Change in Blood Flow Velocity Pulse Waveform during Plateau Waves of Intracranial Pressure
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Czosnyka, M.; Smielewski, P.; Timofeev, I.; Lavinio, A.; Guazzo, E.; Hutchinson, P.; Pickard, J.D. Intracranial pressure: More than a number. Neurosurg. Focus 2007, 22, E10. [Google Scholar] [CrossRef] [PubMed]
- Chesnut, R.; Videtta, W.; Vespa, P.; Le Roux, P. Intracranial pressure monitoring: Fundamental considerations and rationale for monitoring. Neurocrit. Care 2014, 21 (Suppl. 2), S64–S84. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Wu, X.; Sun, Y.; Yu, J.; Li, Z.; Du, Z.; Mao, Y.; Zhou, L.; Hu, J. Impact of intracranial pressure monitoring on mortality in patients with traumatic brain injury: A systematic review and meta-analysis. J. Neurosurg. 2015, 122, 574–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundberg, N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr. Scand. Suppl. 1960, 36, 1–193. [Google Scholar] [CrossRef] [Green Version]
- Czosnyka, M.; Smielewski, P.; Piechnik, S.; Schmidt, E.A.; Al-Rawi, P.G.; Kirkpatrick, P.J.; Pickard, J.D. Hemodynamic characterization of intracranial pressure plateau waves in head-injury patients. J. Neurosurg. 1999, 91, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Cardim, D.; Schmidt, B.; Robba, C.; Donnelly, J.; Puppo, C.; Czosnyka, M.; Smielewski, P. Transcranial Doppler Monitoring of Intracranial Pressure Plateau Waves. Neurocrit. Care 2017, 26, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Mariak, Z.; Swiercz, M.; Krejza, J.; Lewko, J.; Lyson, T. Intracranial pressure processing with artificial neural networks: Classification of signal properties. Acta Neurochir. 2000, 142, 407–411. [Google Scholar] [CrossRef]
- Castellani, G.; Zweifel, C.; Kim, D.J.; Carrera, E.; Radolovich, D.K.; Smielewski, P.; Hutchinson, P.J.; Pickard, J.D.; Czosnyka, M. Plateau waves in head injured patients requiring neurocritical care. Neurocrit. Care 2009, 11, 143–150. [Google Scholar] [CrossRef]
- Lundberg, N.; Cronqvist, S.; Kjällquist, A. Clinical investigations on interrelations between intracranial pressure and intracranial hemodynamics. Prog. Brain Res. 1968, 30, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Rosner, M.J.; Becker, D.P. Origin and evolution of plateau waves. Experimental observations and a theoretical model. J. Neurosurg. 1984, 60, 312–324. [Google Scholar] [CrossRef]
- Chan, K.H.; Miller, J.D.; Dearden, N.M.; Andrews, P.J.; Midgley, S. The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J. Neurosurg. 1992, 77, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czosnyka, M.; Matta, B.F.; Smielewski, P.; Kirkpatrick, P.J.; Pickard, J.D. Cerebral perfusion pressure in head-injured patients: A noninvasive assessment using transcranial Doppler ultrasonography. J. Neurosurg. 1998, 88, 802–808. [Google Scholar] [CrossRef]
- de Riva, N.; Budohoski, K.P.; Smielewski, P.; Kasprowicz, M.; Zweifel, C.; Steiner, L.A.; Reinhard, M.; Fábregas, N.; Pickard, J.D.; Czosnyka, M. Transcranial Doppler pulsatility index: What it is and what it isn’t. Neurocrit. Care 2012, 17, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Cardim, D.; Robba, C.; Bohdanowicz, M.; Donnelly, J.; Cabella, B.; Liu, X.; Cabeleira, M.; Smielewski, P.; Schmidt, B.; Czosnyka, M. Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocrit. Care 2016, 25, 473–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardim, D.; Robba, C.; Czosnyka, M.; Savo, D.; Mazeraud, A.; Iaquaniello, C.; Banzato, E.; Rebora, P.; Citerio, G. Noninvasive Intracranial Pressure Estimation With Transcranial Doppler: A Prospective Observational Study. J. Neurosurg. Anesthesiol. 2019, 32, 349–353. [Google Scholar] [CrossRef]
- Schmidt, B.; Czosnyka, M.; Schwarze, J.J.; Sander, D.; Gerstner, W.; Lumenta, C.B.; Pickard, J.D.; Klingelhöfer, J. Cerebral vasodilatation causing acute intracranial hypertension: A method for noninvasive assessment. J. Cereb. Blood Flow Metab. 1999, 19, 990–996. [Google Scholar] [CrossRef] [Green Version]
