 13, 1026–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quesque, F.; Rossetti, Y. What Do Theory-of-Mind Tasks Actually Measure? Theory and Practice. Perspect. Psychol. Sci. 2020, 15, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Kidd, D.C.; Castano, E. Reading Literary Fiction Improves Theory of Mind. Science 2013, 342, 377–380. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.R.G.; Simonoff, E.; Baird, G.; Pickles, A.; Marsden, A.J.S.; Tregay, J.; Happé, F.; Charman, T. The association between theory of mind, executive function, and the symptoms of autism spectrum disorder. Autism Res. 2018, 11, 95–109. [Google Scholar] [CrossRef]
- Bender, A.C.; Austin, A.M.; Grodstein, F.; Bynum, J.P. Executive function, episodic memory, and Medicare expenditures. Alzheimer’s Dement. 2017, 13, 792–800. [Google Scholar] [CrossRef]
- Schurz, M.; Radua, J.; Aichhorn, M.; Richlan, F.; Perner, J. Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 2014, 42, 9–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dick, A.S.; Garic, D.; Graziano, P.; Tremblay, P. The frontal aslant tract (FAT) and its role in speech, language and executive function. Cortex 2019, 111, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Verstraelen, S.; van Dun, K.; Depestele, S.; Van Hoornweder, S.; Jamil, A.; Ghasemian-Shirvan, E.; Nitsche, M.A.; Van Malderen, S.; Swinnen, S.P.; Cuypers, K.; et al. Dissociating the causal role of left and right dorsal premotor cortices in planning and executing bimanual movements—A neuro-navigated rTMS study. Brain Stimul. 2021, 14, 423–434. [Google Scholar] [CrossRef]
- McClintock, S.M.; Reti, I.M.; Carpenter, L.L.; McDonald, W.M.; Dubin, M.; Taylor, S.; Cook, I.A.; O’Reardon, J.; Husain, M.M.; Wall, C.; et al. Consensus Recommendations for the Clinical Application of Repetitive Transcranial Magnetic Stimulation (rTMS) in the Treatment of Depression. J. Clin. Psychiatry 2018, 79, 35–48. [Google Scholar] [CrossRef]
- Bakulin, I.; Zabirova, A.; Lagoda, D.; Poydasheva, A.; Cherkasova, A.; Pavlov, N.; Kopnin, P.; Sinitsyn, D.; Kremneva, E.; Fedorov, M.; et al. Combining HF rTMS over the Left DLPFC with Concurrent Cognitive Activity for the Offline Modulation of Working Memory in Healthy Volunteers: A Proof-of-Concept Study. Brain Sci. 2020, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Liu, H.; Du, W.; Chao, F.; Zhang, L.; Wang, K.; Huang, C.; Gao, Y.; Tang, Y. Stimulated left DLPFC-nucleus accumbens functional connectivity predicts the anti-depression and anti-anxiety effects of rTMS for depression. Transl. Psychiatry 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- George, M.S.; Lisanby, S.H.; Avery, D.; McDonald, W.M.; Durkalski, V.; Pavlicova, M.; Anderson, B.; Nahas, Z.; Bulow, P.; Zarkowski, P.; et al. Daily Left Prefrontal Transcranial Magnetic Stimulation Therapy for Major Depressive Disorder. Arch. Gen. Psychiatry 2010, 67, 507–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, A.; Jing, D.; Dellarco, D.V.; Hall, B.S.; Yang, R.; Heilberg, R.T.; Huang, C.; Liston, C.; Casey, B.J.; Lee, F.S. Role of BDNF in the development of an OFC-amygdala circuit regulating sociability in mouse and human. Mol. Psychiatry 2021, 26, 955–973. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, F.; Brenè, S.; Mathé, A.A. BDNF in schizophrenia, depression and corresponding animal models. Mol. Psychiatry 2005, 10, 345–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, J.T.; Nicolier, M.; Tio, G.; Mouchabac, S.; Haffen, E.; Bennabi, D. Effects of High Frequency Repetitive Transcranial Magnetic Stimulation (HF-rTMS) on Delay Discounting in Major Depressive Disorder: An Open-Label Uncontrolled Pilot Study. Brain Sci. 2019, 9, 230. [Google Scholar] [CrossRef] [Green Version]
- Homberg, J.R.; Molteni, R.; Calabrese, F.; Riva, M.A. The serotonin–BDNF duo: Developmental implications for the vulnerability to psychopathology. Neurosci. Biobehav. Rev. 2014, 43, 35–47. [Google Scholar] [CrossRef]
- Duman, R.S.; Monteggia, L.M. A Neurotrophic Model for Stress-Related Mood Disorders. Biol. Psychiatry 2006, 59, 1116–1127. [Google Scholar] [CrossRef]
- Vanicek, T.; Kranz, G.S.; Vyssoki, B.; Fugger, G.; Komorowski, A.; Höflich, A.; Saumer, G.; Milovic, S.; Lanzenberger, R.; Eckert, A.; et al. Acute and subsequent continuation electroconvulsive therapy elevates serum BDNF levels in patients with major depression. Brain Stimul. 2019, 12, 1041–1050. [Google Scholar] [CrossRef]
- Bora, E.; Berk, M. Theory of mind in major depressive disorder: A meta-analysis. J. Affect. Disord. 2016, 191, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Ilieva, I.P.; Alexopoulos, G.S.; Dubin, M.J.; Morimoto, S.S.; Victoria, L.W.; Gunning, F.M. Age-Related Repetitive Transcranial Magnetic Stimulation Effects on Executive Function in Depression: A Systematic Review. Am. J. Geriatr. Psychiatry 2018, 26, 334–346. [Google Scholar] [CrossRef]
- Farrington, C.P.; Manning, G. Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk. Stat. Med. 1990, 9, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Broglio, K. Randomization in Clinical Trials. JAMA 2018, 319, 2223–2224. [Google Scholar] [CrossRef]
- Roehr, B. American Psychiatric Association explains DSM-5. BMJ 2013, 346, f3591. [Google Scholar] [CrossRef]
- Hamilton, M. A RATING SCALE FOR DEPRESSION. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.J.; Dragicevic, A. Standardized rater training for the Hamilton Depression Rating Scale (HAMD-17) in psychiatric novices. J. Affect. Disord. 2003, 77, 65–69. [Google Scholar] [CrossRef]
- Ulusoy, S.I.; Gülseren, Ş.A.; Özkan, N.; Bilen, C. Facial emotion recognition deficits in patients with bipolar disorder and their healthy parents. Gen. Hosp. Psychiatry 2020, 65, 9–14. [Google Scholar] [CrossRef]
- Lindgren, M.; Torniainen-Holm, M.; Heiskanen, I.; Voutilainen, G.; Pulkkinen, U.; Mehtälä, T.; Jokela, M.; Kieseppä, T.; Suvisaari, J.; Therman, S. Theory of mind in a first-episode psychosis population using the Hinting Task. Psychiatry Res. 2018, 263, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallawaarachchi, S.R.; Cotton, S.; Anderson, J.; Killackey, E.; Allott, K.A. Exploring the use of the Hinting Task in first-episode psychosis. Cogn. Neuropsychiatry 2019, 24, 65–79. [Google Scholar] [CrossRef]
- Heaton, R.; Chelune, G.; Talley, J.; Kay, G.; Curtiss, G. Wisconsin Card Sorting Test Manual: Revised and Expanded; Western Psychological Services: Los Angeles, CA, USA, 1993. [Google Scholar]
- Kopp, B.; Lange, F.; Steinke, A. The Reliability of the Wisconsin Card Sorting Test in Clinical Practice. Assessment 2021, 28, 248–263. [Google Scholar] [CrossRef]
- Balconi, M.; Canavesio, Y. Is empathy necessary to comprehend the emotional faces? The empathic effect on attentional mechanisms (eye movements), cortical correlates (N200 event-related potentials) and facial behaviour (electromyography) in face processing. Cogn. Emot. 2014, 30, 210–224. [Google Scholar] [CrossRef] [PubMed]