- Varsos, G.V.; de Riva, N.; Smielewski, P.; Pickard, J.D.; Brady, K.M.; Reinhard, M.; Avolio, A.; Czosnyka, M. Critical closing pressure during intracranial pressure plateau waves. Neurocrit. Care 2013, 18, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.O.; Adji, A.; O’Rourke, M.F.; Avolio, A.P.; Smielewski, P.; Pickard, J.D.; Czosnyka, M. Principles of cerebral hemodynamics when intracranial pressure is raised: Lessons from the peripheral circulation. J. Hypertens. 2015, 33, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.O.; Adji, A.; O’Rourke, M.F.; Avolio, A.P.; Smielewski, P.; Pickard, J.D.; Czosnyka, M. Change in Pulsatile Cerebral Arterial Pressure and Flow Waves as a Therapeutic Strategy? Acta Neurochir. Suppl. 2016, 122, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Calviello, L.A.; Zeiler, F.A.; Donnelly, J.; Uryga, A.; de Riva, N.; Smielewski, P.; Czosnyka, M. Estimation of pulsatile cerebral arterial blood volume based on transcranial doppler signals. Med. Eng. Phys. 2019, 74, 23–32. [Google Scholar] [CrossRef]
- Bishop, S.M.; Ercole, A. Multi-Scale Peak and Trough Detection Optimised for Periodic and Quasi-Periodic Neuroscience Data. Acta Neurochir. Suppl. 2018, 126, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Gosling, R.G.; King, D.H. Arterial assessment by Doppler-shift ultrasound. Proc. R. Soc. Med. 1974, 67, 447–449. [Google Scholar] [PubMed]
- Evensen, K.B.; Eide, P.K. Measuring intracranial pressure by invasive, less invasive or non-invasive means: Limitations and avenues for improvement. Fluids Barriers CNS 2020, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Bouzat, P.; Almeras, L.; Manhes, P.; Sanders, L.; Levrat, A.; David, J.S.; Cinotti, R.; Chabanne, R.; Gloaguen, A.; Bobbia, X.; et al. Transcranial Doppler to Predict Neurologic Outcome after Mild to Moderate Traumatic Brain Injury. Anesthesiology 2016, 125, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Kasprowicz, M.; Carrera, E.; Castellani, G.; Zweifel, C.; Lavinio, A.; Smielewski, P.; Sutcliffe, M.P.; Pickard, J.D.; Czosnyka, M. The monitoring of relative changes in compartmental compliances of brain. Physiol. Meas. 2009, 30, 647–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tymko, M.M.; Donnelly, J.; Smielewski, P.; Zeiler, F.A.; Sykora, M.; Haubrich, C.; Nasr, N.; Czosnyka, M. Changes in cardiac autonomic activity during intracranial pressure plateau waves in patients with traumatic brain injury. Clin. Auton. Res. 2019, 29, 123–126. [Google Scholar] [CrossRef]
Baseline (Mean ± Std. Dev.) | Plateau (Mean ± Std. Dev.) | p Value (Paired Two-Side t-Test) | |
---|---|---|---|
ABP (mmHg) | 95.1 ± 2.4 | 94.8 ± 2.3 | 0.9 |
ICP (mmHg) | 24.9 ± 5.8 | 51.7 ± 2.3 | 0.0001 |
FV (cm/s) | 61.1 ± 2.4 | 48.6 ± 2.2 | 0.006 |
FVs (cm/s) | 116.0 ± 4.1 | 127.3 ± 5.3 | 0.0003 |
FVd (cm/s) | 36.07 ± 2.3 | 21.25 ± 2.01 | <10−4 |
PI | 1.454 ± 0.094 | 2.446 ± 0.142 | <10−4 |
DIdif | 0.006 ± 0.031 | 0.054 ± 0.032 | <10−4 |
DIabs | 0.045 ± 0.021 | 0.082 ± 0.029 | <10−4 |
DIrsq | 0.061 ± 0.027 | 0.104 ± 0.037 | <10−4 |
DI_dif | DI_abs | DI_rsq | PI | |
---|---|---|---|---|
Sensitivity | 0.813 | 0.813 | 0.813 | 0.688 |
Specificity | 0.938 | 0.750 | 0.750 | 1 |
AUC | 0.918 | 0.813 | 0.797 | 0.898 |
AUC 95% CI low | 0.733 | 0.615 | 0.592 | 0.723 |
AUC 95% CI up | 0.987 | 0.929 | 0.922 | 0.976 |
Accuracy | 0.875 | 0.781 | 0.781 | 0.844 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicki, K.; Placek, M.M.; Łysoń, T.; Mariak, Z.; Chrzanowski, R.; Czosnyka, M. Change in Blood Flow Velocity Pulse Waveform during Plateau Waves of Intracranial Pressure. Brain Sci. 2021, 11, 1000. https://doi.org/10.3390/brainsci11081000
Sawicki K, Placek MM, Łysoń T, Mariak Z, Chrzanowski R, Czosnyka M. Change in Blood Flow Velocity Pulse Waveform during Plateau Waves of Intracranial Pressure. Brain Sciences. 2021; 11(8):1000. https://doi.org/10.3390/brainsci11081000
Chicago/Turabian StyleSawicki, Karol, Michał M. Placek, Tomasz Łysoń, Zenon Mariak, Robert Chrzanowski, and Marek Czosnyka. 2021. "Change in Blood Flow Velocity Pulse Waveform during Plateau Waves of Intracranial Pressure" Brain Sciences 11, no. 8: 1000. https://doi.org/10.3390/brainsci11081000
APA StyleSawicki, K., Placek, M. M., Łysoń, T., Mariak, Z., Chrzanowski, R., & Czosnyka, M. (2021). Change in Blood Flow Velocity Pulse Waveform during Plateau Waves of Intracranial Pressure. Brain Sciences, 11(8), 1000. https://doi.org/10.3390/brainsci11081000