- Enticott, P.G.; Fitzgibbon, B.; Kennedy, H.A.; Arnold, S.L.; Elliot, D.; Peachey, A.; Zangen, A.; Fitzgerald, P. A Double-blind, Randomized Trial of Deep Repetitive Transcranial Magnetic Stimulation (rTMS) for Autism Spectrum Disorder. Brain Stimul. 2014, 7, 206–211. [Google Scholar] [CrossRef]
- Keuken, M.; Hardie, A.; Dorn, B.; Dev, S.; Paulus, M.; Jonas, K.; Wildenberg, W.V.D.; Pineda, J. The role of the left inferior frontal gyrus in social perception: An rTMS study. Brain Res. 2011, 1383, 196–205. [Google Scholar] [CrossRef]
- Kaster, T.S.; Daskalakis, Z.J.; Noda, Y.; Knyahnytska, Y.; Downar, J.; Rajji, T.K.; Levkovitz, Y.; Zangen, A.; Butters, M.A.; Mulsant, B.H.; et al. Efficacy, tolerability, and cognitive effects of deep transcranial magnetic stimulation for late-life depression: A prospective randomized controlled trial. Neuropsychopharmacology 2018, 43, 2231–2238. [Google Scholar] [CrossRef] [PubMed]
- Krause, L.; Enticott, P.G.; Zangen, A.; Fitzgerald, P. The role of medial prefrontal cortex in theory of mind: A deep rTMS study. Behav. Brain Res. 2012, 228, 87–90. [Google Scholar] [CrossRef]
- Berlim, M.T.; McGirr, A.; Beaulieu, M.-M.; Turecki, G. Theory of mind in subjects with major depressive disorder: Is it influenced by repetitive transcranial magnetic stimulation? World J. Biol. Psychiatry 2012, 13, 474–479. [Google Scholar] [CrossRef]
- Ameis, S.H.; Blumberger, D.M.; Croarkin, P.E.; Mabbott, D.J.; Lai, M.-C.; Desarkar, P.; Szatmari, P.; Daskalakis, Z.J. Treatment of Executive Function Deficits in autism spectrum disorder with repetitive transcranial magnetic stimulation: A double-blind, sham-controlled, pilot trial. Brain Stimul. 2020, 13, 539–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Málly, J.; Geisz, N.; Dinya, E. Follow up study: The influence of rTMS with high and low frequency stimulation on motor and executive function in Parkinson’s disease. Brain Res. Bull. 2017, 135, 98–104. [Google Scholar] [CrossRef]
- Björkholm, C.; Monteggia, L.M. BDNF—A key transducer of antidepressant effects. Neuropharmacology 2016, 102, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Heath, A.; Lindberg, D.R.; Makowiecki, K.; Gray, A.; Asp, A.J.; Rodger, J.; Choi, O.-S.; Croarkin, P.E. Medium- and high-intensity rTMS reduces psychomotor agitation with distinct neurobiologic mechanisms. Transl. Psychiatry 2018, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Gedge, L.; Beaudoin, A.; Lazowski, L.; Du Toit, R.; Jokic, R.; Milev, R. Effects of Electroconvulsive Therapy and Repetitive Transcranial Magnetic Stimulation on Serum Brain-Derived Neurotrophic Factor Levels in Patients with Depression. Front. Psychiatry 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunoni, A.R.; Baeken, C.; Machado-Vieira, R.; Gattaz, W.F.; Vanderhasselt, M.-A. BDNF blood levels after non-invasive brain stimulation interventions in major depressive disorder: A systematic review and meta-analysis. World J. Biol. Psychiatry 2014, 16, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Xiu, M.H.; Wang, D.M.; Du, X.D.; Chen, N.; Tan, S.P.; Tan, Y.L.; De Yang, F.; Cho, R.Y.; Zhang, X.Y. Interaction of BDNF and cytokines in executive dysfunction in patients with chronic schizophrenia. Psychoneuroendocrinology 2019, 108, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.-B.; Lee, S.-Y.; Wang, T.-Y.; Chang, Y.-H.; Chen, P.-S.; Yang, Y.-K.; Hong, J.-S.; Chen, S.-L. Long-term heroin use was associated with the downregulation of systemic platelets, BDNF, and TGF-β1, and it contributed to the disruption of executive function in Taiwanese Han Chinese. Drug Alcohol Depend. 2017, 179, 139–145. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, L.; Yang, J.; Han, D.; Fang, D.; Qiu, X.; Yang, X.; Qiao, Z.; Ma, J.; Wang, L.; et al. BDNF Val66Met polymorphism, life stress and depression: A meta-analysis of gene-environment interaction. J. Affect. Disord. 2018, 227, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Kundakovic, M.; Gudsnuk, K.; Herbstman, J.B.; Tang, D.; Perera, F.P.; Champagne, F.A. DNA methylation of BDNF as a biomarker of early-life adversity. Proc. Natl. Acad. Sci. USA 2015, 112, 6807–6813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasi, M.; Vignoli, B.; Canossa, M.; Blum, R. Neurobiology of local and intercellular BDNF signaling. Pflügers Archiv. Eur. J. Physiol. 2017, 469, 593–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Active rTMS Group (n = 60) | Sham rTMS Group (n = 60) | t/χ2 | p |
---|---|---|---|---|
Age in years (mean ± SD) | 48.65 ± 14.04 | 47.75 ± 13.43 | 0.361 | 0.721 |
Sex, n (%) | 0.845 | 0.358 | ||
Male | 24 (45.28%) | 29 (54.72%) | ||
Female | 36 (53.73%) | 31 (46.27%) | ||
Marital status, n (%) | 1.913 | 0.137 | ||
Unmarried | 17 (56.67%) | 13 (43.33%) | ||
Married | 28 (45.16%) | 34 (54.84%) | ||
Divorce or widowhood | 15 (53.57%) | 13 (46.43%) | ||
Education, n (%) | 1.048 | 0.220 | ||
Junior high school and below | 14 (45.16%) | 17 (54.84%) | ||
High school | 19 (55.88%) | 15 (44.12%) | ||
Junior college or above | 27 (49.09%) | 28 (50.91%) |
Time Points (Week) | AG | SG | t | p | Time | Group Experimental Group | Time × Group |
---|---|---|---|---|---|---|---|
0 | 29.63 ± 3.55 | 28.50 ± 3.97 | 1.65 | 0.102 | F = 234.27 | F = 21.49 | F = 1.55 |
2 | 24.17 ± 3.16 | 24.47 ± 3.24 | 0.51 | 0.609 | p < 0.001 * | p < 0.001 * | p < 0.001 * |
4 | 12.68 ± 2.78 | 14.55 ± 2.44 | 3.91 | <0.001 * | |||
12 | 7.53 ± 3.43 | 12.78 ± 2.04 | 10.18 | <0.001 * | |||
24 | 6.92 ± 2.63 | 10.67 ± 1.90 | 8.96 | <0.001 * | |||
F | 183.88 | 68.61 | |||||
p | <0.001 * | <0.001 * |
Time Points (Week) | Facial Emotion Identification Test (FEIT) | Hinting Task (HT) | ||
---|---|---|---|---|
AG | SG | AG | SG | |
0 | 19.58 ± 2.87 | 19.57 ± 2.77 | 12.46 ± 3.25 | 12.50 ± 2.45 |
2 | 20.28 ± 2.61 | 19.82 ± 2.51 | 12.50 ± 3.25 | 13.13 ± 2.55 |
4 | 21.92 ± 2.49 | 20.20 ± 2.16 | 13.40 ± 2.12 | 13.23 ± 2.37 |
12 | 22.35 ± 2.43 | 20.38 ± 1.96 | 14.35 ± 1.74 | 13.37 ± 2.26 |
24 | 23.12 ± 2.21 | 20.52 ± 1.83 | 14.79 ± 1.74 | 13.62 ± 2.06 |
F | 18.09 | 2.32 | 5.02 | 1.37 |
p | <0.001 ** | 0.093 | 0.026 * | 0.141 |
Time Points (Week) | Categories Completed (CC) | Response Errors (RE) | Response Perseverative Errors (RPE) | Non-Response Perseverative Errors (nRPE) | ||||
---|---|---|---|---|---|---|---|---|
AG | SG | AG | SG | AG | SG | AG | SG | |
0 | 1.97 ± 1.39 | 1.78 ± 1.39 | 73.40 ± 21.31 | 70.53 ± 21.75 | 36.20 ± 16.19 | 35.55 ± 18.53 | 45.60 ± 16.49 | 46.73 ± 21.14 |
2 | 2.35 ± 1.16 | 1.92 ± 1.38 | 67.52 ± 16.44 | 68.73 ± 19.48 | 33.78 ± 14.26 | 34.80 ± 17.88 | 43.82 ± 11.90 | 46.43 ± 20.17 |
4 | 2.73 ± 1.06 | 1.97 ± 1.21 | 66.53 ± 11.40 | 67.48 ± 17.05 | 30.77 ± 13.69 | 34.63 ± 16.66 | 42.48 ± 9.23 | 45.47 ± 18.77 |
12 | 3.37 ± 1.18 | 2.10 ± 1.22 | 59.30 ± 10.74 | 67.15 ± 15.64 | 26.82 ± 13.13 | 33.88 ± 16.32 | 42.12 ± 7.66 | 46.00 ± 18.58 |
24 | 3.43 ± 1.17 | 2.15 ± 1.18 | 60.57 ± 10.74 | 67.08 ± 15.52 | 26.60 ± 12.88 | 33.93 ± 15.01 | 42.33 ± 6.85 | 46.62 ± 19.14 |
F | 14.71 | 2.52 | 5.99 | 2.20 | 8.90 | 2.07 | 2.31 | 1.14 |
p | <0.001 ** | 0.067 | 0.046 * | 0.076 | 0.031 * | 0.078 | 0.048 * | 0.115 |
Time Points | AG | SG | t | p | Time | Group | Time × Group |
---|---|---|---|---|---|---|---|
0 | 4.03 ± 2.00 | 4.08 ± 1.57 | 0.07 | 0.947 | F = 10.70 | F = 0.52 | F = 1.55 |
2 | 4.07 ± 1.59 | 4.16 ± 1.54 | 0.17 | 0.732 | p < 0.001 * | p = 0.471 | p = 0.350 |
4 | 4.18 ± 1.39 | 4.23 ± 1.51 | 0.36 | 0.511 | |||
12 | 4.51 ± 1.34 | 4.29 ± 1.48 | 0.89 | 0.264 | |||
24 | 4.66 ± 1.29 | 4.39 ± 1.47 | 1.29 | 0.086 | |||
F | 31.84 | 17.65 | |||||
p | <0.001 * | <0.001 * |
Time Points (Week) | Log Transformed BDNF | |||||
---|---|---|---|---|---|---|
2 | 4 | 12 | 24 | |||
HAMD-17 | 2 | −0.005 (0.970) | - | - | - | |
4 | - | −0.059 (0.669) | - | - | ||
12 | - | - | −0.471 (0.062) | - | ||
24 | - | - | - | −0.788 (0.035 *) | ||
FEIT | 2 | −0.147 (0.263) | - | - | - | |
4 | - | −0.004 (0.974) | - | - | ||
12 | - | - | −0.020 (0.877) | - | ||
24 | - | - | - | −0.108 (0.411) | ||
HT | 2 | - | - | - | - | |
4 | - | −0.121 (0.357) | - | - | ||
12 | - | - | −0.077 (0.561) | - | ||
24 | - | - | - | −0.147 (0.263) | ||
WCST | CC | 2 | 0.011 (0.933) | - | - | - |
4 | - | −0.062 (0.636) | - | - | ||
12 | - | - | −0.129 (0.326) | - | ||
24 | - | - | - | −0.258(0.046 *) | ||
Re | 2 | −0.100 (0.447) | - | - | - | |
4 | - | −0.041 (0.753) | - | - | ||
12 | - | - | 0.016 (0.901) | - | ||
24 | - | - | - | 0.089 (0.499) | ||
Rpe | 2 | 0.166 (0.204) | - | - | - | |
4 | - | 0.098 (0.455) | - | - | ||
12 | - | - | 0.154 (0.240) | - | ||
24 | - | - | - | 0.255(0.085) | ||
nRpe | 2 | 0.122 (0.354) | - | - | - | |
4 | - | 0.065 (0.621) | - | - | ||
12 | - | - | 0.183 (0.162) | - | ||
24 | - | - | - | 0.244 (0.061) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, J.; Zhang, J.; Jin, Y.; Liu, W.; Wang, H.; Huang, Y.; Shi, D.; Zhu, M.; Zhu, N.; Zhang, T.; et al. Impact of Repetitive Transcranial Magnetic Stimulation (rTMS) on Theory of Mind and Executive Function in Major Depressive Disorder and Its Correlation with Brain-Derived Neurotrophic Factor (BDNF): A Randomized, Double-Blind, Sham-Controlled Trial. Brain Sci. 2021, 11, 765. https://doi.org/10.3390/brainsci11060765
Tong J, Zhang J, Jin Y, Liu W, Wang H, Huang Y, Shi D, Zhu M, Zhu N, Zhang T, et al. Impact of Repetitive Transcranial Magnetic Stimulation (rTMS) on Theory of Mind and Executive Function in Major Depressive Disorder and Its Correlation with Brain-Derived Neurotrophic Factor (BDNF): A Randomized, Double-Blind, Sham-Controlled Trial. Brain Sciences. 2021; 11(6):765. https://doi.org/10.3390/brainsci11060765
Chicago/Turabian StyleTong, Jie, Jie Zhang, Ying Jin, Weiqing Liu, Hao Wang, Ying Huang, Dianhong Shi, Minhuan Zhu, Na Zhu, Tingting Zhang, and et al. 2021. "Impact of Repetitive Transcranial Magnetic Stimulation (rTMS) on Theory of Mind and Executive Function in Major Depressive Disorder and Its Correlation with Brain-Derived Neurotrophic Factor (BDNF): A Randomized, Double-Blind, Sham-Controlled Trial" Brain Sciences 11, no. 6: 765. https://doi.org/10.3390/brainsci11060765
APA StyleTong, J., Zhang, J., Jin, Y., Liu, W., Wang, H., Huang, Y., Shi, D., Zhu, M., Zhu, N., Zhang, T., & Sun, X. (2021). Impact of Repetitive Transcranial Magnetic Stimulation (rTMS) on Theory of Mind and Executive Function in Major Depressive Disorder and Its Correlation with Brain-Derived Neurotrophic Factor (BDNF): A Randomized, Double-Blind, Sham-Controlled Trial. Brain Sciences, 11(6), 765. https://doi.org/10.3390/brainsci11060765